

Differentiable Manifolds

§20. The Lie Derivative and Interior Multiplication

Sichuan University, Fall 2020

The Lie Derivative

Reminder

Let X be a smooth vector field on a smooth manifold M . Then X defines a derivation on $C^\infty(M) = \Omega^0(M)$,

$$X : C^\infty(M) \longrightarrow C^\infty(M), \quad f \longrightarrow Xf.$$

Question

Can we extend this derivation to a derivation on all $\Omega^*(M)$?

Solution (Lie)

Use the flow generated by X .

Reminder: Flows of Vector Fields

Reminder (Integral curves; see Section 14)

Suppose that X is a smooth vector field on M .

- An *integral curve* of X is any smooth curve $c : (a, b) \rightarrow M$ satisfying the equation,

$$\frac{d}{dt}c(t) = X_{c(t)} \quad t \in (a, b).$$

- If the interval (a, b) contains 0 and $c(0) = p$, then we say that curve *starts at* p and p is its *initial point*.
- We say that an integral curve is *maximal* if it cannot be extended to an integral curve defined on a larger interval.

Reminder (see Theorem 14.7)

Given any $p \in M$, there is a unique maximal integral curve for X that starts at p .

Reminder: Flows of Vector Fields

Reminder (Fundamental Theorem on Flows; see Section 14 slides)

Suppose that X is a smooth vector field on M . Define

$$\Omega = \bigcup_{p \in M} I^{(p)} \times \{p\} \subset \mathbb{R} \times M,$$

where $I^{(p)}$ is the open interval around 0 on which is defined the maximal integral curve of X starting at p . Then:

- (i) Ω is an open set in $\mathbb{R} \times M$ containing $\{0\} \times M$.
- (ii) There is a smooth map $\varphi : \Omega \rightarrow M$, $(t, p) \mapsto \varphi_t(p)$ (called the flow of X) such that, for every $p \in M$, the curve $I^{(p)} \ni t \mapsto \varphi_t(p) \in M$ is the maximal integral curve of X starting at p .

Reminder: Flows of Vector Fields

Remarks (see Section 14 slides)

- For $t \in \mathbb{R}$, the set $M_t := \{p \in M; (t, p) \in \Omega\}$ is open in M .
- If $M_t \neq \emptyset$, then $\varphi_t : M_t \rightarrow M_{-t}$ is a diffeomorphism with inverse $\varphi_{-t} : M_{-t} \rightarrow M_t$.
- We have the 1-parameter group properties,

$$\varphi_0 = \mathbb{1}_M, \quad \varphi_t \circ \varphi_s = \varphi_{t+s} \quad \text{on } M_s \cap M_{t+s}.$$

Remarks

- We say that the vector field X is *complete* when its flow is defined on $\mathbb{R} \times M$.
- In this case $\varphi_t : M \rightarrow M$ is a diffeomorphism for every $t \in \mathbb{R}$,

Flow and Lie Derivative

Remark

Let $p \in M$. As $c(t) = \varphi_t(p)$, $t \in I^{(p)}$, is an integral curve for X starting at p , this is a smooth curve in M such that $c(0) = p$ and

$$c'(0) = \frac{d}{dt} \varphi_t(p) \Big|_{t=0} = X_{\varphi_t(p)} \Big|_{t=0} = X_{\varphi_0(p)} = X_p.$$

Consequence (see Proposition 20.6)

Let $f \in C^\infty(M)$. For every $p \in M$, we have

$$(Xf)(p) = X_p f = \frac{d}{dt} \Big|_{t=0} f(\varphi_t(p)) = \frac{d}{dt} \Big|_{t=0} f \circ \varphi_t(p).$$

As $f \circ \varphi_t = \varphi_t^* f$, we may rewrite this as

$$Xf = \frac{d}{dt} \Big|_{t=0} \varphi_t^* f.$$

Remarks

- If $\omega \in \Omega^k(M)$, then we can make sense of $\varphi_t^* \omega$.
- However, we still need to make sense of $\frac{d}{dt} \Big|_{t=0} \varphi_t^* \omega$.
- To do this we need a little digression on smooth families in $\Omega^k(M)$.

Reminder

- By definition $\Omega^k(M)$ is the space of smooth sections of $\Lambda^k(T^*M)$.
- In particular, any smooth k -form is a smooth map from M to $\Lambda^k(T^*M)$.

