

Differentiable Manifolds

§21. Orientations

Sichuan University, Fall 2020

Orientations of a Vector Space

Example (Orientations of \mathbb{R})

On \mathbb{R} an orientation is one of two directions:

The orientations of a line.

Two (nonzero) vectors u and v define the same direction if and only if $u = av$ with $a > 0$.

Orientations of a Vector Space

Example (Orientations of \mathbb{R}^2)

On \mathbb{R}^2 an orientation is either direct (counterclockwise) or indirect (clockwise).

The orientations of a plane.

- An ordered basis (v_1, v_2) defines the direct (resp., indirect) orientation if the angle θ from v_1 to v_2 is > 0 (resp., < 0).
- As $\det(v_1, v_2) = |v_1||v_2|\sin\theta$, we see that

$$(v_1, v_2) \text{ is direct} \iff \det(v_1, v_2) > 0,$$

$$(v_1, v_2) \text{ is indirect} \iff \det(v_1, v_2) < 0.$$

Orientations of a Vector Space

Example (The orientations of a plane, continued)

- Let (u_1, u_2) and (v_1, v_2) be ordered bases. Write $u_i = \sum a_i^j v_j$. The matrix $A = [a_i^j]$ is called the *change-of-basis matrix*. We have
$$\det(u_1, u_2) = \det(A) \det(v_1, v_2).$$
- Thus, (u_1, u_2) and (v_1, v_2) defines the same orientation if and only if $\det(A) > 0$.

Definition

Two bases (u_1, u_2) and (v_1, v_2) are called *equivalent* if the change-of-basis matrix has positive determinant.

- This defines an equivalence relation on order bases.
- We have a one-to-one correspondance:

$$\{\text{orientations}\} \longleftrightarrow \{\text{equivalence classes of bases}\}$$

Orientations of a Vector Space

Definition

Let V be a vector space of dimension n . Two bases (u_1, \dots, u_n) and (v_1, \dots, v_n) are said to be *equivalent*, and we write $(u_1, \dots, u_n) \sim (v_1, \dots, v_n)$ if we can go from one to the other by a change-of-base matrix with positive determinant.

Remark

This defines an equivalence relation on bases of V .

Definition

An *orientation* of V is a choice of an equivalence class of bases.

Remark

- A vector space has exactly two orientations.
- We denote by $[(v_1, \dots, v_n)]$ the class of (v_1, \dots, v_n) .

Remark

Let (v_1, \dots, v_n) be a basis of a vector space V . Let $(\alpha^1, \dots, \alpha^n)$ be the dual basis of V^* . Then, for any n -covector $\beta \in \Lambda^n(V^*)$, we have

$$\beta = \beta(v_1, \dots, v_n) \alpha^1 \wedge \cdots \wedge \alpha^n.$$

In particular, $\beta \neq 0$ if and only if $\beta(v_1, \dots, v_n) \neq 0$.

Orientations and Covectors

Lemma (Lemma 21.1)

Let u_1, \dots, u_n and v_1, \dots, v_n be vectors in V such that $u_i = \sum a_i^j v_j$ for some matrix $A = [a_i^j]$. For any n -covector β we have

$$\beta(u_1, \dots, u_n) = (\det A)\beta(v_1, \dots, v_n).$$

Consequence

Let (u_1, \dots, u_n) and (v_1, \dots, v_n) be bases and $\beta \neq 0$. Then $\beta(u_1, \dots, u_n)$ and $\beta(v_1, \dots, v_n)$ have same sign if and only if $\det A > 0$, i.e., (u_1, \dots, u_n) and (v_1, \dots, v_n) define the same orientation.

Orientations and Covectors

Definition

We say that an n -covector β on V specifies the orientation $[(v_1, \dots, v_n)]$ if $\beta(v_1, \dots, v_n) > 0$.

Remark

Let (v_1, \dots, v_n) be a basis of a vector space V . Let $(\alpha^1, \dots, \alpha^n)$ be the dual basis of V^* . By the remark on slide 6, we have

$$\beta = \beta(v_1, \dots, v_n) \alpha^1 \wedge \cdots \wedge \alpha^n$$

Thus, β specifies the orientation $[(v_1, \dots, v_n)]$ if and only if β is a positive scalar multiple of $\alpha^1 \wedge \cdots \wedge \alpha^n$.

