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Orientations of a Vector Space

Example (Orientations of R)

On R an orientation is one of two directions:
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§21 Orientations

It is a familiar fact from vector calculus that line and surface integrals depend on
the orientation of the curve or surface over which the integration takes place: revers-
ing the orientation changes the sign of the integral. The goal of this section is to
define orientation for n-dimensional manifolds and to investigate various equivalent
characterizations of orientation.

We assume all vector spaces in this section to be finite-dimensional and real. An
orientation of a finite-dimensional real vector space is simply an equivalence class
of ordered bases, two ordered bases being equivalent if and only if their transition
matrix has positive determinant. By its alternating nature, a multicovector of top
degree turns out to represent perfectly an orientation of a vector space.

An orientation on a manifold is a choice of an orientation for each tangent space
satisfying a continuity condition. Globalizing n-covectors over a manifold, we ob-
tain differential n-forms. An orientation on an n-manifold can also be given by an
equivalence class of C∞ nowhere-vanishing n-forms, two such forms being equiva-
lent if and only if one is a multiple of the other by a positive function. Finally, a
third way to represent an orientation on a manifold is through an oriented atlas, an
atlas in which any two overlapping charts are related by a transition function with
everywhere positive Jacobian determinant.

21.1 Orientations of a Vector Space

On R1 an orientation is one of two directions (Figure 21.1).

Fig. 21.1. Orientations of a line.

On R2 an orientation is either counterclockwise or clockwise (Figure 21.2).

Fig. 21.2. Orientations of a plane.

The orientations of a line.

Two (nonzero) vectors u and v define the same direction if and
only if u = av with a > 0.
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Orientations of a Vector Space

Example (Orientations of R2)

On R2 an orientation is either direct (counterclockwise) or indirect
(clockwise).
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§21 Orientations

It is a familiar fact from vector calculus that line and surface integrals depend on
the orientation of the curve or surface over which the integration takes place: revers-
ing the orientation changes the sign of the integral. The goal of this section is to
define orientation for n-dimensional manifolds and to investigate various equivalent
characterizations of orientation.

We assume all vector spaces in this section to be finite-dimensional and real. An
orientation of a finite-dimensional real vector space is simply an equivalence class
of ordered bases, two ordered bases being equivalent if and only if their transition
matrix has positive determinant. By its alternating nature, a multicovector of top
degree turns out to represent perfectly an orientation of a vector space.

An orientation on a manifold is a choice of an orientation for each tangent space
satisfying a continuity condition. Globalizing n-covectors over a manifold, we ob-
tain differential n-forms. An orientation on an n-manifold can also be given by an
equivalence class of C∞ nowhere-vanishing n-forms, two such forms being equiva-
lent if and only if one is a multiple of the other by a positive function. Finally, a
third way to represent an orientation on a manifold is through an oriented atlas, an
atlas in which any two overlapping charts are related by a transition function with
everywhere positive Jacobian determinant.

21.1 Orientations of a Vector Space

On R1 an orientation is one of two directions (Figure 21.1).

Fig. 21.1. Orientations of a line.

On R2 an orientation is either counterclockwise or clockwise (Figure 21.2).

Fig. 21.2. Orientations of a plane.

The orientations of a plane.

An ordered basis (v1, v2) defines the direct (resp., indirect)
orientation if the angle θ from v1 to v2 is > 0 (resp., < 0).

As det(v1, u2) = |v1||v2| sin θ, we see that

(v1, v2) is direct⇐⇒ det(v1, v2) > 0,

(v1, v2) is indirect⇐⇒ det(v1, v2) < 0.
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Orientations of a Vector Space

Example (The orientations of a plane, continued)

Let (u1, u2) and (v1, v2) be ordered bases. Write ui =
∑

aji vj .

The matrix A = [aji ] is called the change-of-basis matrix. We
have

det(u1, u2) = det(A) det(v1, v2).

Thus, (u1, u2) and (v1, v2) defines the same orientation if and
only if det(A) > 0.

Definition

Two bases (u1, u2) and (v1, v2) are called equivalent if the
change-of-basis matrix has positive determinant.

This defines an equivalence relation on order bases.

We have a one-to-one correspondance:

{orientations} ←→ {equivalence classes of bases}
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Orientations of a Vector Space

Definition

Let V be a vector space of dimension n. Two bases (u1, . . . , un)
and (v1, . . . , vn) are said to be equivalent, and we write
(u1, . . . , un) ∼ (v1, . . . , vn) if we can go from one to the other by a
change-of-base matrix with positive determinant.

Remark

This defines an equivalence relation on bases of V .

