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Directional Derivative

Remarks

A vector at a point p in R3 can be visualize as an arrow
emanating from p.

It can also be represented as a column,

v =



v1

v2

v3


 .
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Directional Derivative

Definition (Tangent Space)

The tangent space Tp(Rn) at p ∈ Rn is the vector space of all
arrows emanating from p.

Elements of Tp(Rn) are called tangent vectors (or simply
vectors).

Remarks

1 We identify Tp(Rn) with the space of n-columns, and hence
tangent vectors are identified with n-columns.

2 We sometime write TpRn for Tp(Rn).
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Directional Derivative

Convention

We shall denote a point in Rn as p = (p1, . . . , pn) and a
tangent vector in Tp(Rn) as

v =



v1

...
vn


 or v = 〈v1, . . . , vn〉.

We usually denote the canonical basis of Rn or Tp(Rn) by
e1, . . . , en, so that v =

∑
v jej .
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Directional Derivative

Definition

Let f be a C∞-function on a neighbrohood of p = (p1, . . . , pn),
and let v = 〈v1, . . . , vn〉 be a tangent vector. The directional
derivative of f in the direction of v at p is defined to be

Dv f =
d

dt

∣∣∣
t=0

f (p + tv).

Remarks

1 In other words Dv f = d
dt

∣∣
t=0

f (c(t)), where c(t) = p + tv .

2 In the notation Dv f it is implicitly understood that we
evaluate at p, since v is a tangent vector at p. Thus, Dv f is a
number, not a function.
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Directional Derivative

Fact

By using the Chain Rule we find that

Dv f =
n∑

i=1

v i
∂f

∂x i
(p).

Definition

We write

Dv =
∑

v i
∂

∂x i

∣∣∣
p

for the map that assigns to any C∞-function f near p its
directional derivative Dv f .

Remark

As we shall see, the assignment v → Dv provides us with an
alternative description of tangent vectors at p.
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Germs of Functions

Observation

Two C∞ functions that agree on a neighborhood of p have the
same directional derivatives at p. Therefore, it is natural to declare
such functions to be equivalent.
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Germs of Functions

Definition (Relation)

Let S be a set.

1 A relation on S is given by a subset R ⊂ S × S .

2 Given x , y ∈ S we write x ∼ y when (x , y) ∈ R.

Definition (Equivalence Relation)

The relation R is an equivalence relation when it satisfies the
following properties:

(i) Reflexivity: x ∼ x for all x ∈ S .
(ii) Symmetry: If x ∼ y , then y ∼ x .
(iii) Transitivity: If x ∼ y and y ∼ z , then x ∼ z .

If x ∼ y , then we say that x and y are equivalent.

The set of all y ∈ S that are equivalent to x is called the
equivalence class of x .
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Germs of Functions

Definition

We define a relation on C∞-functions near p at follows:

S is a set of pairs (f ,U), where U is a neighborhood of p and
f is a C∞-function on U.

The relation on S is given by

(f ,U) ∼ (g ,V ) ⇐⇒ f = g near p.

Fact

This defines an equivalence relation.

Definition

1 The equivalence class of (f ,U) is called the germ of f at p.

2 The set of all germs at p is denoted by C∞
p (Rn), or simply

C∞
p .
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Germs of Functions

Example

The functions

f (x) =
1

1− x
, x 6= 1,

g(x) = 1 + x + x2 + · · · , |x | < 1,

have the same germ at any point of the interval (−1, 1).
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Germs of Functions

Definition (Algebra over a Field)

An algebra over a field K is a vector space A equipped with an
associative multiplication (a, b)→ ab that is compatible with
scalar multiplication and addition of vectors. That is, it satisfies
the following properties:

(i) Associativity: a(bc) = (ab)c .

(ii) Distributivity: a(b + c) = ab + ac and (a + b)c = ac + bc.

(iii) Homogeneity: λ(ab) = (λa)b = a(λb) for all λ ∈ K.

