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The Upper Half-Space Hn

Definition

The (closed) upper half-space is

Hn =
{

(x1, . . . , xn) ∈ Rn; xn > 0
}
.

The points (x1, . . . , xn) ∈ Hn with xn > 0 are called interior
points. The set of interior points is denoted Int(Hn).

The points (x1, . . . , xn) ∈ Hn with xn = 0 are called boundary
points. The set of interior points is denoted ∂(Hn).
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§22 Manifolds with Boundary

The prototype of a manifold with boundary is the closed upper half-space

Hn = {(x1, . . . ,xn) ∈ Rn | xn ≥ 0},

with the subspace topology inherited from Rn. The points (x1, . . . ,xn) in Hn with
xn > 0 are called the interior points of Hn, and the points with xn = 0 are called the
boundary points of Hn. These two sets are denoted by (Hn)◦ and ∂ (Hn), respec-
tively (Figure 22.1).

xn

int(Hn)

∂ (Hn)

Fig. 22.1. Upper half-space.

In the literature the upper half-space often means the open set

{(x1, . . . ,xn) ∈Rn | xn > 0}.

We require that Hn include the boundary in order for it to serve as a model for
manifolds with boundary.

If M is a manifold with boundary, then its boundary ∂M turns out to be a manifold
of dimension one less without boundary. Moreover, an orientation on M induces
an orientation on ∂M. The choice of the induced orientation on the boundary is a
matter of convention, guided by the desire to make Stokes’s theorem sign-free. Of the
various ways to describe the boundary orientation, two stand out for their simplicity:
(1) contraction of an orientation form on M with an outward-pointing vector field on
∂M and (2) “outward vector first.”

22.1 Smooth Invariance of Domain in Rn

To discuss C∞ functions on a manifold with boundary, we need to extend the defini-
tion of a C∞ function to allow nonopen domains.

Definition 22.1. Let S ⊂ Rn be an arbitrary subset. A function f : S → Rm is
smooth at a point p in S if there exist a neighborhoodU of p in Rn and a C∞ function
f̃ : U → Rm such that f̃ = f on U ∩S. The function is smooth on S if it is smooth at
each point of S.
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The Upper Half-Space Hn

Remark

There are two types of open subsets of Hn, depending on whether
they intersect with the boundary ∂Hn:

250 §22 Manifolds with Boundary

Proof. Let p ∈U be an interior point. Then p is contained in an open ball B, which
is actually open in Rn (not just in Hn). By smooth invariance of domain, f (B) is
open in Rn (again not just in Hn). Therefore, f (B) ⊂ (Hn)◦. Since f (p) ∈ f (B),
f (p) is an interior point of Hn.

If p is a boundary point in U ∩ ∂Hn, then f−1( f (p)) = p is a boundary point.
Since f−1 : V →U is a diffeomorphism, by what has just been proven, f (p) cannot
be an interior point. Thus, f (p) is a boundary point. '(

Remark 22.5. Replacing Euclidean spaces by manifolds throughout this subsection,
one can prove in exactly the same way smooth invariance of domain for manifolds:
if there is a diffeomorphism between an open subset U of an n-dimensional manifold
N and an arbitrary subset S of another n-dimensional manifold M, then S is open
in M.

22.2 Manifolds with Boundary

In the upper half-space Hn one may distinguish two kinds of open subsets, depend-
ing on whether the set is disjoint from the boundary or intersects the boundary (Fig-
ure 22.2). Charts on a manifold are homeomorphic to only the first kind of open sets.

Fig. 22.2. Two types of open subsets of Hn.

A manifold with boundary generalizes the definition of a manifold by allowing both
kinds of open sets. We say that a topological space M is locally Hn if every point
p ∈M has a neighborhood U homeomorphic to an open subset of Hn.

Definition 22.6. A topological n-manifold with boundary is a second countable,
Hausdorff topological space that is locally Hn.

Let M be a topological n-manifold with boundary. For n ≥ 2, a chart on M is
defined to be a pair (U,φ) consisting of an open set U in M and a homeomorphism

φ : U → φ(U)⊂Hn

of U with an open subset φ(U) of Hn. As Example 22.9 (p. 254) will show, a slight
modification is necessary when n = 1: we need to allow two local models, the right
half-line H1 and the left half-line

These open sets are the local model for manifolds with boundary.

