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Reminder: Exterior Derivative on an Open Set

Definition (Exterior derivative on open set)

Let U be an open subset of Rn. The exterior derivative
d : Ω∗(U)→ Ω∗(U) is defined as follows:

For k = 0 the exterior derivative of a 0-form (i.e., a C∞

function) f on U is its differential, i.e., df =
∑ ∂f

∂x i
dx i .

For k ≥ 1, the exterior derivative ω =
∑

aIdx
I ∈ Ωk(U) is

dω =
∑

daI ∧ dx I =
∑
I

(∑
j

∂aI
∂x j

dx j
)
∧ dx I .

Remarks

If ω ∈ Ωk(U), then dω ∈ Ωk+1(U).

In particular, dω = 0 for all ω ∈ Ωn(U).
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Reminder: Exterior Derivative on an Open Set

Reminder (Graded Algebras)

An algebra A over a field K is called graded when it can be
decomposed as

A =
∞⊕
k=0

Ak ,

where the Ak are subspaces such that the multiplication maps
Ak × A` to Ak+`.

Reminder (Antiderivation of a Graded Algebra; see Section 4)

Let A = ⊕∞k=0A
k be a graded algebra over a field K.

An antiderivation of A is any linear map D : A→ A such that

D(ab) = (Da)b + (−1)kaDb for all a ∈ Ak and b ∈ A.

We say that D has degree m when D(Ak) ⊂ Ak+m for all k .
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Reminder: Exterior Derivative on an Open Set

Reminder

Ω∗(U) =
⊕n

k=0 Ωk(U) is a graded algebra over R.

Reminder (Proposition 4.7)

The exterior derivative d : Ω∗(U)→ Ω∗(U) satisfies the following
properties:

(i) It is an antiderivation of degree 1, i.e.,

d(ω ∧ τ) = (dω) ∧ τ + (−1)degωω ∧ dτ.

(ii) d2 = 0, i.e., d(dω) = 0 for all ω ∈ Ω∗(U).

(iii) If f ∈ C∞(U) and X ∈X (U), then (df )(X ) = Xf .

Reminder (Proposition 4.8)

The exterior derivative is the unique map D : Ω∗(U)→ Ω∗(U) that
satisfies the properties (i)–(iii) above.
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Exterior Derivative on a Manifold

Reminder

Let M be a smooth manifold of dimension n. Then the exterior
algebra of differential forms Ω∗(M) =

⊕n
k=0 Ωk(M) is a graded

algebra.

Definition

An exterior derivative on a manifold M is a linear map
D : Ω∗(M)→ Ω∗(M) satisfying the following properties:

(i) It is an antiderivation of degree 1.

(ii) D ◦ D = 0.

(iii) On Ω0(M) = C∞(M) it agrees with the differential of
functions, i.e., Df = df for all f ∈ C∞(M).

Theorem (Theorem 19.4)

There is a unique exterior derivative d : Ω∗(M)→ Ω∗(M).
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Construction of the Exterior Derivative

Reminder

Let (U, x1, . . . , xn) be a chart for M.

{dx I ; I ∈ Ik,n} is a smooth frame of Ωk(M) over U.

Every smooth k-form ω on U can be uniquely written as
ω =

∑
aIdx

I with aI in C∞(U).
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Construction of the Exterior Derivative

Definition

Let (U, x1, . . . , xn) be a chart. Define dU : Ω∗(U)→ Ω∗(U) by

(i) If f ∈ C∞(U) = Ω0(U), then

dU f = df =
∑ ∂f

∂x i
dx i .

(ii) If ω =
∑

aIdx
I ∈ Ωk(U), k ≥ 1, then

dω =
∑
I

daI ∧ dx I .

In the same way as in the case of an open set of Rn we get:

Lemma

dU : Ω∗(U)→ Ω∗(U) is the unique exterior derivative on U.
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Construction of the Exterior Derivative

Remark

The proof of uniqueness in Tu’s book lacks details.

Tu’s arguments require to show that if D : Ω∗(M)→ Ω∗(M)
is an exterior derivative, then

D(dx I ) = 0 ∀I ∈ Ik,n, k ≥ 1.

This can be proved by induction on k .

k = 1: D(dx i ) = D ◦ D(x i ) = 0 since D = d on C∞(M).

Assume the result for k. Let I = (i1, . . . ik+1) ∈ Ik+1,n and
set J = (i2, . . . , ik+1) ∈ Ik,n. We have

dx I = dx i1 ∧ dx i2 ∧ · · · dx ik+1 = dx i1 ∧ dxJ .

As D is an antiderivation, we get

D(dx I ) = D(dx i1 ∧ dxJ) = D(dx i1)∧ dxJ − dx i1 ∧D(dxJ) = 0,

since D(dx i1) = 0 and D(dxJ) = 0.
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Construction of the Exterior Derivative

Remark (Continued)

Once it has been established that D(dx I ) = 0, it can be
shown that D = dU as in Tu’s book.

Let ω =
∑

aIdx
I ∈ Ωk(U). As D is an antiderivation and

agrees with the differential on functions, we get

dω =
∑

D(aIdx
I ) =

∑
D(aI ) ∧ dx I +

∑
aID(dx I )

=
∑

daI ∧ dx I

= dUω.

This shows that dU is the only exterior derivative on U.
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Construction of the Exterior Derivative

Facts

Let ω ∈ Ωk(M). Let (U, x1, . . . , xn) and (V , y1, . . . , yn) be charts
for M near p ∈ M.