Remark

Equivalently, an algebra A over K is a ring equipped with a scalar
multiplication that satisfies (iii) and turns A into a vector space.
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Germs of Functions

Definition (Algebra Homomorphism)

Given algebras A and A′ over K, an algebra homomorphism
L : A→ A′ is any K-linear map that is multiplicative, i.e.,

L(ab) = L(a)L(b) ∀a, b ∈ A.

12 / 27



Germs of Functions

Fact

Let p be a point in Rn.

1 The addition, scalar multiplication and multiplication of
functions induces corresponding operations on the set of
germs C∞

p (see Problem 2.2).

2 This turns C∞
p into an algebra over R.
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Derivations at a Point

Facts

Let p be a point in Rn and v a tangent vector at p.

1 The directional derivative gives rise to a map,

Dv : C∞
p −→ R.

2 This map is R-linear and satisfies Leibniz’s Rule:

Dv (fg) = f (p)Dv (g) + (Dv f )g(p).
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Derivations at a Point

Definition

1 Any linear map D : C∞
p → R that satisfies Leibniz’s Rule is

called a derivation at p (or a point-derivation of C∞
p ).

2 The set of all derivations at p is denoted by Dp(Rn).

Fact

Dp(Rn) is a vector space over R.

Lemma (Lemma 2.1)

Let D : C∞
p → R be a derivation at p. Then D(c) = 0 for every

constant function c.
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Derivations at a Point

Theorem (Theorem 2.2)

Let φ : Tp(Rn)→ Dp(Rn) be the map defined by

φ(v) = Dv =
∑

v i
∂

∂x i

∣∣∣
p
, v = 〈v1, . . . , vn〉 ∈ Tp(Rn).

Then φ is a linear isomorphism.

Consequence

This isomorphism allows us to identify tangent vectors at p
with derivation at p.

Under this identification,

Canonical basis e1, . . . , en ←→ ∂
∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p
,

v = 〈v1, . . . , vn〉 =
∑

v iei ←→ v =
∑

v i ∂
∂x i

∣∣∣
p
.
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Derivations at a Point

Remarks

1 From now on we will write a tangent vector as v =
∑

v i ∂
∂x i

∣∣∣
p
.

2 Although not as geometric as the realization as arrows, the
description of the tangent space in terms of derivations is more
suitable for the generalization to manifolds (see Section 8).
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Vector Fields

Definition (Vector Fields)

A vector field X on an open U of Rn is a map that assigns to each
point p ∈ U a tangent vector Xp ∈ Tp(Rn).

Remarks

As Tp(Rn) has basis { ∂
∂x i

∣∣
p
} for every p there are unique

coefficients aj(p) ∈ R such that

Xp =
∑

aj(p)
∂

∂x i

∣∣∣
p
.

We write X =
∑

aj ∂
∂x i

, where the aj are now functions on U.

Definition

A vector field X =
∑

aj ∂
∂x j

on U is C∞ when the coefficient

functions aj are all C∞ on U.
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Vector Fields

Example (Example 2.3)

X =
−y√
x2 + y2

∂

∂x
+

x√
x2 + y2

∂

∂y
=

〈
−y√
x2 + y2

,
x√

x2 + y2

〉
,

Y = x
∂

∂x
− y

∂

∂y
= 〈x ,−y〉,

We may draw a vector at p as an arrow emanating from p (see
next slide).
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Vector Fields

2.4 Vector Fields 15

2
0

2

1

1

0-2

-1

-1

-2

◦

(a) The vector field X on R2−{0} (b) The vector field 〈x,−y〉 on R2

Fig. 2.3. Vector fields on open subsets of R2.

One can identify vector fields on U with column vectors of C∞ functions on U :

X = ∑ai ∂

∂xi
←→




a1

...
an


 .

This is the same identification as (2.4), but now we are allowing the point p to move
in U .

The ring of C∞ functions on an open set U is commonly denoted by C∞(U) or
F(U). Multiplication of vector fields by functions on U is defined pointwise:

( f X)p = f (p)Xp, p ∈U.