Smooth Families of Differential Forms

Definition

Let I be an open interval in \mathbb{R} . A family $\{\omega_t\}_{t \in I}$ in $\Omega^k(M)$ is said to be smooth when the map $(t, p) \rightarrow (\omega_t)_p$ is smooth as a map from $I \times M$ to $\Lambda^k(T^*M)$.

Lemma

Let (U, x^1, \dots, x^n) be a chart for M and let $\{\omega_t\}_{t \in I}$ be a family in $\Omega^k(U)$. TFAE:

- ① $\{\omega_t\}_{t \in I}$ is a smooth family in $\Omega^k(U)$.
- ② We may write $\omega_t = \sum a_I(t, p)dx^I$, $t \in I$, where the coefficients $a_I(t, p)$ are smooth functions on $I \times U$.

Proposition

Let $\{\omega_t\}_{t \in I}$ be a family in $\Omega^k(M)$. TFAE:

- ① $\{\omega_t\}_{t \in I}$ is a smooth family in $\Omega^k(M)$.
- ② For every $p \in M$, there is a chart (U, x^1, \dots, x^n) near p such that $\omega_t = \sum a_I(t, p)dx^I$ on U , where the coefficients $a_I(t, p)$ are smooth functions on $I \times U$.
- ③ For every chart (U, x^1, \dots, x^n) for M we may write $\omega_t = \sum a_I(t, p)dx^I$ on U , where the coefficients $a_I(t, p)$ are smooth functions on $I \times U$.

Smooth Families of Differential Forms

Remark

Let $\{\omega_t\}_{t \in I}$ be a smooth family in $\Omega^k(M)$. Then, for every $p \in M$, the map $t \rightarrow (\omega_t)_p$ is smooth as a map from I to the vector space $\Lambda^k(T_p^*M)$.

Definition

Let $\{\omega_t\}_{t \in I}$ be a smooth family in $\Omega^k(M)$. For every $t_0 \in I$, the derivative $\frac{d}{dt} \Big|_{t=t_0} \omega_t$ is the k -form on M defined by

$$\begin{aligned} \left(\frac{d}{dt} \Big|_{t=t_0} \omega_t \right)(p) &= \frac{d}{dt} \Big|_{t=t_0} (\omega_t)_p \\ &= \lim_{t \rightarrow t_0} \frac{(\omega_t)_p - (\omega_{t_0})_p}{t - t_0} \in \Lambda^k(T_p^*M), \quad p \in M. \end{aligned}$$

Smooth Families of Differential Forms

Remark

Let (U, x^1, \dots, x^n) be a chart for M . On U write $\omega_t = \sum a_I(t, p)dx^I$ with $a_I(t, p) \in C^\infty(I \times U)$. Then, for every $p \in U$, we have

$$\left(\frac{d}{dt} \Big|_{t=t_0} \omega_t \right)(p) = \sum_I \frac{\partial a_I}{\partial t}(t_0, p) dx^I.$$

In particular, $\frac{d}{dt} \Big|_{t=t_0} \omega_t$ is smooth on U , since the coefficients $\partial_t a_I(t_0, p)$ are smooth functions on U .

Proposition

Let $\{\omega_t\}_{t \in I}$ be a smooth family in $\Omega^k(M)$. Then

$$\frac{d}{dt} \Big|_{t=t_0} \omega_t \in \Omega^k(M) \quad \forall t_0 \in I.$$

Smooth Families of Differential Forms

Proposition (Product Rule; Proposition 20.1)

Let $\{\omega_t\}$ and $\{\tau_t\}$ be smooth families in $\Omega^k(M)$ and $\Omega^\ell(M)$, respectively. Then $\{\omega_t \wedge \tau_t\}$ is a smooth family in $\Omega^{k+\ell}(M)$, and we have

$$\frac{d}{dt}(\omega_t \wedge \tau_t) = \left(\frac{d}{dt} \omega_t \right) \wedge \tau_t + \omega_t \wedge \left(\frac{d}{dt} \tau_t \right).$$

Proposition (Proposition 20.2)

Let $\{\omega_t\}$ be a smooth family in $\Omega^k(M)$. Then $\{d\omega_t\}$ is a smooth family in $\Omega^{k+1}(M)$, and we have

$$\frac{d}{dt}(d\omega_t) = d\left(\frac{d}{dt}\omega_t\right).$$

The Lie Derivative of Differential Forms

Facts

Let $\omega \in \Omega^k(M)$.