Write ω =
∑

aIdx
I on U and ω =

∑
bIdy

I on V . Then on
U ∩ V we have

ω =
∑

aIdx
I =

∑
bIdy

I .

In particular, on U ∩ V we get∑
daI ∧ dx I = dU∩V (ω|U∩V ) =

∑
dbIdy

I .

As p ∈ U ∩ V , we obtain

dU(ω|U)p =
∑(

daI ∧ dx I
)
p

=
∑(

dbI ∧ dy I
)
p

= dV (ω|V )p.
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Construction of the Exterior Derivative

Consequence

dU(ω|U)p depends only on ω and p, not on U.

Definition

The map d : Ω∗(M)→ Ω∗(M) is defined as follows: if ω ∈ Ωk(M)
and p ∈ M, then (

dω
)
p

= dU(ω|U)p,

where U is the domain of any chart near p.

Theorem (Theorem 19.4)

The map d : Ω∗(M)→ Ω∗(M) is the unique exterior derivative
on M.
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Construction of the Exterior Derivative

Definition

d : Ω∗(M)→ Ω∗(M) is called the exterior derivative of M.

Remark

Let ω ∈ Ωk(U) and (U, x1, . . . , xn) a chart for M.

By definition (dω)p = dU(ω|U)p for all p ∈ U. Thus,

(dω)|U = dU(ωIU).

In particular, if ω =
∑

aIdx
I on U, then(

dω
)
|U = dU(ω|U) =

∑
daI ∧ dx I on U.

12 / 19



Exterior Differentiation Under a Pullback

Reminder (see slides on Section 18)

Let F : N → M be a smooth map.

If ω is a k-form on M, then its pullback F ∗ω is the k-form on
N given by

(F ∗ω)p(v1, . . . , vk) =
(
(F∗,p)∗ωp

)
(v1, . . . , vk)

= ωp

(
F∗,pv1, . . . ,F∗,pvk

)
, vi ∈ TpN.

If ω is a smooth form on M, then F ∗ω is a smooth form on N.

13 / 19



Exterior Differentiation Under a Pullback

Exterior differentiation commutes with pullback. Namely, we have:

Proposition (Proposition 19.5)

Let F : N → M be a smooth map. If ω ∈ Ωk(M), then

F ∗(dω) = d(F ∗ω).

Remark

In Tu’s book, Proposition 19.5 is used to show that
smoothness of k-forms is preserved by pullback.

This is not fully rigorous since in order to make sense
Proposition 19.5 requires the smoothness of pullbacks of
smooth forms.

Anyway, smoothness of pullbacks of forms can be proved
without using Proposition 19.5 (see slides on Section 18).
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Restriction of k-Forms to Submanifolds

Reminder

Let S be an immersed submanifold in M.

The inclusion i : S → M is an immersion, and so its
differential i∗,p : TpS → TpM is an injection for every p ∈ S .

This allows us to identify TpS with a subspace of TpM.

We thus can restrict to S any k-covector ωp ∈ Λk(T ∗pM); this

defines a k-covector on TpS , i.e., an element of Λk(T ∗p S).

Definition

If ω is a k-form on M, its restriction to S , denoted ω|S , is the
k-form on S defined by(
ω|S
)
p
(v1, . . . , vk) = ωp(v1, . . . , vk) for all p ∈ S and vi ∈ TpS .
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Restriction of k-Forms to Submanifolds

In the same way as with 1-forms we have:

Proposition

Let S be an immersed submanifold in M. If i : S → M is the
inclusion of S into M and ω is a k-form on M, then ω|S = i∗ω.

As pullbacks by smooth maps preserve smoothness we get:

Corollary

Let S be an immersed submanifold in M. If ω is a smooth k-forms
on M, then ω|S is a smooth k-form on S.
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Restriction of k-Forms to Submanifolds

Corollary

Let S be an immersed submanifold in M. If ω ∈ Ωk(M), then(
dω)|S = d

(
ω|S
)
.

Proof.

Let i : S → M be the inclusion of S into M. As exterior
differentiation commutes with pullback by i , we get(

dω)|S = i∗
(
dω) = d

(
i∗ω
)

= d
(
ω|S
)
.

The result is proved.

Remark

As (dω)|S and d(ω|S) agree, we simply write dω|S to mean either
expression.
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A Nowhere-Vanishing 1-Forms on S1

Example

The unit circle S1 has equation x2 + y2 = 1. This a regular
submanifold of R2. Thus,[

d(x2 + y2)
]
|S1 = d

[
(x2 + y2)|S1

]
= d1 = 0.

On R2 we also have

d(x2 +y2) =
∂

∂x
(x2 +y2)dx +

∂

∂y
(x2 +y2)dy = 2xdx + 2ydy .

Thus, (
xdx + ydy

)
|S1 = 0.

In particular, on regions of S1 where x 6= 0 and y 6= 0, we
have dy

x
= −dx

y
.
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A Nowhere-Vanishing 1-Forms on S1

Example (continued)

Set Ux = {(x , y) ∈ S1; x 6= 0} and Uy = {(x , y) ∈ S1; y 6= 0}.
Let ω be the 1-form on S1 defined by

ω =
dy

x
on Ux , ω = −dx

y
on Uy .

This is well-defined since dy
x = −dx

y on Ux ∩ Uy .

ω is a smooth 1-form, since on both Ux and Uy it is the
restriction of a smooth 1-form on an open of R2.

Proposition (see Tu’s book)

The 1-form ω is a nowhere-vanishing smooth 1-form on S1, i.e.,
ωp 6= 0 for all p ∈ S1.
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