Remark

H1 is the right half-line [0,∞).

It also convenient to consider the left-half line L1 = (−∞, 0].
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Smooth Invariance of Domain in Rn

Definition (Definition 22.1)

Let S be any subset of Rn and let f : S → Rm be a map.

We say that f is smooth at a point p ∈ S if there is an open
set U ⊂ Rn containing p and a smooth map f̃ : U → Rm such
that f̃ = f on U ∩ S .

We say that f is smooth on S if it is smooth at every point
p ∈ S .

Definition

We say that subsets S ⊂ Rn and T ⊂ Rm are diffeomorphic if
there are smooth maps f : S → T ⊂ Rn and g : T → S ⊂ Rn

which are inverse of each other.
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Smooth Invariance of Domain in Rn

Exercise (Exercise 22.2)

Let S be a subset of Rn and let f : S → Rm be a map. By using a
partition of unity shows that TFAE:

(i) f is smooth on S .

(ii) There is an open U ⊂ Rn containing S and a smooth map
f̃ : U → Rm such that f̃|S = f .

Consequence

Assume that S is an immersed submanifold in Rn, and let
f : S → Rm be a map. Then TFAE:

(i) f is smooth in the sense of the previous slide.

(ii) f is smooth as a map from the manifold S to Rm.
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Smooth Invariance of Domain in Rn

Theorem (Smooth invariance of domain; Theorem 22.3)

Let S be a subset of Rn which is diffeomorphic to an open of Rn.
Then S is an open of Rn.

Proposition (Proposition 22.4)

Let f : U → V be a diffeomorphism between open subsets of Hn.
Then

f (U ∩ Int(Hn)) = V ∩ Int(Hn), f (U ∩ ∂(Hn)) = V ∩ ∂(Hn).
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Smooth Invariance of Domain in Rn

Definition (Definition 22.1)

Let S be any subset of a manifold M, and let f : S → N be a map,
where N is a manifold.

We say that f is smooth at a point p ∈ S if there is an open
set U ⊂ M containing p and a smooth map f̃ : U → N such
that f̃ = f on U ∩ S .

We say that f is smooth on S if it is smooth at every point
p ∈ S .
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Smooth Invariance of Domain in Rn

Definition

We say that subsets S ⊂ M and T ⊂ N are diffeomorphic if there
are smooth maps f : S → T ⊂ N and g : T → S ⊂ M that are
inverse of each other.

Theorem (Smooth invariance of domain)

Let S be a subset of M which is diffeomorphic to an open of M.
Then S is an open of M.
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Manifolds with Boundary

Definition (Definition 22.6)

We say that a topological space M is locally Hn if every p ∈ M has
a neighborhood which is homeomorphic to an open subset of Hn.

Definition (Topological manifolds with boundary; Definition 22.6)

A topological n-manifold with boundary is a Hausdorff
second-countable topological space which is locally Hn.
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Manifolds with Boundary

Definition

Let M be a topological n-manifold with boundary.

If n ≥ 2, a chart is a pair (U, φ), where U ⊂ M is an open set
and φ : U → φ(U) ⊂ Hn is a homeorphism onto an open set
of Hn.

If n = 1 we allow a chart to be a pair (U, φ), where U is an
open set of M and φ : U → φ(U) is a homeomorphism onto
an open set of H1 = [0,∞) or L1 = (−∞, 0].

Remark

With this convention, if (U, x1, x2, . . . , xn) is a chart, then
(U,−x1, x2, . . . , xn) is a chart as well.

In particular, for n = 1, if (U, x1) is chart, then so is (U,−x1).

10 / 34



Manifolds with Boundary

Definition

If M is a topological manifold with boundary, a C∞ atlas is a
collection of charts {(Uα, φα)} covering M such that the transition
maps,

φβ ◦ φ−1α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

are diffeomorphisms between open subsets of Hn (or L1).

Definition (Differentiable manifold with boundary)

A differentiable manifold with boundary (or smooth manifold with
boundary) is a topological manifold with boundary with a maximal
C∞ atlas.
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Manifolds with Boundary

Definition

Let M be a smooth manifold with boundary.

We say that a point p ∈ M is an interior point if there is a
chart (U, φ) near p such that φ(p) ∈ Int(Hn).