- If X is a complete vector field, then $\varphi_t : M \rightarrow M$ is a diffeomorphism for every $t \in \mathbb{R}$, and so we can form the pullback,

$$(\varphi_t^* \omega)_p = (\varphi_t)_{*,p}^* [\omega_{\varphi_t(p)}], \quad p \in M.$$

- Here $(\varphi_t)_{*,p}^* : \Lambda^k(T_{\varphi_t(p)}^* M) \rightarrow \Lambda^k(T_p^* M)$ is the pullback by the differential $(\varphi_t)_{*,p} : T_p M \rightarrow T_{\varphi_t(p)} M$.
- In general $(\varphi_t^* \omega)_p = (\varphi_t)_{*,p}^* [\omega_{\varphi_t(p)}] \in \Lambda^k(T_p^* M)$ is defined for $(t, p) \in \Omega$ only.
- If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^* \omega)|_U\}_{t \in I}$ is a family in $\Omega^k(U)$.

The Lie Derivative of Differential Forms

Proposition

Let $\omega \in \Omega^k(M)$.

- (i) The map $(t, p) \rightarrow (\varphi_t^* \omega)_p$ is smooth as a map from Ω to $\Lambda^k(T^*M)$.
- (ii) If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^* \omega)|_U\}_{t \in I}$ is a smooth family in $\Omega^k(U)$.

Proof.

- Let $(t_0, p) \in \Omega$ and let (V, y^1, \dots, y^n) be a local coordinates for M near $\varphi_{t_0}(p)$.
- As $\mathcal{V} = \{(t, q) \in \Omega; \varphi_t(q) \in V\}$ is an open set, there are an open interval $I \subset \mathbb{R}$ and an open $U \subset M$ such that $(t_0, p) \in I \times U \subset \mathcal{V}$. In particular, $\varphi_t(U) \subset V$ for all $t \in I$.
- Moreover, as $I \times U \subset \Omega$ we know that $\{(\varphi_t^* \omega)|_U\}_{t \in I}$ is a family in $\Omega^k(U)$.

The Lie Derivative of Differential Forms

Proof.

- We may assume that U is the domain of a chart (x^1, \dots, x^n) near p . Set $\varphi_t^j = y^j \circ \varphi_t$ and write $\omega = \sum b_J dy^J$ on V with $b_J \in C^\infty(V)$.
- By the local expression for pullbacks (see next slide), on U we have

$$\varphi_t^* \omega = \sum_{I,J} (b_J \circ \varphi_t) \frac{\partial(\varphi_t^{j_1}, \dots, \varphi_t^{j_k})}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I, \quad t \in I.$$

- The coefficients of dx^I are smooth functions on $I \times U$, and so $\{(\varphi_t^* \omega)|_U\}_{t \in I}$ is a smooth family in $\Omega^k(U)$.
- Thus, the map $(t, q) \rightarrow (\varphi_t^* \omega)_q$ is smooth near (t_0, p) for every $(t_0, p) \in \Omega$, and hence is smooth on Ω .

This proves (i). The 2nd part (ii) follows from (i). □

The Lie Derivative of Differential Forms

Reminder (Local expression for pullback; see slides on Section 18)

Suppose that $F : N \rightarrow M$ is a smooth map. Let (U, x^1, \dots, x^m) be a chart for N and (V, y^1, \dots, y^n) a chart for M such that $U \subset F^{-1}(V)$. Set $F^j = y^j \circ F$. For any k -form $\omega = \sum b_J dy^J$ on V , we have

$$F^* \omega = \sum_{I,J} (b_J \circ F) \frac{\partial(F^{j_1}, \dots, F^{j_k})}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I \quad \text{on } U.$$

The Lie Derivative of Differential Forms

Remark

Let $p \in M$.

- As Ω is an open containing $(0, p)$, we always can find $\epsilon > 0$ and an open U of M containing p such that $(-\epsilon, \epsilon) \times U \subset \Omega$.
- By the previous proposition $\{(\varphi_t^* \omega)_{|U}\}_{|t| < \epsilon}$ is a smooth family in $\Omega^k(U)$.
- In particular, $\varphi_t^* \omega$ is a C^∞ -family of smooth k -forms near p and $t = 0$.