Clearly, if X = ∑ai ∂/∂xi is a C∞ vector field and f is a C∞ function on U , then
f X = ∑( f ai)∂/∂xi is a C∞ vector field on U . Thus, the set of all C∞ vector fields on
U , denoted by X(U), is not only a vector space over R, but also a module over the
ring C∞(U). We recall the definition of a module.

Definition 2.4. If R is a commutative ring with identity, then a (left) R-module is an
abelian group A with a scalar multiplication map

µ : R×A→ A,

usually written µ(r,a) = ra, such that for all r,s ∈ R and a,b ∈ A,

(i) (associativity) (rs)a = r(sa),

(ii) (identity) if 1 is the multiplicative identity in R, then 1a = a,

(iii) (distributivity) (r + s)a = ra + sa, r(a + b) = ra + rb.

Figure 2.3 of Tu’s book.
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Vector Fields

Reminder

1 The set of C∞-functions on U is denoted by C∞(U) or F (U).

2 This is an algebra over R, and hence this is a ring.

Definition

X (U) is the set of all C∞ vector fields on U.

Definition

We multiply a vector field X by a function f as follows:

(fX )p := f (p)Xp, p ∈ U.

Remarks

1 If X =
∑

aj ∂
∂x j

, then fX =
∑

(faj) ∂
∂x j

.

2 If f ∈ C∞(U) and X ∈X (U), then fX ∈X (U).
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Vector Fields

Definition (Module over a Ring)

Let R be a commutative ring with identity 1. An R-module A is an
Abelian group equipped with a scalar multiplication
R × A 3 (r , a)→ ra ∈ A satisfying the following properties:

(i) Associativity: (rs)a = r(sa) for all r , s ∈ R and a ∈ A.

(ii) Identity: 1a = a for all a ∈ A.

(iii) Distributivity: (r + s)a = ra + sa and r(a + b) = ra + rb.

Remark

When R is a field, an R-module is just a vector space over R.
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Vector Fields

Definition (R-Module Homomorphism)

Given R-modules A and A′, an R-module homomorphism is an
additive map f : A→ A′ that is compatible with scalar
multiplication. That is,

f (a + b) = f (a) + f (b),

f (ra) = rf (a).

Fact

The set of C∞ vector fields X (U) is a C∞(U)-module.
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Vector Fields as Derivations

Definition

Given a C∞ vector field X and a C∞ function f on U, we define a
function Xf by

(Xf )(p) = Xpf for all p ∈ U.

Equivalently, if we write X =
∑

ai ∂
∂x i

, then

(Xf )(p) =
∑

ai (p)
∂f

∂x i
(p).

Facts

1 The above formula shows that Xf is a C∞ function.

2 We thus see that X defines a linear map,

X : C∞(U) −→ C∞(U).
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Vector Fields as Derivations

Proposition (Proposition 2.6; Leibniz’s Rule for Vector Fields)

Let X be a C∞ vector field. Then it satisfies Leibniz’s Rule,

X (fg) = fX (g) + (Xf )g for all f , g ∈ C∞(U).

Definition (Derivation of an Algebra)

1 If A is an algebra over a field K, a derivation of A is any
K-linear map D : A→ A that satisfies Leibniz’s Rule.

2 The set of derivations of A is denoted by Der(A).

Fact

Der(A) is a vector space over K.
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Vector Fields as Derivations

Facts

1 We thus get a linear map,

ϕ : X (U) −→ Der
(
C∞(U)

)
,

X −→
(
f −→ Xf

)
.

2 This map can be shown to a linear isomorphism.

Remark

Showing the injectivity of ϕ is not difficult, but the surjectivity
requires some work (see Problem 19.12).

Consequence

In the same way we can identify tangent vectors at p and
derivations at p, we may identify C∞ vector fields on U with
derivations of C∞(U).
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Vector Fields as Derivations

Remark

A derivation at p is NOT a derivation of the algebra C∞
p .

A derivation at p is a linear map from C∞
p to R, while a

derivation of C∞
p is a linear map from C∞

p to itself.
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