

Differentiable Manifolds

§18. Differentiable k -Forms

Sichuan University, Fall 2020

Reminder (see Section 3)

Let V be a vector space (over \mathbb{R}). Set $n = \dim V$.

- A k -covector on V is an alternating k -linear map $f : V^k \rightarrow \mathbb{R}$,

$$f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = (\text{sgn } \sigma) f(v_1, \dots, v_n) \quad \forall \sigma \in S_k.$$

- We denote by $A_k(V)$ the space of k -covectors on V .
- We have

$$A_0(V) = \mathbb{R}, \quad A_1(V) = V^*, \quad A_k(V) = \{0\}, \quad k \geq n+1.$$

Differential Forms

Reminder (Wedge product; see Section 3)

- If $f \in A_k(V)$ and $g \in A_\ell(V)$, the *wedge product* $f \wedge g$ is the $(k + \ell)$ -covector in $A_{k+\ell}(V)$ defined by

$$(f \wedge g)(v_1, \dots, v_{k+\ell}) = \frac{1}{k! \ell!} \sum_{\sigma \in S_{k+\ell}} \text{sgn}(\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)}).$$

- The wedge product $\wedge : A_k(V) \times A_\ell(V) \rightarrow A_{k+\ell}(V)$ is a bilinear map which is anti-commutative and associative, i.e.,

$$f \wedge g = (-1)^{k\ell} g \wedge f, \quad f \wedge f = 0 \quad (k \text{ odd}),$$

$$(f \wedge g) \wedge h = f \wedge (g \wedge h).$$

Reminder (Wedge products of 1-covectors; see Section 3)

- If $\alpha^1, \dots, \alpha^k$ are 1-covectors, then

$$(\alpha^1 \wedge \cdots \wedge \alpha^k)(v_1, \dots, v_k) = \det [\alpha^i(v_j)], \quad v_i \in V.$$

- Let β^1, \dots, β^k be k -covectors such that

$$\beta^i = \sum_j a_j^i \alpha^j, \quad \text{for some matrix } A = [a_j^i] \in \mathbb{R}^{k \times k}.$$

Then

$$\beta^1 \wedge \cdots \wedge \beta^k = (\det A) \alpha^1 \wedge \cdots \wedge \alpha^k.$$

Differential Forms

Definition

$\mathcal{I}_{k,n}$ is the set of ascending multi-indices $I = (i_1, \dots, i_k)$ such that $1 \leq i_1 < \dots < i_k \leq n$.

Reminder (Bases of k -covectors; see Section 3)

Let e_1, \dots, e_n be a basis of V and let $\alpha^1, \dots, \alpha^n$ be the dual basis of $V^* = A_1(V)$. For $I = (i_1, \dots, i_k) \in \mathcal{I}_{k,n}$ set

$$\alpha^I = \alpha^{i_1} \wedge \dots \wedge \alpha^{i_k}.$$

- If $J = (j_1, \dots, j_k) \in \mathcal{I}_{k,n}$ and $e_J = (e_{j_1}, \dots, e_{j_k})$, then

$$\alpha^I(e_J) = \delta_J^I.$$

- The k -covectors α^I , $I \in \mathcal{I}_{k,n}$, form a basis of $A_k(V)$.
- In particular $\dim A_k(V) = \binom{n}{k}$ for $k \leq n$.

Differential Forms

Facts

- Any linear map $F : V \rightarrow W$ gives rise to a linear map $F^* : A_k(W) \rightarrow A_k(V)$ defined by
$$F^*g(v_1, \dots, v_k) = g(Fv_1, \dots, Fv_k), \quad g \in A_k(W), \quad v_i \in V.$$
- If $F : V \rightarrow W$ and $G : W \rightarrow Z$ are linear maps, then
$$(G \circ F)^* = F^* \circ G^*.$$

Consequence

The construction $V \rightarrow A_k(V)$ is a (contravariant) functor from the category $\mathbf{Vect}_{\mathbb{R}}$ to itself.