The Lie Derivative of Differential Forms

Definition (Definition 20.5)

If $\omega \in \Omega^k(M)$, then its *Lie derivative* $\mathcal{L}_X\omega$ is the k -form on M defined by

$$(\mathcal{L}_X\omega) = \frac{d}{dt} \bigg|_{t=0} (\varphi_t^* \omega)_p, \quad p \in M.$$

Remark (Proposition 20.6)

If $f \in C^\infty(M)$, then $\mathcal{L}_X f = Xf$.

The Lie Derivative of Differential Forms

Proposition

If $\omega \in \Omega^k(M)$, then $\mathcal{L}_X \omega$ is a smooth k -form on M .

Proof.

- Let $p \in M$. From the remark on slide 17 $\varphi_t^* \omega$ is a smooth family of smooth k -forms near p .
- Thus, by the proposition on slide 12 $\mathcal{L}_X \omega = \frac{d}{dt} \Big|_{t=0} \varphi_t^* \omega$ is smooth near p .
- As this is true for every $p \in M$, it follows that $\mathcal{L}_X \omega$ is a smooth k -form on M .

The proof is complete. □

Corollary

The Lie derivative \mathcal{L}_X defines a degree 0 linear map,

$$\mathcal{L}_X : \Omega^*(M) \longrightarrow \Omega^*(M).$$

Definition

If $F : N \rightarrow M$ is a diffeomorphism and Y is a vector field on M , then the *pullback* F^*X is the pushforward of Y by F^{-1} , i.e., $F^*Y = (F^{-1})_*Y$.

Remark

In other words, we have

$$(F^*Y)_p = (F^{-1})_{*,F(p)}(Y_{F(p)}) \quad \forall p \in M.$$

Remarks

Let X and Y be a smooth vector fields and let $(t, p) \rightarrow \varphi_t(p)$ be flow of X .

- $\varphi_t : M_t \rightarrow M_{-t}$ is a diffeomorphism.
- We would like to define the Lie derivative $\mathcal{L}_X Y$ as $\frac{d}{dt} \Big|_{t=0} \varphi_t^* Y$.
- Here $\varphi_t^{-1} = \varphi_t$, and so we have

$$(\varphi_t^* Y)_p = (\varphi_t^{-1})_{*, \varphi_t(p)}(Y_{\varphi_t(p)}) = (\varphi_{-t})_{*, \varphi_t(p)}(Y_{\varphi_t(p)}).$$

This makes sense for $(t, p) \in \Omega$.

- If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ such that $I \times U \subset \Omega$, then $\{(\varphi_t^* Y)|_U\}_{t \in I}$ is a family in $\mathcal{X}(U)$.

Lie Derivative of Vector Fields

Definition

Let $I \subset \mathbb{R}$ be an open interval. A family $\{Y_t\}_{t \in I}$ in $\mathcal{X}(M)$ is said to be smooth when the map $(t, p) \rightarrow (X_t)_p$ is smooth as a map from $I \times M$ to TM .

Proposition

Let $\{Y_t\}_{t \in I}$ be a family in $\mathcal{X}(M)$. TFAE:

- ① $\{Y_t\}_{t \in I}$ is a smooth family in $\mathcal{X}(M)$.
- ② For every $p \in M$ there is a chart (U, x^1, \dots, x^n) near p such that $Y_t = \sum a^i(t, p) \partial/\partial x^i$ on U , where the coefficients $a^i(t, p)$ are smooth functions on $I \times U$.
- ③ For every chart (U, x^1, \dots, x^n) for M we may write $Y_t = \sum a^i(t, p) \partial/\partial x^i$ on U , where the coefficients $a^i(t, p)$ are smooth functions on $I \times U$.

Lie Derivative of Vector Fields

Remark

Let $\{Y_t\}_{t \in I}$ be a smooth family in $\mathcal{X}(M)$. Then, for every $p \in M$, the map $t \rightarrow (Y_t)_p$ is smooth as a map from I to the vector space $T_p M$.