Definition

An orientation of V is a choice of an equivalence class of bases.

Remark

A vector space has exactly two orientations.

We denote by [(v1, . . . , vn)] the class of (v1, . . . , vn).
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Orientations and Covectors

Remark

Let (v1, . . . , vn) be a basis of a vector space V . Let (α1, . . . , αn)
be the dual basis of V ∗. Then, for any n-covector β ∈ Λn(V ∗), we
have

β = β(v1, . . . , vn)α1 ∧ · · · ∧ αn.

In particular, β 6= 0 if and only if β(v1, . . . , vn) 6= 0.
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Orientations and Covectors

Lemma (Lemma 21.1)

Let u1, . . . , un and v1, . . . , vn be vectors in V such that ui =
∑

aji vj
for some matrix A = [aji ]. For any n-covector β we have

β(u1, . . . , un) = (detA)β(v1, . . . , vn).

Consequence

Let (u1, . . . , un) and (v1, . . . , vn) be bases and β 6= 0. Then
β(u1, . . . , un) and β(v1, . . . , vn) have same sign if and only if
detA > 0, i.e., (u1, . . . , un) and (v1, . . . , vn) define the same
orientation.
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Orientations and Covectors

Definition

We say that an n-covector β on V specifies the orientation
[(v1, . . . , vn)] if β(v1, . . . , vn) > 0.

Remark

Let (v1, . . . , vn) be a basis of a vector space V . Let (α1, . . . , αn)
be the dual basis of V ∗. By the remark on slide 6, we have

β = β(v1, . . . , v2)α1 ∧ · · · ∧ αn

Thus, β specifies the orientation [(v1, . . . , vn)] if and only if β is a
positive scalar multiple of α1 ∧ · · · ∧ αn.
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Orientations and Covectors

Definition

We say that two non-zero n-covectors β and β′ are equivalent if
β′ = aβ with a > 0.

Remark

This defines an equivalence relation on Λn(V ∗) \ 0.

Fact

We have a one-to-one correspondence:

{orientations of V } ←→ {equivalence classes of n-covectors 6= 0} .
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Orientations of a Manifold

Fact

Let M be a smooth manifold of dimension n. If (X1, . . . ,Xn) is a
frame of TM over U and p ∈ U, then (X1,p, . . . ,Xn,p) is a basis of
TpM, and hence it defines an orientation of TpM.

Remark

We say that a frame (X1, . . . ,Xn) of TM over an open U is
continuous, if, for each i , the vector field Xi is continuous as a
map from U to TM.
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Orientations of a Manifold

Definition (Pointwise orientation)

A pointwise orientation of M assigns to each p ∈ M an
orientation of TpM, i.e., an equivalence class
µp = [(X1,p, . . . ,Xn,p)] of (ordered) bases of TpM.

We say that a pointwise orientation is continuous at p ∈ M if
there is an open U containing p and a continuous tangent
frame (Y1, . . . ,Yn) over U such that (Y1,q, . . . ,Yn,q) defines
the orientation of TqM for every q ∈ U.
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Orientations of a Manifold

Definition (Orientations)

An orientation of M is a pointwise orientation which is
continuous at every p ∈ M.

We say that M is orientable when it admits an orientation.

We say that M is oriented when it is equipped with an
orientation.

Remarks

Any continuous (or even smooth) global frame (X1, . . . ,Xn)
of TM over M defines an orientation.

The converse does not hold. For instance, the
even-dimensional spheres S2n, n ≥ 1, do not admit global
tangent frames; yet there are orientable.
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Orientations of a Manifold

Example

Rn is oriented by the global frame (∂/∂x1, . . . , ∂/∂xn). More
generally, any vector space is orientable.

Example (see also Problem 21.7)

If G is a Lie group, then G admits a global tangent frame
consisting of left-invariant vector fields, and so G is orientable.
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Orientations of a Manifold

Example (Möbius Band; Example 21.2)

The Möbius band is the quotient of the rectangle
R = [0, 1]× [−1, 1] by the equivalence relation,

(x , y) ∼ (x , y), 0 < x < 1, −1 ≤ y ≤ 1,

(0, y) ∼ (1,−y), −1 ≤ y ≤ 1.

This is a non-orientable surface (see Tu’s book).
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Orientations of a Manifold

Proposition (Proposition 21.3)

If an orientable manifold is connected, then it has exactly two
possible orientations.
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Orientations and Differential Forms

Lemma (see Lemma 21.4)

Let µ be a pointwise orientation of M. TFAE:

(i) µ is continuous on M.

