

Differentiable Manifolds

§23. Integration on Manifolds

Sichuan University, Fall 2020

The Integral of an n -Form on \mathbb{R}^n

Remark

Throughout this section we assume familiarity with measure theory and Lebesgue's integral on \mathbb{R}^n .

Definition

Let $\omega = f(x)dx^1 \wedge \cdots \wedge dx^n$ be a smooth n -form on an open $U \subset \mathbb{R}^n$ with coordinates x^1, \dots, x^n . The *integral* of ω over a Borel set $A \subset U$ is defined by

$$\int_A \omega = \int_A f(x)dx^1 \wedge \cdots \wedge dx^n := \int_A f(x)dx.$$

The Integral of an n -Form on \mathbb{R}^n

Reminder (see Section 22)

Let $\phi : V \rightarrow U$ be a diffeomorphism between open subsets of \mathbb{R}^n .

- ϕ is orientation-preserving if and only if $\det(J(\phi)) > 0$ on V .
- It is orientation-reversing if and only if $\det(J(\phi)) < 0$ on V .

Here $J(\phi)$ is the Jacobian of ϕ .

The Integral of an n -Form on \mathbb{R}^n

Facts

Let $\phi : V \rightarrow U$ be a diffeomorphism between open subsets of \mathbb{R}^n . Use coordinates (x^1, \dots, x^n) on U and coordinates (y^1, \dots, y^n) on V . Set $\phi^i = x^i \circ \phi = \phi^* x^i$.

- Let $\omega = f(x)dx^1 \wedge \cdots \wedge dx^n$ be a C^∞ n -form on U . As pullback commutes with wedge product and differential,

$$\begin{aligned}\phi^* \omega &= \phi^*(f dx^1 \wedge \cdots \wedge dx^n) = (\phi^* f)(\phi^* dx^1) \wedge \cdots \wedge (\phi^* dx^n), \\ &= (f \circ \phi)d(\phi^* x^1) \wedge \cdots \wedge d(\phi^* x^n), \\ &= (f \circ \phi)d\phi^1 \wedge \cdots \wedge d\phi^n.\end{aligned}$$

- By using the local expression for wedge of differentials (Proposition 18.3), we get

$$\begin{aligned}\phi^* \omega &= (f \circ \phi) \frac{\partial(\phi^1, \dots, \phi^n)}{\partial(y^1, \dots, y^n)} dy^1 \wedge \cdots \wedge dy^n \\ &= (f \circ \phi) \det(J(\phi)) dy^1 \wedge \cdots \wedge dy^n.\end{aligned}$$

Facts (Continued)

- Assume that the diffeomorphism ϕ is orientation-preserving or orientation-reversing. Then

$$\begin{aligned}\phi^*\omega &= (f \circ \phi) \det(J(\phi)) dy^1 \wedge \cdots \wedge dy^n, \\ &= \pm (f \circ \phi) |\det(J(\phi))| dy^1 \wedge \cdots \wedge dy^n,\end{aligned}$$

where the sign \pm depends on whether ϕ is orientation-preserving or orientation-reversing.

- By using the usual change of variable formula, we get

$$\int_V \phi^*\omega = \pm \int_{\phi^{-1}(U)} (f \circ \phi) |\det(J(\phi))| dy = \pm \int_U f dx = \pm \int_U \omega.$$

The Integral of an n -Form on \mathbb{R}^n

Therefore, we obtain:

Lemma

Let $\phi : V \rightarrow U$ be a diffeomorphism between open subsets of \mathbb{R}^n , and ω a smooth n -form on U .

- If ϕ is orientation-preserving, then

$$\int_V \phi^* \omega = \int_U \omega.$$

- If ϕ is orientation-reversing, then

$$\int_V \phi^* \omega = - \int_U \omega.$$

Integral of a Differential Form over a Manifold

Definition

If M is a smooth manifold, we denote by $\Omega_c^k(M)$ the space of smooth k -forms with compact support.

Definition

Assume M is oriented and is equipped with an oriented atlas $\{(U_\alpha, \phi_\alpha)\}$. Set $n = \dim M$. Let (U, ϕ) be chart in this atlas. The integral of any top-form $\omega \in \Omega_c^n(U)$ is defined by

$$\int_U \omega := \int_{\phi(U)} (\phi^{-1})^* \omega.$$

Integral of a Differential Form over a Manifold

Remark

Let (U, ψ) be another chart with same domain in the oriented atlas.

- The transition map $\phi \circ \psi^{-1} : \psi(U) \rightarrow \phi(U)$ is an orientation-preserving diffeomorphism, since the charts (U, ϕ) and (U, ψ) belong to the same oriented atlas.
- Thus, by the previous lemma we have

$$\int_{\psi(U)} (\psi^{-1})^* \omega = \int_{\psi(U)} (\phi \circ \psi^{-1})^* [(\phi^{-1})^* \omega] = \int_{\phi(U)} (\phi^{-1})^* \omega$$

- This shows that the integral $\int_U \omega$ is well-defined and independent of the choice of the coordinate system ϕ on U .

Integral of a Differential Form over a Manifold

Facts

Let $\omega \in \Omega_c^n(M)$ and $\{\rho_\alpha\}$ a C^∞ partition of unity subordinated to the open cover $\{U_\alpha\}$.

- As ω has compact support, we have

$$\omega = \sum_{\alpha} \rho_\alpha \omega,$$

where the sum is actually finite (see Problem 18.6).