Definition

Let $\{Y_t\}_{t \in I}$ be a smooth family in $\mathcal{X}(M)$. For every $t_0 \in I$, the derivative $\frac{d}{dt} \Big|_{t=t_0} \omega_t$ is the vector field on M defined by

$$\begin{aligned} \left(\frac{d}{dt} \Big|_{t=t_0} Y_t \right)(p) &= \frac{d}{dt} \Big|_{t=t_0} (Y_t)_p \\ &= \lim_{t \rightarrow t_0} \frac{(Y_t)_p - (Y_{t_0})_p}{t - t_0} \in T_p M, \quad p \in M. \end{aligned}$$

Lie Derivative of Vector Fields

Remark

Let (U, x^1, \dots, x^n) be a chart near for M . On U write

$Y_t = \sum a^i(t, p) \partial/\partial x^i$ with $a^i(t, p) \in C^\infty(I \times U)$. Then, for every $p \in U$, we have

$$\left(\frac{d}{dt} \Big|_{t=t_0} Y_t \right)(p) = \sum_I \frac{\partial a^i}{\partial t}(t_0, p) \frac{\partial}{\partial x^i}$$

In particular, $\frac{d}{dt} \Big|_{t=t_0} Y_t$ is smooth on U , since the coefficients $\partial_t a^i(t_0, p)$ are smooth functions on U .

Proposition

Let $\{Y_t\}_{t \in I}$ be a smooth family in $\mathcal{X}(M)$. Then

$$\frac{d}{dt} \Big|_{t=t_0} Y_t \in \mathcal{X}(M) \quad \forall t_0 \in I.$$

Lie Derivative of Vector Fields

Proposition

Let $Y \in \mathcal{X}(M)$.

- (i) The map $(t, p) \rightarrow (\varphi_t^* Y)_p$ is smooth as a map from Ω to TM .
- (ii) If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^* Y)_p\}_{t \in I}$ is a smooth family in $\mathcal{X}(U)$.

Definition (Definition 20.3)

If $Y \in \mathcal{X}(M)$, then its *Lie derivative* $\mathcal{L}_X Y$ is the vector field on M defined by

$$(\mathcal{L}_X Y)_p = \left. \frac{d}{dt} \right|_{t=0} (\varphi_t^* Y)_p, \quad p \in M.$$

Proposition (Theorem 20.4)

If $Y \in \mathcal{X}(M)$, then $\mathcal{L}_X Y = [X, Y]$.

Interior Multiplication

Definition (Interior multiplication)

Let V be a vector space. If β is a k -covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the $(k - 1)$ -covector $\iota_v \beta$ defined as follows:

- If $k \geq 2$, then

$$\iota_v \beta(v_1, \dots, v_{k-1}) = \beta(v, v_1, \dots, v_{k-1}), \quad v_i \in V.$$

- If $k = 1$, then $\iota_v \beta = \beta(v)$.
- If $k = 0$, then $\iota_v \beta = 0$.

Interior Multiplication

Proposition (Proposition 20.7)

Let $\alpha^1, \dots, \alpha^k$ be 1-covectors (i.e., elements of V^*). Then

$$\iota_v(\alpha^1 \wedge \cdots \wedge \alpha^k) = \sum_{i=1}^k (-1)^{i-1} \alpha^i(v) \alpha^1 \wedge \cdots \wedge \widehat{\alpha^i} \wedge \cdots \wedge \alpha^k,$$

where $\widehat{\cdot}$ means omission.

Interior Multiplication

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $\iota_v : A_*(V) \rightarrow A_{*-1}(V)$ satisfies the following properties:

- 1 $\iota_v \circ \iota_v = 0$.
- 2 If $\beta \in A_k(V)$ and $\gamma \in A_\ell(V)$, then

$$\iota_v(\beta \wedge \gamma) = (\iota_v \beta) \wedge \gamma + (-1)^k \beta \wedge (\iota_v \gamma).$$

In other words, ι_v is an antiderivation of degree -1 whose square is zero.

Interior Multiplication

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k -form on M , then the interior product $\iota_X \omega$ is defined by

$$(\iota_X \omega)_p = \iota_{X_p} \omega_p, \quad p \in M.$$

Remark

- If $k \geq 2$, then, for any vector fields X_1, \dots, X_{k-1} on M , we have $\iota_X \omega(X_1, \dots, X_{k-1}) = \omega(X, X_1, \dots, X_{k-1})$.
- If $k = 1$, then $\iota_X \omega = \omega(X)$.
- If $k = 0$, then $\iota_X \omega = 0$.