We say that p is a boundary point if there is a chart (U, φ)
near p such that φ(p) ∈ ∂Hn.

Definition

The set of interior points is called the interior of M and is
denoted Int(M).

The set of boundary points is called the boundary of M and is
denoted ∂(M).
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Manifolds with Boundary

Remark

Let p be an interior (resp., boundary) point, and (U, φ) a chart
near p such that φ(p) is an interior (resp., boundary) point of Hn.

Let (V , ψ) be another chart near p. Then the transition map
ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism between
open subsets of Hn (or L1).

Thus it maps interior (resp., boundary) points of φ(U ∩ V ) to
interior (resp., boundary) points of ψ(U ∩ V ).

In particular, ψ(p) = ψ ◦ φ−1(φ(p)) is an interior (resp., a
boundary) point of Hn.

22.2 Manifolds with Boundary 251

L1 := {x ∈R | x≤ 0}.

A chart (U,φ) in dimension 1 consists of an open set U in M and a homeomorphism
φ of U with an open subset of H1 or L1. With this convention, if (U,x1,x2, . . . ,xn)
is a chart of an n-dimensional manifold with boundary, then so is (U,−x1,x2, . . . ,xn)
for any n≥ 1. A manifold with boundary has dimension at least 1, since a manifold
of dimension 0, being a discrete set of points, necessarily has empty boundary.

A collection {(U,φ)} of charts is a C∞ atlas if for any two charts (U,φ) and
(V,ψ), the transition map

ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V )⊂Hn

is a diffeomorphism. A C∞ manifold with boundary is a topological manifold with
boundary together with a maximal C∞ atlas.

A point p of M is called an interior point if in some chart (U,φ), the point φ(p)
is an interior point of Hn. Similarly, p is a boundary point of M if φ(p) is a boundary
point of Hn. These concepts are well defined, independent of the charts, because if
(V,ψ) is another chart, then the diffeomorphism ψ ◦ φ−1 maps φ(p) to ψ(p), and so
by Proposition 22.4, φ(p) and ψ(p) are either both interior points or both boundary
points (Figure 22.3). The set of boundary points of M is denoted by ∂M.

φ ψ
p

Fig. 22.3. Boundary charts.

Most of the concepts introduced for a manifold extend word for word to a man-
ifold with boundary, the only difference being that now a chart can be either of two
types and the local model is Hn (or L1). For example, a function f : M→ R is C∞

at a boundary point p ∈ ∂M if there is a chart (U,φ) about p such that f ◦ φ−1 is C∞

at φ(p) ∈Hn. This in turn means that f ◦ φ−1 has a C∞ extension to a neighborhood
of φ(p) in Rn.

In point-set topology there are other notions of interior and boundary, defined for
a subset A of a topological space S. A point p ∈ S is said to be an interior point of A
if there exists an open subset U of S such that

p ∈U ⊂ S.

The point p ∈ S is an exterior point of A if there exists an open subset U of S such
that

p ∈U ⊂ S−A.

This shows that the notions of interior and boundary points are
independent of the chart.
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Manifolds with Boundary

Remark

Most of the concepts introduced for manifolds extend verbatim for
manifolds with boundary.

For instance:

Definition

Let M be a C∞ manifold with boundary. A function f : M → R if,
for every chart (U, φ), the function f ◦ φ−1 : φ(U)→ R is smooth.

Remark

If p is a boundary point in U, this means that f ◦ φ−1 has a C∞

extension to an open neighborhood of φ(p).
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Manifolds with Boundary

Remark

The interior and boundary in the sense of manifolds need not agree
with the topological interior or the topological boundary.

Example (Example 22.7)

Let D = {x ∈ R2; ‖x‖ < 1} be the open unit disk in R2

D is a manifold without boundary, i.e., its manifold boundary
is empty.

However, its topological boundary is the unit circle S1.

For the closed disk D = {x ∈ R2; ‖x‖ ≤ 1} the manifold and
topological boundaries agree; they are both equal to S1.

252 §22 Manifolds with Boundary

Finally, p ∈ S is a boundary point of A if every neighborhood of p contains both a
point in A and a point not in A. We denote by int(A), ext(A), and bd(A) the sets of
interior, exterior, and boundary points respectively of A in S. Clearly, the topological
space S is the disjoint union

S = int(A) ! ext(A) ! bd(A).