Orientations and Covectors

Definition

We say that two non-zero n -covectors β and β' are equivalent if $\beta' = a\beta$ with $a > 0$.

Remark

This defines an equivalence relation on $\Lambda^n(V^*) \setminus 0$.

Fact

We have a one-to-one correspondence:

$\{\text{orientations of } V\} \longleftrightarrow \{\text{equivalence classes of } n\text{-covectors } \neq 0\}$.

Orientations of a Manifold

Fact

Let M be a smooth manifold of dimension n . If (X_1, \dots, X_n) is a frame of TM over U and $p \in U$, then $(X_{1,p}, \dots, X_{n,p})$ is a basis of $T_p M$, and hence it defines an orientation of $T_p M$.

Remark

We say that a frame (X_1, \dots, X_n) of TM over an open U is continuous, if, for each i , the vector field X_i is continuous as a map from U to TM .

Definition (Pointwise orientation)

- A *pointwise orientation* of M assigns to each $p \in M$ an orientation of $T_p M$, i.e., an equivalence class $\mu_p = [(X_{1,p}, \dots, X_{n,p})]$ of (ordered) bases of $T_p M$.
- We say that a pointwise orientation is *continuous* at $p \in M$ if there is an open U containing p and a continuous tangent frame (Y_1, \dots, Y_n) over U such that $(Y_{1,q}, \dots, Y_{n,q})$ defines the orientation of $T_q M$ for every $q \in U$.

Definition (Orientations)

- An *orientation* of M is a pointwise orientation which is continuous at every $p \in M$.
- We say that M is *orientable* when it admits an orientation.
- We say that M is *oriented* when it is equipped with an orientation.

Remarks

- Any continuous (or even smooth) global frame (X_1, \dots, X_n) of TM over M defines an orientation.
- The converse does not hold. For instance, the even-dimensional spheres \mathbb{S}^{2n} , $n \geq 1$, do not admit global tangent frames; yet there are orientable.

Example

\mathbb{R}^n is oriented by the global frame $(\partial/\partial x^1, \dots, \partial/\partial x^n)$. More generally, any vector space is orientable.

Example (see also Problem 21.7)

If G is a Lie group, then G admits a global tangent frame consisting of left-invariant vector fields, and so G is orientable.

Example (Möbius Band; Example 21.2)

The Möbius band is the quotient of the rectangle

$R = [0, 1] \times [-1, 1]$ by the equivalence relation,

$$(x, y) \sim (x, y), \quad 0 < x < 1, \quad -1 \leq y \leq 1,$$

$$(0, y) \sim (1, -y), \quad -1 \leq y \leq 1.$$

This is a non-orientable surface (see Tu's book).

Orientations of a Manifold

Proposition (Proposition 21.3)

If an orientable manifold is connected, then it has exactly two possible orientations.

Orientations and Differential Forms

Lemma (see Lemma 21.4)

Let μ be a pointwise orientation of M . TFAE:

- (i) μ is continuous on M .
- (ii) For every $p \in M$, there is a chart (U, x^1, \dots, x^n) near p such that the orientation of $T_p M$ is defined by $(\partial/\partial x^1, \dots, \partial/\partial x^n)$.
- (ii) For every $p \in M$, there is a chart (U, x^1, \dots, x^n) near p such that the orientation of $T_p M$ is specified by $dx^1 \wedge \dots \wedge dx^n$.

Theorem (Theorem 21.5)

A manifold M of dimension n is orientable if and only if there exists a smooth nowhere-vanishing n -form on M .

Orientations and Differential Forms

Remark

Let ω be a nowhere vanishing n -form on M . Then ω defines an orientation of M as follows:

- For every $p \in M$, there is a chart (U, x^1, \dots, x^n) near p such that $\omega(\partial/\partial x^1, \dots, \partial/\partial x^n) > 0$ on U .
- The orientation of $T_p M$ is the class of $(\partial/\partial x^1|_p, \dots, \partial/\partial x^n|_p)$.
- As the frames $(\partial/\partial x^1, \dots, \partial/\partial x^n)$ are continuous (since they are smooth), we get a continuous pointwise orientation on M , i.e., an orientation of M .