Reminder (Proposition 18.7)

Let ω be a k -form on M . Then TFAE:

- 1 ω is a smooth k -form.
- 2 For any smooth vector fields X_1, \dots, X_k on M , the function $\omega(X_1, \dots, X_k)$ is smooth on M .

Proposition

If X is a smooth vector field and ω is a smooth k -form on M , then $\iota_X \omega$ is a smooth form on M as well.

Proof.

- The case $k = 0$ is immediate, since in this case $\iota_X \omega = 0$.
- If $k \geq 2$, then for any smooth vector fields X_1, \dots, X_{k-1} on M we have

$$\iota_X \omega(X_1, \dots, X_{k-1}) = \omega(X, X_1, \dots, X_{k-1}) \in C^\infty(M).$$

- If $k = 1$, then $\iota_X \omega = \omega(X) \in C^\infty(M)$.

Proposition 18.7 then ensures us that $\iota_X \omega$ is a smooth form of degree $k - 1$ if $k \geq 1$. The proof is complete. □

Interior Multiplication

Corollary

If X is a smooth vector field on M , the interior product with X defines a degree -1 anti-derivation $\iota_X : \Omega^*(M) \rightarrow \Omega^{*-1}(M)$ such that $\iota_X \circ \iota_X = 0$.

Reminder

The space of smooth vector fields $\mathcal{X}(M)$ and the exterior algebra $\Omega^*(M)$ are modules over the ring $\mathcal{F} = C^\infty(M)$.

Proposition

The map $\mathcal{X}(M) \times \Omega^*(M) \rightarrow \Omega^{*-1}(M)$, $(X, \omega) \mapsto \iota_X \omega$ is an \mathcal{F} -bilinear map. In particular,

$$\iota_{fX} \omega = \iota_X(f\omega) = f(\iota_X \omega).$$

Properties of the Lie Derivative

Theorem (Theorem 20.10)

Let X be a smooth vector field on M .

(i) The Lie derivative $\mathcal{L}_X : \Omega^*(M) \rightarrow \Omega^*(M)$ is a derivation.

That is, it is a linear map such that

$$\mathcal{L}_X(\omega \wedge \tau) = (\mathcal{L}_X \omega) \wedge \tau + \omega \wedge (\mathcal{L}_X \tau) \quad \forall \omega, \tau \in \Omega^*(M).$$

(ii) $d\mathcal{L}_X = \mathcal{L}_X d$.

(iii) Cartan homotopy formula: $\mathcal{L}_X = d\iota_X + \iota_X d$.

(iv) Product formula: If $\omega \in \Omega^k(M)$ and Y_1, \dots, Y_k are smooth vector fields on M , then

$$\mathcal{L}_X(\omega(Y_1, \dots, Y_k)) = (\mathcal{L}_X \omega)(Y_1, \dots, Y_k)$$

$$+ \sum_{i=1}^k \omega(Y_1, \dots, \mathcal{L}_X Y_i, \dots, Y_k).$$

The last part of Theorem 20.10 can be reformulated as follows:

Theorem (Theorem 20.12; Global formula for \mathcal{L}_X)

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. Then, for any smooth vector fields X_1, \dots, X_{k-1} on M , we have

$$\begin{aligned}(\mathcal{L}_X \omega)(Y_1, \dots, Y_k) &= X(\omega(Y_1, \dots, Y_k)) \\ &\quad - \sum_{i=1}^k \omega(Y_1, \dots, [X, Y_i], \dots, Y_k).\end{aligned}$$

Global Formulas

Proposition (Proposition 20.13)

Let $\omega \in \Omega^1(M)$. Then, for any smooth vector fields X and Y on M , we have

$$d\omega(X, Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X, Y]).$$

Theorem (Theorem 20.14; Global formula for the exterior derivative)

Let $\omega \in \Omega^k(M)$, $k \geq 1$. Then, for any smooth vector fields Y_0, \dots, Y_k on M , we have

$$\begin{aligned} d\omega(Y_0, \dots, Y_k) &= \sum_{i=1}^k (-1)^i Y_i(\omega(Y_0, \dots, \widehat{Y}_i, \dots, Y_k)) \\ &+ \sum_{1 \leq i < j \leq k} (-1)^{i+j} \omega([Y_i, Y_j], Y_0, \dots, \widehat{Y}_i, \dots, \widehat{Y}_j, \dots, Y_k). \end{aligned}$$