In case the subset A ⊂ S is a manifold with boundary, we call int(A) the topo-
logical interior and bd(A) the topological boundary of A, to distinguish them from
the manifold interior A◦ and the manifold boundary ∂A. Note that the topological
interior and the topological boundary of a set depend on an ambient space, while the
manifold interior and the manifold boundary are intrinsic.

Example 22.7 (Topological boundary versus manifold boundary). Let A be the open
unit disk in R2:

A = {x ∈ R2 | ‖x‖< 1}.

Then its topological boundary bd(A) in R2 is the unit circle, while its manifold
boundary ∂A is the empty set (Figure 22.4).

If B is the closed unit disk in R2, then its topological boundary bd(B) and its
manifold boundary ∂B coincide; both are the unit circle.

⊂ R2

A

⊂ R2

B

⊂H2

D

Fig. 22.4. Interiors and boundaries.

Example 22.8 (Topological interior versus manifold interior). Let S be the upper
half-plane H2 and let D be the subset (Figure 22.4)

D = {(x,y) ∈H2 | y≤ 1}.

The topological interior of D is the set

int(D) = {(x,y) ∈H2 | 0≤ y < 1},

containing the x-axis, while the manifold interior of D is the set

D◦ = {(x,y) ∈H2 | 0 < y < 1},

not containing the x-axis.
To indicate the dependence of the topological interior of a set A on its ambient

space S, we might denote it by intS(A) instead of int(A). Then in this example, the
topological interior intH2(D) of D in H2 is as above, but the topological interior
intR2(D) of D in R2 coincides with D◦.
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Manifolds with Boundary

Example (Example 22.8)

Consider the band,

B = {(x , y) ∈ H2; y ≤ 1} = R× [0, 1].

The topological interior of B in H2 is R× [0, 1).

Its manifold interior is R× (0, 1).

252 §22 Manifolds with Boundary

Finally, p ∈ S is a boundary point of A if every neighborhood of p contains both a
point in A and a point not in A. We denote by int(A), ext(A), and bd(A) the sets of
interior, exterior, and boundary points respectively of A in S. Clearly, the topological
space S is the disjoint union

S = int(A) ! ext(A) ! bd(A).

In case the subset A ⊂ S is a manifold with boundary, we call int(A) the topo-
logical interior and bd(A) the topological boundary of A, to distinguish them from
the manifold interior A◦ and the manifold boundary ∂A. Note that the topological
interior and the topological boundary of a set depend on an ambient space, while the
manifold interior and the manifold boundary are intrinsic.

Example 22.7 (Topological boundary versus manifold boundary). Let A be the open
unit disk in R2:

A = {x ∈ R2 | ‖x‖< 1}.

Then its topological boundary bd(A) in R2 is the unit circle, while its manifold
boundary ∂A is the empty set (Figure 22.4).

If B is the closed unit disk in R2, then its topological boundary bd(B) and its
manifold boundary ∂B coincide; both are the unit circle.
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Fig. 22.4. Interiors and boundaries.

Example 22.8 (Topological interior versus manifold interior). Let S be the upper
half-plane H2 and let D be the subset (Figure 22.4)

D = {(x,y) ∈H2 | y≤ 1}.

The topological interior of D is the set

int(D) = {(x,y) ∈H2 | 0≤ y < 1},

containing the x-axis, while the manifold interior of D is the set

D◦ = {(x,y) ∈H2 | 0 < y < 1},

not containing the x-axis.
To indicate the dependence of the topological interior of a set A on its ambient

space S, we might denote it by intS(A) instead of int(A). Then in this example, the
topological interior intH2(D) of D in H2 is as above, but the topological interior
intR2(D) of D in R2 coincides with D◦.
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The Boundary of a Manifold with Boundary

Remark

The boundary ∂Hn of Hn is {xn = 0} = Rn−1 × {0}. This is just
Rn−1 under its standard embedding into Rn.

Facts

Let M be a manifold with boundary and (U, φ) a chart for M.
Denote by φ′ the restriction of φ to U ∩ ∂M.

φ′ maps U ∩ ∂M to ∂Hn ' Rn−1, since the points of U ∩ ∂M
are precisely the points that are mapped to ∂Hn under φ.

