

Differentiable Manifolds

§10. Categories and Functors

Sichuan University, Fall 2021

Categories

Definition (Categories)

A (concrete) category \mathcal{C} consists of the following data:

- A collection $\text{Ob}(\mathcal{C})$ of sets called *objects*.
- For each pair of objects $A, B \in \text{Ob}(\mathcal{C})$ a collection $\text{Mor}(A, B)$ of maps $f : A \rightarrow B$ called *morphisms*.

We further require the following properties:

(i) *Identity axiom.* For every object A the identity map $\mathbb{1}_A : A \rightarrow A$ is a morphism, i.e., $\mathbb{1}_A \in \text{Mor}(A, A)$. In particular, for any morphisms $f : A \rightarrow B$ and $g : B \rightarrow A$, we have

$$f \circ \mathbb{1}_A = f \quad \text{and} \quad \mathbb{1}_A \circ g = g.$$

(ii) *Associativity axiom.* If $f \in \text{Mor}(A, B)$, $g \in \text{Mor}(B, C)$, and $h \in \text{Mor}(C, D)$, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Categories

Example

The category of sets, where:

- The objects are arbitrary sets.
- The morphisms are arbitrary maps.

This category is denoted **Set**.

Example

The category of groups, where:

- The objects are groups.
- The morphisms are group homomorphisms.

This category is denoted **Grp**.

Categories

Example

The category of real vector spaces, where:

- The objects are vector spaces over \mathbb{R} .
- The morphisms are \mathbb{R} -linear maps.

This category is denoted $\mathbf{Vect}_{\mathbb{R}}$.

Example

The category of real algebras, where:

- The objects are algebras over \mathbb{R} .
- The morphisms are algebra homomorphisms.

This category is denoted $\mathbf{Alg}_{\mathbb{R}}$.

Categories

Example

The category of topological spaces (a.k.a. *continuous category*), where:

- The objects are topological spaces.
- The morphisms are continuous maps.

This category is denoted **Top**.

Example

The category of smooth manifolds (a.k.a. *smooth category*), where:

- The objects are smooth manifold.
- The morphisms are smooth maps between manifolds.

This category is denoted **Man $^\infty$** .

Example

The category of *pointed manifolds*, where:

- The objects are pointed manifolds, i.e., pairs (M, q) where M is a (smooth) manifold and q is a point of M .
- A morphism $f \in \text{Mor}((N, p), (M, q))$ is a smooth map $F : N \rightarrow M$ such that $F(p) = q$.

This category is denoted $\text{Man}_\bullet^\infty$.

Definition (Definition 10.1)

Let A and B be objects in a given category \mathcal{C} .

- We say that a morphism $f : A \rightarrow B$ is an *isomorphism* when f is a bijection and $f^{-1} \in \text{Mor}(B, A)$.
- We say that the objects A and B are isomorphic, and write $A \simeq B$, when there is an isomorphism $f : A \rightarrow B$.

Examples

- ① In the category Top the isomorphisms are called homeomorphisms.
- ② In the category Man^∞ the isomorphisms are called diffeomorphisms.

Definition (Functors; Definition 10.2)

Given categories \mathcal{C} and \mathcal{D} , a (*covariant*) functor $\mathcal{F} : \mathcal{C} \rightarrow \mathcal{D}$ associate to every object A in \mathcal{C} an object $\mathcal{F}(A)$ in \mathcal{D} and associates to every morphism $f : A \rightarrow B$ (between objects in \mathcal{C}) a morphism $\mathcal{F}(f) : \mathcal{F}(A) \rightarrow \mathcal{F}(B)$ in such a way that

$$\mathcal{F}(\mathbb{1}_A) = \mathbb{1}_{\mathcal{F}(A)} \quad \text{and} \quad \mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g).$$

Example

The tangent space construction gives rise to a functor

$$\mathcal{F} : \mathbf{Man}_\bullet^\infty \rightarrow \mathbf{Vect}_{\mathbb{R}}.$$