(ii) For every p ∈ M, there is a chart (U, x1, . . . , xn) near p such
that the orientation of TpM is defined by (∂/∂x1, . . . , ∂/∂xn).

(ii) For every p ∈ M, there is a chart (U, x1, . . . , xn) near p such
that the orientation of TpM is specified by dx1 ∧ · · · ∧ dxn.

Theorem (Theorem 21.5)

A manifold M of dimension n is orientable if and only if there
exists a smooth nowhere-vanishing n-form on M.
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Orientations and Differential Forms

Remark

Let ω be a nowhere vanishing n-form on M. Then ω defines an
orientation of M as follows:

For every p ∈ M, there is a chart (U, x1, . . . , xn) near p such
that ω(∂/∂x1, . . . , ∂/∂xn) > 0 on U.

The orientation of TpM is the class of
(∂/∂x1

∣∣
p
, . . . , ∂/∂xn

∣∣
p
).

As the frames (∂/∂x1, . . . , ∂/∂xn) are continuous (since they
are smooth), we get a continuous pointwise orientation on M,
i.e., an orientation of M.
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Orientations and Differential Forms

Example

Suppose that 0 is a regular value of some smooth function
f (x , y , z) on R3.

By the regular level set theorem, the zero set S = f −1(0) is a
regular submanifold of R3, and hence is manifold.

By Problem 19.11 it admits a smooth nowhere-vanishing
2-form.

Thus, by Theorem 21.5 the manifold S is orientable.

For instance, the 2-sphere S2 is orientable.
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Orientations and Differential Forms

Definition

We say that two C∞ nowhere-vanishing n-forms ω and ω′ on M
are equivalent, and we write ω ∼ ω′, if there is f ∈ C∞(M), f > 0,
such that ω′ = f ω.

Remark

This defines an equivalence relation on C∞ nowhere-vanishing
n-forms on M.

Proposition

We have a one-to-one correspondence:

{orientations of M} ←→
{

equivalence classes of
C∞ nowhere-vanishing n-forms

}
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Orientations and Differential Forms

Definition

If ω is a C∞ nowhere-vanishing n-form that specifies the
orientation at every point, then we say that ω is an orientation
form.

Example

The (standard) orientation of Rn is specified by the n-form
dx1 ∧ · · · ∧ dxn.

Remark

An oriented manifold is often represented as (M, [ω]), where [ω] is
a class of orientation forms.
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Orientations and Differential Forms

Definition

A diffeomorphism F : (N, [ωN ])→ (M, [ωM ]) between oriented
manifolds is called orientation-preserving if [F ∗ωM ] = [ωN ]. It is
called orientation-reversing if [F ∗ωM ] = [−ωN ].

Proposition (Proposition 21.8)

Let U and V be open sets in Rn equipped with orientations
inherited from Rn. A diffeomorphism F : U → V is
orientation-preserving if and only if the Jacobian determinant
det[∂F i/∂x j ] is everywhere positive on U.
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Orientations and Atlases

Definition (Definition 21.9)

An atlas of M is called oriented if given two overlapping charts
(U, x1, . . . , xn) and (V , y1, . . . , yn) the transition map is
orientation-preserving, i.e., the Jacobian determinant det[∂y i/∂x j ]
is everywhere positive on U ∩ V .

Theorem (Theorem 21.10)

A manifold M is orientable if and only if it admits an oriented atlas.
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Orientations and Atlases

Remark

An oriented atlas defines an orientation of M as follows:

Given p ∈ M and a chart (U, x1, . . . , xn), the orientation of
TpM is the class of (∂/∂x1

∣∣
p
, . . . , ∂/∂xn

∣∣
p
).

The orientation of TpM does not depend on the choice of the
chart, since the atlas is oriented.

As the frames (∂/∂x1, . . . , ∂/∂xn) are continuous, we get a
continuous pointwise orientation on M, i.e., an orientation
of M.
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Orientations and Atlases

Definition (Definition 21.11)

Two oriented atlases {(Uα, φα)} and {(Vβ, ψβ)} on M are said to
be equivalent if the transition functions

φα ◦ ψ−1β : ψβ(Uα ∩ Vβ) −→ φα(Uα ∩ Vβ)

have positive Jacobian determinants for all α, β.

Remark

This defines an equivalence relation on oriented atlases.

Proposition

We have a one-to-one correspondence:

{orientations of M} ←→
{

equivalence classes
of oriented atlases

}
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Orientations and Atlases

Summary

If M is an orientable manifold of dimension n, there are 3
equivalent ways to define an orientation:

1 By using a continuous pointwise orientation.

2 By using a smooth nowhere-vanishing n-form.

3 By using an oriented atlas.
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