Thus, we get a homeomorphism,

φ′ : U ∩ ∂M −→ φ(U) ∩ ∂Hn ⊂ Rn−1.
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The Boundary of a Manifold with Boundary

Lemma

Let (V , ψ) be a another chart and let
ψ′ : V ∩ ∂M → ψ(V ) ∩ ∂Hn ⊂ Rn−1 the induced homeomorphism
on V ∩ ∂M. Then the transition map,

ψ′ ◦ (φ′)−1 : φ(U ∩ V ) ∩ ∂Hn −→ ψ(U ∩ V ) ∩ ∂Hn

is a diffeomorphism between open subsets of Rn−1.

As a consequence we obtain:

Proposition

Let {(Uα, φα)} be a C∞ atlas of M. Then the collection
{(Uα ∩ ∂M, φα|Uα∩∂M)} is a C∞ atlas of ∂M. In particular, ∂M is
a smooth manifold (without of boundary) of dimension n − 1.
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The Boundary of a Manifold with Boundary

Remark

It can also be shown that if {(Uα, φα)} is a C∞ atlas of M,
then {(Uα ∩ Int(M), φα|Uα∩Int(M))} is a C∞ atlas of Int(M).

It follows that the interior Int(M) is a smooth manifold
without boundary of dimension n.
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Tangent Vectors, Differential Forms, and Orientations

Definition

Let M be a manifold with boundary and p ∈ M.

Two smooth functions f : U → R and g : V → R on open
neighborhoods of p in M are said to be equivalent if they
agree on a (possibly smaller) open neighborhood of p.

Equivalence classes of such functions are called germs at p.

The set of germs at p is denoted C∞p (M).

Remark

The addition and multiplication of functions induce an addition
and a multiplication on C∞p (M) with respect to which C∞p (M) is
an R-algebra.
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Tangent Vectors, Differential Forms, and Orientations

Definition

Let M be a manifold with boundary and p ∈ M. The tangent
space TpM is the space of point-derivations on C∞p (M), i.e., linear
maps D : C∞p (M)→ R such that

D(fg) = (Df )g(p) + f (p)Dg ∀f , g ∈ C∞p (M).
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Tangent Vectors, Differential Forms, and Orientations

Example

Let p be a boundary point of H2.

The tangent space Tp(H2) is a 2-dimensional vector space
with basis {∂/∂x

∣∣
p
, ∂/∂y

∣∣
p
}.

In particular, −∂/∂y
∣∣
p

is a tangent vector at p.

However, there is no curve in H2 which starts at p and has
initial velocity −∂/∂y

∣∣
p
.

22.4 Tangent Vectors, Differential Forms, and Orientations 253

22.3 The Boundary of a Manifold with Boundary

Let M be a manifold of dimension n with boundary ∂M. If (U,φ) is a chart on M,
we denote by φ ′ = φ |U∩∂M the restriction of the coordinate map φ to the boundary.
Since φ maps boundary points to boundary points,

φ ′ : U ∩∂M→ ∂Hn = Rn−1.

Moreover, if (U,φ) and (V,ψ) are two charts on M, then

ψ ′ ◦ (φ ′)−1 : φ ′(U ∩V ∩∂M)→ ψ ′(U ∩V ∩∂M)

is C∞. Thus, an atlas {(Uα ,φα)} for M induces an atlas {(Uα ∩∂M,φα |Uα∩∂M)} for
∂M, making ∂M into a manifold of dimension n− 1 without boundary.

22.4 Tangent Vectors, Differential Forms, and Orientations

Let M be a manifold with boundary and let p ∈ ∂M. As in Subsection 2.2, two C∞

functions f : U → R and g : V → R defined on neighborhoods U and V of p in M

are said to be equivalent if they agree on some neighborhood W of p contained in
U ∩V . A germ of C∞ functions at p is an equivalence class of such functions. With
the usual addition, multiplication, and scalar multiplication of germs, the set C∞

p (M)
of germs of C∞ functions at p is an R-algebra. The tangent space TpM at p is then
defined to be the vector space of all point-derivations on the algebra C∞

p (M).

For example, for p in the boundary of the upper half-plane H2, ∂/∂x|p and
∂/∂y|p are both derivations on C∞

p (H2). The tangent space Tp(H
2) is represented

by a 2-dimensional vector space with the origin at p. Since ∂/∂y|p is a tangent vector
to H2 at p, its negative−∂/∂y|p is also a tangent vector at p (Figure 22.5), although
there is no curve through p in H2 with initial velocity−∂/∂y|p.

p

− ∂
∂y

∣∣∣
p

Fig. 22.5. A tangent vector at the boundary.

