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Categories

Definition (Categories)

A (concrete) category C consists of the following data:

A collection Ob(C ) of sets called objects.

For each pair of objects A,B ∈ Ob(C ) a collection Mor(A,B)
of maps f : A→ B called morphisms.

We further require the following properties:

(i) Identity axiom. For every object A the identity map
1A : A→ A is a morphism, i.e., 1A ∈ Mor(A,A). In particular,
for any morphisms f : A→ B and g : B → A, we have

f ◦ 1A = f and 1A ◦ g = g .

(ii) Associativity axiom. If f ∈ Mor(A,B), g ∈ Mor(B,C ), and
h ∈ Mor(C ,D), then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
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Categories

Example

The category of sets, where:

The objects are arbitrary sets.

The morphisms are arbitrary maps.

This category is denoted Set.

Example

The category of groups, where:

The objects are groups.

The morphisms are group homomorphisms.

This category is denoted Grp.
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Categories

Example

The category of real vector spaces, where:

The objects are vector spaces over R.

The morphisms are R-linear maps.

This category is denoted VectR.

Example

The category of real algebras, where:

The objects are algebras over R.

The morphisms are algebra homomorphisms.

This category is denoted AlgR.
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Categories

Example

The category of topological spaces (a.k.a. continuous category),
where:

The objects are topological spaces.

The morphisms are continuous maps.

This category is denoted Top.

Example

The category of smooth manifolds (a.k.a. smooth category),
where:

The objects are smooth manifold.

The morphisms are smooth maps between manifolds.

This category is denoted Man∞.
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Categories

Example

The category of pointed manifolds, where:

The objects are pointed manifolds, i.e., pairs (M, q) where M
is a (smooth) manifold and q is a point of M.

A morphism f ∈ Mor((N, p), (M, q)) is a smooth map
F : N → M such that F (p) = q.

This category is denoted Man∞• .
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Categories

Definition (Definition 10.1)

Let A and B be objects in a given category C .

We say that a morphism f : A→ B is an isomorphism when f
is a bijection and f −1 ∈ Mor(B,A).

We say that the objects A and B are isomorphic, and write
A ' B, when there is an isomorphism f : A→ B.

Examples

1 In the category Top the isomorphisms are called
homeomorphisms.

2 In the category Man∞ the isomorphisms are called
diffeomorphisms.
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Functors

Definition (Functors; Definition 10.2)

Given categories C and D , a (covariant) functor F : C → D
associate to every object A in C an object F (A) in D and
associates to every morphism f : A→ B (between objects in C ) a
morphism F (f ) : F (A)→ F (B) in such a way that

F (1A) = 1F (A) and F (f ◦ g) = F (f ) ◦F (g).
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Functors

Example

The tangent space construction gives rise to a functor
F : Man∞• → VectR.

To any pointed manifold (N, p) is associated the tangent
space F (N) = TpN, which is a vector space.

To any smooth map f : (N, p)→ (M, q) is associated the
differential F (f ) = f∗,p : TpN → TqM, which is a linear map.

The differential of the identity 1N : N → N is the identity
map 1TpN : TpN → TpN.

The functorial property F (f ◦ g) = F (f ) ◦F (g) is just the
Chain Rule,

(g ◦ f )∗,p = g∗,f (p) ◦ f∗,p.
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Functors

Remark

Let F : C → D be a functor and let f : A→ B be an
isomorphism between objects in C . We get morphisms,

F (f ) : F (A)→ F (B), F (f −1) : F (B)→ F (A).

By the functor properties we have

F (f −1) ◦F (f ) = F (f −1 ◦ f ) = F (1A) = 1F (A).

Likewise, F (f ) ◦F (f −1) = 1F (B). Therefore, we arrive at the
following result:

Proposition (Proposition 10.3)

If F : C → D is a functor and f : A→ B is an isomorphism, then
the morphism F (f ) : F (A)→ F (B) is an isomorphism with
inverse F (f −1) : F (B)→ F (A).
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Example

Let f : N → M be a diffeomorphism between manifolds.

If p ∈ N, then f : (N, p)→ (M, f (p)) is an isomorphism in
the category Man∞• , and so the differential
F (f ) = f∗,p : TpN → Tf (p)M is an isomorphism of vector
spaces (Corollary 8.6).