- To any pointed manifold (N, p) is associated the tangent space $\mathcal{F}(N) = T_p N$, which is a vector space.
- To any smooth map $f : (N, p) \rightarrow (M, q)$ is associated the differential $\mathcal{F}(f) = f_{*,p} : T_p N \rightarrow T_q M$, which is a linear map.
- The differential of the identity $\mathbb{1}_N : N \rightarrow N$ is the identity map $\mathbb{1}_{T_p N} : T_p N \rightarrow T_p N$.
- The functorial property $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$ is just the Chain Rule,

$$(g \circ f)_{*,p} = g_{*,f(p)} \circ f_{*,p}.$$

Functors

Remark

Let $\mathcal{F} : \mathcal{C} \rightarrow \mathcal{D}$ be a functor and let $f : A \rightarrow B$ be an isomorphism between objects in \mathcal{C} . We get morphisms,

$$\mathcal{F}(f) : \mathcal{F}(A) \rightarrow \mathcal{F}(B), \quad \mathcal{F}(f^{-1}) : \mathcal{F}(B) \rightarrow \mathcal{F}(A).$$

By the functor properties we have

$$\mathcal{F}(f^{-1}) \circ \mathcal{F}(f) = \mathcal{F}(f^{-1} \circ f) = \mathcal{F}(\mathbb{1}_A) = \mathbb{1}_{\mathcal{F}(A)}.$$

Likewise, $\mathcal{F}(f) \circ \mathcal{F}(f^{-1}) = \mathbb{1}_{\mathcal{F}(B)}$. Therefore, we arrive at the following result:

Proposition (Proposition 10.3)

If $\mathcal{F} : \mathcal{C} \rightarrow \mathcal{D}$ is a functor and $f : A \rightarrow B$ is an isomorphism, then the morphism $\mathcal{F}(f) : \mathcal{F}(A) \rightarrow \mathcal{F}(B)$ is an isomorphism with inverse $\mathcal{F}(f^{-1}) : \mathcal{F}(B) \rightarrow \mathcal{F}(A)$.

Example

Let $f : N \rightarrow M$ be a diffeomorphism between manifolds.

- If $p \in N$, then $f : (N, p) \rightarrow (M, f(p))$ is an isomorphism in the category $\mathbf{Man}_\bullet^\infty$, and so the differential $\mathcal{F}(f) = f_{*,p} : T_p N \rightarrow T_{f(p)} M$ is an isomorphism of vector spaces (Corollary 8.6).
- It follows that $\dim N = \dim M$, i.e., the dimension of a manifold is invariant under diffeomorphisms (Corollary 8.7).

Functors

In the definition of functor we may reverse the direction of the arrows.

Definition (Contravariant Functors; Definition 10.4)

Given categories \mathcal{C} and \mathcal{D} , a *contravariant functor* $\mathcal{F} : \mathcal{C} \rightarrow \mathcal{D}$ associate to every object A in \mathcal{C} an object $\mathcal{F}(A)$ in \mathcal{D} and associate to every morphism $f : A \rightarrow B$ (between objects in \mathcal{C}) a morphism $\mathcal{F}(f) : \mathcal{F}(B) \rightarrow \mathcal{F}(A)$ in such a way that

$$\mathcal{F}(\mathbb{1}_A) = \mathbb{1}_{\mathcal{F}(A)} \quad \text{and} \quad \mathcal{F}(f \circ g) = \mathcal{F}(g) \circ \mathcal{F}(f).$$

In the same way as with covariant functors, we have:

Proposition

If $\mathcal{F} : \mathcal{C} \rightarrow \mathcal{D}$ is a contravariant functor and $f : A \rightarrow B$ is an isomorphism, then the morphism $\mathcal{F}(f) : \mathcal{F}(B) \rightarrow \mathcal{F}(A)$ is an isomorphism with inverse $\mathcal{F}(f^{-1}) : \mathcal{F}(A) \rightarrow \mathcal{F}(B)$.

Functors

Definition

Let $F : N \rightarrow M$ be a smooth map between manifolds. The *pullback map* $F^* : C^\infty(M) \rightarrow C^\infty(N)$ is defined by

$$F^*h = h \circ F, \quad h \in C^\infty(M).$$

Fact

If $F : N \rightarrow M$ and $G : P \rightarrow N$ are smooth maps, and $h \in C^\infty(M)$, then we have

$$(F \circ G)^*h = h \circ F \circ G = (F^*h) \circ G = G^*(F^*h) = (G^* \circ F^*)h.$$

Thus,

$$(F \circ G)^* = G^* \circ F^*.$$

Example

The smooth functions on manifolds give rise to a contravariant functor $\mathcal{F} : \mathbf{Man}^\infty \rightarrow \mathbf{Alg}_{\mathbb{R}}$.