- By Problem 18.4 $\text{supp}(\rho_\alpha \omega) = \text{supp } \rho_\alpha \cap \text{supp } \omega$, and so $\rho_\alpha \omega$ has compact support.
- Thus, the integral $\int_{U_\alpha} \rho_\alpha \omega$ is well defined.

Integral of a Differential Form over a Manifold

Definition

Let $\omega \in \Omega_c^n(M)$. The integral of ω over M is defined by

$$\int_M \omega = \sum_{\alpha} \int_{U_{\alpha}} \rho_{\alpha} \omega.$$

Remark

The integral $\int_M \omega$ is well defined and independent of the partition of unity $\{\rho_{\alpha}\}$ (see Tu's book).

Integral of a Differential Form over a Manifold

Proposition (Proposition 23.10)

Let $-M$ be the manifold M with the opposite orientation. Then, for every $\omega \in \Omega_c^n(M)$, we have

$$\int_{-M} \omega = - \int_M \omega.$$

Remark

The treatment of integration of differential forms on an oriented manifold extends *verbatim* to differential forms on oriented manifolds with boundary.

Integral of a Differential Form over a Manifold

Definition (Domain of Integration; see Definition 23.6)

A subset $D \subset \mathbb{R}^n$ is called a *domain of integration* if it is bounded and its topological boundary has measure zero.

Definition (Parametrized Set)

A *parametrized set* in an oriented n -manifold M is a subset A together with a C^∞ -map $F : D \rightarrow M$, where D is a compact domain of integration in \mathbb{R}^n such that:

- (i) $F(D) = A$.
- (ii) F restricts to an orientation-preserving diffeomorphism from $\text{Int}(D)$ to $F(\text{Int}(D))$.

The map $F : D \rightarrow A$ is called a *parametrization* of A .

Remark

By smooth invariance of domain for manifolds, $F(\text{Int}(D))$ must be an open subset of M (see Remark 22.5).

Integral of a Differential Form over a Manifold

Definition

Let A be a parametrized set in M and $F : D \rightarrow M$ a parametrization. For any $\omega \in \Omega^n(M)$, the integral of ω over A is defined by

$$\int_A \omega := \int_D F^* \omega.$$

Remarks

- ① The integral $\int_A \omega$ is well defined and independent of the parametrization F .
- ② We don't need to assume ω to have compact support in the above definition.

Remarks

- A zero-dimensional manifold is a discrete countable set of points.
- A connected zero-dimensional is just a point. In this case there are two classes $[1]$ and $[-1]$ of 0-forms.
- More generally, an orientation on a 0-dimensional manifold is given by a function on M that assigns the values ± 1 .

Facts

- A compact oriented 0-dimensional manifold M is a finite unions of points oriented by $+1$ and -1 .
- We write $M = \sum_i p_i - \sum_j q_j$.
- The integral of a function $f : M \rightarrow \mathbb{R}$ is then defined by

$$\int_M f = \sum_i f(p_i) - \sum_j f(q_j).$$

Stokes's Theorem

Theorem (Stokes's Theorem; Theorem 23.12)

Let M be a an oriented manifold. Endow ∂M with its boundary orientation. Then, for every $(n - 1)$ -form $\omega \in \Omega_c^{n-1}(M)$, we have

$$\int_M d\omega = \int_{\partial M} \omega.$$

Line Integrals and Green's Theorem

Notation

If $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field on \mathbb{R}^3 and $\mathbf{r} = \langle x, y, z \rangle$ is the radial vector field, then $\mathbf{F} \cdot d\mathbf{r}$ is the 1-form $Pdx + Qdy + Rdz$.

Theorem (Fundamental theorem for line integrals; Theorem 23.13)

Let C be a smooth curve in \mathbb{R}^3 with parametrization

$\mathbf{r}(t) = (x(t), y(t), z(t))$, $a \leq t \leq b$. For any smooth function f on \mathbb{R}^3 we have

$$\int_C \text{grad } f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Line Integrals and Green's Theorem

Proof.

- Apply Stokes's theorem to $M = C$ and $\omega = f$ to get:

$$\int_C df = \int_{\partial C} f.$$

- We have

$$\int_C df = \int_C \left\{ \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \right\} = \int_C \operatorname{grad} f \cdot d\mathbf{r},$$

$$\int_{\partial C} f = f \Big|_{\mathbf{r}(a)}^{\mathbf{r}(b)} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

The result follows at once. □

Line Integrals and Green's Theorem

Theorem (Green's Theorem; Theorem 23.14)

Let D be a planar region with boundary ∂D . For any smooth functions P and Q near D we have

$$\int_{\partial D} (Pdx + Qdy) = \int_D \left\{ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\} dxdy.$$

Line Integrals and Green's Theorem

Proof.

- Stokes's theorem for $M = D$ and $\omega = Pdx + Qdy$ gives

$$\int_{\partial D} (Pdx + Qdy) = \int_D d(Pdx + Qdy).$$

- We have

$$\begin{aligned} d(Pdx + Qdy) &= dP \wedge dx + dQ \wedge dy \\ &= \frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy \\ &= \left\{ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\} dx \wedge dy. \end{aligned}$$

- Thus, by the very definition of the integral of a top form,

$$\int_D d(Pdx + Qdy) = \int_D \left\{ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\} dx dy.$$

Hence the result.