The cotangent space T ∗p M is defined to be the dual of the tangent space:

T ∗p M = Hom(TpM,R).

Differential k-forms on M are defined as before, as sections of the vector bundle∧k(T ∗M). A differential k-form is C∞ if it is C∞ as a section of the vector bundle
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Remarks

We can define smooth vector bundles over a manifold without
boundary in the same way as with manifolds without
boundary.

In this context, a C∞ vector bundle E over a manifold with
boundary M is itself a manifold with boundary whose
boundary is E|∂M .

23 / 34



Tangent Vectors, Differential Forms, and Orientations

Remarks

Let M be a manifold with boundary.

In the same way as with manifold without boundary, the
tangent spaces TpM, p ∈ M, can be organized as a
C∞-vector bundle,

TM =
⊔

p∈M
TpM.

We call TM the tangent bundle of M.

A vector field on M is a sections of the tangent bundle TM.

A vector field is smooth if it is smooth section of TM.
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Tangent Vectors, Differential Forms, and Orientations

Definition

Let M be a manifold with boundary and p ∈ M.

The cotangent space T ∗pM is the dual of the tangent space
TpM.

We denote by Λk(T ∗pM) the space of k-covectors on TpM.

Remarks

As with manifolds without boundary, we get C∞ vector
bundles,

T ∗M =
⊔

p∈M
T ∗pM, Λk

(
T ∗M

)
=
⊔

p∈M
Λk
(
T ∗pM

)
.

The bundle T ∗M is called the cotangent bundle of M.

A k-form on M is a section of Λk(T ∗M).

A smooth k-form is a smooth section of Λk(T ∗M).
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Tangent Vectors, Differential Forms, and Orientations

Remarks

We define the orientation of a manifold with boundary M as
with manifold without boundary in terms of continuous
pointwise orientations.

A pointwise orientation is the assignment for each p ∈ M to
an orientation of the tangent space TpM.

In the same way as with manifolds without boundary we have
one-to-one correspondences:

{orientations of M} ←→
{

equivalence classes of
C∞ nowhere-vanishing n-forms

}
,

{orientations of M} ←→
{

equivalence classes
of oriented atlases

}
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Outward-Pointing Vector Fields

Remarks

Let M be manifold with boundary.

The boundary ∂M is an embedded submanifold of M, in the
sense that the inclusion ı : ∂M ↪→ M is both a topological
embedding and an immersion.

In particular, for every p ∈ ∂M, the differential
ı∗,p : Tp(∂M)→ TpM is injective.

This allows us to identify Tp(∂M) with a subspace of TpM.
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Outward-Pointing Vector Fields

Definition

Let p be a boundary point of M and let X ∈ Tp(M) be a tangent
vector.

We say that X is inward-pointing if X 6∈ Tp(∂M) and there is
a smooth curve c : [0, ε)→ M such that

c(0) = p, c
(
(0, ε)

)
⊂ Int(M), c ′(0) = X .

We say that X is outward-pointing if −X is inward-pointing.

Example

On H2 if p ∈ ∂H2, then ∂/∂y
∣∣
p

is inward-pointing and −∂/∂y
∣∣
p

is
outward-pointing.
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Outward-Pointing Vector Fields

Definition

A vector field along ∂M is a map X : ∂M → TM such that
Xp ∈ TpM for all p ∈ ∂M. We say that such a vector field is
smooth if it is smooth as a map from ∂M to TM.

Remark

A vector field along ∂M should not be confused with a vector field
on ∂M, since it takes values in TM, not in T (∂M).
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Outward-Pointing Vector Fields

Remark

Let X be a vector field along ∂M.

If p ∈ ∂M and (U, x1, . . . , xn) is a chart for M near p, then

Xq =
∑

aj(q)
∂

∂x j

∣∣∣∣
q

, q ∈ U ∩ ∂M.

Then X is smooth on U ∩ ∂M if and only if the coefficients
aj(q) are smooth functions on ∂M ∩ U.