- To a manifold M is associated the algebra $\mathcal{F}(M) = C^\infty(M)$.
- To a smooth map $F : N \rightarrow M$ is associated the pullback $\mathcal{F}(F) = F^* : C^\infty(M) \rightarrow C^\infty(N)$.
- We have $(\mathbb{1}_M)^* = \mathbb{1}_{C^\infty(M)}$.
- If $F : N \rightarrow M$ and $G : P \rightarrow N$ are smooth maps, then

$$\mathcal{F}(F \circ G) = (F \circ G)^* = G^* \circ F^* = \mathcal{F}(G) \circ \mathcal{F}(F).$$

Therefore, \mathcal{F} is a contravariant functor.

The Dual and Multicovector Functors

Reminder

- If V is a vector space, then $V^\vee = \text{Hom}(V, \mathbb{R})$ is the dual space of V consisting of all linear forms $\alpha : V \rightarrow \mathbb{R}$.
- If $\{e_1, \dots, e_n\}$ is a basis of V , then the dual basis $\{\alpha^1, \dots, \alpha^n\}$ of V^\vee is given by

$$\alpha^i(e_j) = \delta_j^i, \quad 1 \leq i, j \leq n.$$

Definition (Dual of a linear map)

If $L : V \rightarrow W$ is a linear map, its *dual map* is the linear map $L^\vee : W^\vee \rightarrow V^\vee$ defined by

$$L^\vee(\alpha) = \alpha \circ L, \quad \alpha \in W^\vee.$$

The Dual and Multicovector Functors

Proposition (Proposition 10.5)

- ① $(\mathbb{1}_V)^\vee = \mathbb{1}_{V^\vee}$.
- ② If $f : V \rightarrow W$ and $g : W \rightarrow U$ are linear maps, then $(f \circ g)^\vee = g^\vee \circ f^\vee$.

Corollary

The dual construction gives rise to a contravariant functor

$\mathcal{F} : \mathbf{Vect}_{\mathbb{R}} \rightarrow \mathbf{Vect}_{\mathbb{R}}$:

- To each vector space is associated its dual $\mathcal{F}(V) = V^\vee$.
- To each linear map $L : V \rightarrow W$ is associated its dual map $\mathcal{F}(L) = L^\vee : W^\vee \rightarrow V^\vee$.

In particular, if $L : V \rightarrow W$ is an isomorphism, then its dual map $L^\vee : W^\vee \rightarrow V^\vee$ is an isomorphism as well.

The Dual and Multicovector Functors

Reminder

If V is a vector space, then $A_k(V)$, $k \geq 1$, is the vector space of k -covectors on V , i.e., alternating k -linear maps $f : V^k \rightarrow \mathbb{R}$.

Definition (Pullback by a linear map)

If $L : V \rightarrow W$ is a linear map, then its *pullback map* is the linear map $L^* : A_k(W) \rightarrow A_k(V)$ defined by

$$(L^*f)(v_1, \dots, v_k) = f(L(v_1), \dots, L(v_k)), \quad f \in A_k(W), \quad v_i \in V.$$

The Dual and Multicovector Functors

Proposition (Proposition 10.5)

- ① $(\mathbb{1}_V)^* = \mathbb{1}_{A_k(V)}$.
- ② If $K : U \rightarrow V$ and $L : V \rightarrow W$ are linear maps, then $(K \circ L)^* = L^* \circ K^*$.

Corollary

The construction $A_k(\cdot)$ gives rise to a contravariant functor

$\mathcal{F} : \mathbf{Vect}_{\mathbb{R}} \rightarrow \mathbf{Vect}_{\mathbb{R}}$:

- To each vector space is associated its space of \mathbb{k} -covectors $\mathcal{F}(V) = A_k(V)$.
- To each linear map $L : V \rightarrow W$ is associated its pullback map $\mathcal{F}(L) = L^* : A_k(W) \rightarrow A_k(V)$.

In particular, if $L : V \rightarrow W$ is an isomorphism, then its pullback map $L^* : A_k(W) \rightarrow A_k(V)$ is an isomorphism as well.