Example

Suppose that 0 is a regular value of some smooth function $f(x, y, z)$ on \mathbb{R}^3 .

- By the regular level set theorem, the zero set $S = f^{-1}(0)$ is a regular submanifold of \mathbb{R}^3 , and hence is manifold.
- By Problem 19.11 it admits a smooth nowhere-vanishing 2-form.
- Thus, by Theorem 21.5 the manifold S is orientable.

For instance, the 2-sphere \mathbb{S}^2 is orientable.

Orientations and Differential Forms

Definition

We say that two C^∞ nowhere-vanishing n -forms ω and ω' on M are *equivalent*, and we write $\omega \sim \omega'$, if there is $f \in C^\infty(M)$, $f > 0$, such that $\omega' = f\omega$.

Remark

This defines an equivalence relation on C^∞ nowhere-vanishing n -forms on M .

Proposition

We have a one-to-one correspondence:

$$\{\text{orientations of } M\} \longleftrightarrow \left\{ \begin{array}{c} \text{equivalence classes of} \\ C^\infty \text{ nowhere-vanishing } n\text{-forms} \end{array} \right\}$$

Orientations and Differential Forms

Definition

If ω is a C^∞ nowhere-vanishing n -form that specifies the orientation at every point, then we say that ω is an *orientation form*.

Example

The (standard) orientation of \mathbb{R}^n is specified by the n -form $dx^1 \wedge \cdots \wedge dx^n$.

Remark

An oriented manifold is often represented as $(M, [\omega])$, where $[\omega]$ is a class of orientation forms.

Orientations and Differential Forms

Definition

A diffeomorphism $F : (N, [\omega_N]) \rightarrow (M, [\omega_M])$ between oriented manifolds is called *orientation-preserving* if $[F^* \omega_M] = [\omega_N]$. It is called *orientation-reversing* if $[F^* \omega_M] = [-\omega_N]$.

Proposition (Proposition 21.8)

Let U and V be open sets in \mathbb{R}^n equipped with orientations inherited from \mathbb{R}^n . A diffeomorphism $F : U \rightarrow V$ is orientation-preserving if and only if the Jacobian determinant $\det[\partial F^i / \partial x^j]$ is everywhere positive on U .

Definition (Definition 21.9)

An atlas of M is called *oriented* if given two overlapping charts (U, x^1, \dots, x^n) and (V, y^1, \dots, y^n) the transition map is orientation-preserving, i.e., the Jacobian determinant $\det[\partial y^i / \partial x^j]$ is everywhere positive on $U \cap V$.

Theorem (Theorem 21.10)

A manifold M is orientable if and only if it admits an oriented atlas.

Remark

An oriented atlas defines an orientation of M as follows:

- Given $p \in M$ and a chart (U, x^1, \dots, x^n) , the orientation of $T_p M$ is the class of $(\partial/\partial x^1|_p, \dots, \partial/\partial x^n|_p)$.
- The orientation of $T_p M$ does not depend on the choice of the chart, since the atlas is oriented.
- As the frames $(\partial/\partial x^1, \dots, \partial/\partial x^n)$ are continuous, we get a continuous pointwise orientation on M , i.e., an orientation of M .

Orientations and Atlases

Definition (Definition 21.11)

Two oriented atlases $\{(U_\alpha, \phi_\alpha)\}$ and $\{(V_\beta, \psi_\beta)\}$ on M are said to be *equivalent* if the transition functions

$$\phi_\alpha \circ \psi_\beta^{-1} : \psi_\beta(U_\alpha \cap V_\beta) \longrightarrow \phi_\alpha(U_\alpha \cap V_\beta)$$

have positive Jacobian determinants for all α, β .

Remark

This defines an equivalence relation on oriented atlases.

Proposition

We have a one-to-one correspondence:

$$\{\text{orientations of } M\} \longleftrightarrow \left\{ \begin{array}{c} \text{equivalence classes} \\ \text{of oriented atlases} \end{array} \right\}$$

Summary

If M is an orientable manifold of dimension n , there are 3 equivalent ways to define an orientation:

- ① By using a continuous pointwise orientation.
- ② By using a smooth nowhere-vanishing n -form.
- ③ By using an oriented atlas.