The vector field is outward-pointing along U if and only if
an(q) < 0.
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Outward-Pointing Vector Fields

Proposition (Proposition 22.10; see also Problem 22.4)

If M is a smooth manifold with boundary, then there always exists
a smooth outward-pointing vector field along ∂M.

Remark

An outward-pointing vector field is always non-vanishing since
Xp ∈ TM \ T (∂M) for all p ∈ ∂M.
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Boundary Orientation

Proposition (Proposition 22.11)

Assume that M is oriented manifold with boundary of dimension n.
Let ω be an orientation form on M and X a smooth
outward-pointing vector field along ∂M. Then ıX (ω) is a
non-vanishing smooth (n − 1)-form on ∂M, and hence ∂M is
orientable.

Remark

It can be shown that the orientation class of ıX (ω) is independent
of ω and X .

Definition

The orientation class of ıX (ω) is called the boundary orientation on
∂M.
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Boundary Orientation

Proposition (Proposition 22.11)

Suppose that M is oriented manifold with boundary of dimension
n. Let p ∈ ∂M and Xp an outward-pointing vector in TpM. If
(v1, . . . , vn−1) is a basis of Tp(∂M) representing the boundary
orientation on ∂M at p, then (Xp, v1, . . . , vn−1) is a basis of
Tp(M) and represents the orientation of M at p.
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Boundary Orientation

Example (Example 22.13; Boundary orientation of Hn)

An orientation form for Hn is ω = dx1 ∧ · · · ∧ dxn and a
smooth outward-pointing vector field on ∂Hn is X = −∂/∂xn.

Thus, an orientation form on ∂Hn is

ıXω = −ı∂/∂xn
(
dx1 ∧ · · · ∧ dxn

)

= −(−1)n−1ı∂/∂xn
(
dxn ∧ dx1 ∧ · · · ∧ dxn−1

)

= (−1)ndx1 ∧ · · · ∧ dxn−1.

For n = 2 we the boundary orientation is given by dx1, which
is the standard orientation on R1 = ∂H2.

For n = 3 we the boundary orientation is given by
−dx1 ∧ dx2, which is the clockwise orientation on R2 = ∂H3.

256 §22 Manifolds with Boundary

Example 22.13 (The boundary orientation on ∂Hn). An orientation form for the
standard orientation on the upper half-space Hn is ω = dx1 ∧ ·· · ∧ dxn. A smooth
outward-pointing vector field on ∂Hn is −∂/∂xn. By definition, an orientation form
for the boundary orientation on ∂Hn is given by the contraction

ι−∂/∂xn(ω) =−ι∂/∂xn(dx1∧·· ·∧dxn−1∧dxn)

=−(−1)n−1 dx1∧·· ·∧dxn−1∧ ι∂/∂xn(dxn)

= (−1)n dx1∧·· ·∧dxn−1.

Thus, the boundary orientation on ∂H1 = {0} is given by −1, the boundary orienta-
tion on ∂H2, given by dx1, is the usual orientation on the real line R (Figure 22.6(a)),
and the boundary orientation on ∂H3, given by −dx1∧dx2, is the clockwise orien-
tation in the (x1,x2)-plane R2 (Figure 22.6(b)).

(a) Boundary orientation on ∂H2 = R.

x1

x2

x3

(b) Boundary orientation on ∂H3 = R2.

Fig. 22.6. Boundary orientations.

Example. The closed interval [a,b] in the real line with coordinate x has a standard
orientation given by the vector field d/dx, with orientation form dx. At the right
endpoint b, an outward vector is d/dx. Hence, the boundary orientation at b is given
by ιd/dx(dx) = +1. Similarly, the boundary orientation at the left endpoint a is given
by ι−d/dx(dx) =−1.

Example. Suppose c : [a,b]→M is a C∞ immersion whose image is a 1-dimensional
manifold C with boundary. An orientation on [a,b] induces an orientation on C via
the differential c∗,p : Tp([a,b])→ TpC at each point p ∈ [a,b]. In a situation like
this, we give C the orientation induced from the standard orientation on [a,b]. The
boundary orientation on the boundary of C is given by +1 at the endpoint c(b) and
−1 at the initial point c(a).

Problems

22.1. Topological boundary versus manifold boundary
Let M be the subset [0,1[ ∪ {2} of the real line. Find its topological boundary bd(M) and its

manifold boundary ∂M.
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