It follows that dimN = dimM, i.e., the dimension of a
manifold is invariant under diffeomorphisms (Corollary 8.7).
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Functors

In the definition of functor we may reverse the direction of the
arrows.

Definition (Contravariant Functors; Definition 10.4)

Given categories C and D , a contravariant functor F : C → D
associate to every object A in C an object F (A) in D and
associate to every morphism f : A→ B (between objects in C ) a
morphism F (f ) : F (B)→ F (A) in such a way that

F (1A) = 1F (A) and F (f ◦ g) = F (g) ◦F (f ).

In the same way as with covariant functors, we have:

Proposition

If F : C → D is a contravariant functor and f : A→ B is an
isomorphism, then the morphism F (f ) : F (B)→ F (A) is an
isomorphism with inverse F (f −1) : F (A)→ F (B).
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Functors

Definition

Let F : N → M be a smooth map between manifolds. The
pullback map F ∗ : C∞(M)→ C∞(N) is defined by

F ∗h = h ◦ F , h ∈ C∞(M).

Fact

If F : N → M and G : P → N are smooth maps, and h ∈ C∞(M),
then we have

(F ◦ G )∗h = h ◦ F ◦ G = (F ∗h) ◦ G = G ∗(F ∗h) = (G ∗ ◦ F ∗)h.

Thus,
(F ◦ G )∗ = G ∗ ◦ F ∗.
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Example

The smooth functions on manifolds give rise to a contravariant
functor F : Man∞ → AlgR.

To a manifold M is associated the algebra F (M) = C∞(M).

To a smooth map F : N → M is associated the pullback
F (F ) = F ∗ : C∞(M)→ C∞(N).

We have (1M)∗ = 1C∞(M).

If F : N → M and G : P → N are smooth maps, then

F (F ◦ G ) = (F ◦ G )∗ = G ∗ ◦ F ∗ = F (G ) ◦F (F ).

Therefore, F is a contravariant functor.
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The Dual and Multicovector Functors

Reminder

If V is a vector space, then V ∨ = Hom(V ,R) is the dual
space of V consisting of all linear forms α : V → R.

If {e1, . . . , en} is a basis of V , then the dual basis
{α1, . . . , αn} of V ∨ is given by

αi (ej) = δij , 1 ≤ i , j ≤ n.

Definition (Dual of a linear map)

If L : V →W is a linear map, its dual map is the linear map
L∨ : W ∨ → V ∨ defined by

L∨(α) = α ◦ L, α ∈W ∨.
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The Dual and Multicovector Functors

Proposition (Proposition 10.5)

1 (1V )∨ = 1V∨ .

2 If f : V →W and g : W → U are linear maps, then
(f ◦ g)∨ = g∨ ◦ f ∨.

Corollary

The dual construction gives rise to a contravariant functor
F : VectR → VectR:

To each vector space is associated its dual F (V ) = V ∨.

To each linear map L : V →W is associated its dual map
F (L) = L∨ : W ∨ → V ∨.

In particular, if L : V →W is an isomorphism, then its dual map
L∨ : W ∨ → V ∨ is an isomorphism as well.
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The Dual and Multicovector Functors

Reminder

If V is a vector space, then Ak(V ), k ≥ 1, is the vector space of
k-covectors on V , i.e., alternating k-linear maps f : V k → R.

Definition (Pullback by a linear map)

If L : V →W is a linear map, then its pullback map is the linear
map L∗ : Ak(W )→ Ak(V ) defined by

(L∗f )(v1, . . . , vk) = f (L(v1), . . . , L(vk)) , f ∈ Ak(W ), vi ∈ V .
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The Dual and Multicovector Functors

Proposition (Proposition 10.5)

1 (1V )∗ = 1Ak (V ).

2 If K : U → V and L : V →W are linear maps, then
(K ◦ L)∗ = L∗ ◦ K ∗.

Corollary

The construction Ak(·) gives rise to a contravariant functor
F : VectR → VectR:

To each vector space is associated its space of k-covectors
F (V ) = Ak(V ).

To each linear map L : V →W is associated its pullback map
F (L) = L∗ : Ak(W )→ Ak(V ).

In particular, if L : V →W is an isomorphism, then its pullback
map L∗ : Ak(W )→ Ak(V ) is an isomorphism as well.
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