Remark

- There is another construction $V \rightarrow \Lambda^k(V)$ called *k-th exterior power*.
- This is a covariant functor on $\mathbf{Vect}_{\mathbb{R}}$.
- We have $A_k(V) = \Lambda^k(V^*)$, so the space of *k*-covectors is often denoted $\Lambda^k(V^*)$.

Differential Forms

Definition (Differential k -forms)

Let M be a smooth manifold.

- The space $A_k(T_p M)$ is denoted $\Lambda^k(T_p^* M)$.
- An element of $\Lambda^k(T_p^* M)$ is called a k -covector at p .
- A *differential k -form* (or a k -covector field) is the assignment for each $p \in M$ of a k -covector $\omega \in \Lambda^k(T_p^* M)$.

Remarks

- ① Differential k -forms are also called *differential forms of degree k* , or simply k -forms.
- ② A differential form of degree $k = \dim M$ is called a *top form*.

Definition

If ω is a differential k -form and X_1, \dots, X_k are vector fields on M , we denote by $\omega(X_1, \dots, X_k)$ the function on M defined by

$$\omega(X_1, \dots, X_k)(p) = \omega_p((X_1)_p, \dots, (X_k)_p), \quad p \in M.$$

Proposition (Proposition 8.1)

Let ω be a differential k -form. For any vector fields X_1, \dots, X_k and function h on M , we have

$$\omega(hX_1, \dots, hX_k) = h\omega(X_1, \dots, X_k).$$

Example

Let (U, x^1, \dots, x^n) be a chart for M .

- If $p \in U$, then $\{\partial/\partial x^1|_p, \dots, \partial/\partial x^n|_p\}$ is a basis of $T_p M$.
- The dual basis of $T_p^* M$ is $\{(dx^1)_p, \dots, (dx^n)_p\}$.
- For $I = (i_1, \dots, i_k) \in \mathcal{I}_{k,n}$ let dx^I be the k -form defined by

$$(dx^I)_p = (dx^{i_1})_p \wedge \cdots \wedge (dx^{i_n})_p, \quad p \in U.$$

By the results of Section 3 (see slide 5) $\{(dx^I)_p; I \in \mathcal{I}_{k,n}\}$ is a basis of $\Lambda^k(T_p^* M)$ for every $p \in U$.

Local Expression for a k -Form

Facts

- Let $p \in U$. As $\{(dx^I)_p; I \in \mathcal{I}_{k,n}\}$ is a basis of $\Lambda^k(T_p^*M)$, every k -covector $\omega_p \in \Lambda^k(T_p^*M)$ can be uniquely written as

$$\omega_p = \sum_{I \in \mathcal{I}_{k,n}} a_I (dx^I)_p, \quad a_I \in \mathbb{R}.$$

- Set $\partial_i = \partial/\partial x^i$ and for $I = (i_1, \dots, i_k) \in \mathcal{I}_{k,n}$ set $\partial_I = (\partial_{i_1}, \dots, \partial_{i_k})$. By the results of Section 3 (see slide 5):

$$dx^I(\partial_J) = \delta_J^I.$$

It follows that if $\omega_p = \sum_{I \in \mathcal{I}_{k,n}} a_I (dx^I)_p$, then $a_I = \omega_p(\partial_I)$.

- In particular, every k -form ω on U can be uniquely written as

$$\omega = \sum_{I \in \mathcal{I}_{k,n}} a_I dx^I \quad \text{with } a_I = \omega(\partial_I).$$

Local Expression for a k -Form

Proposition (Proposition 18.3)

Suppose that (U, x^1, \dots, x^n) is a chart for M , and let f^1, \dots, f^k be smooth functions on U . Then

$$df^1 \wedge \cdots \wedge df^k = \sum_I \frac{\partial(f^1, \dots, f^k)}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I.$$

Remark

In fact, in the same way as in Section 3 (see slide 4), we have

$$\begin{aligned} (df^1 \wedge \cdots \wedge df^k)(\partial_I) &= \det [df^i(\partial_{i_j})] = \det [\partial f^i / \partial x^{i_j}] \\ &= \frac{\partial(f^1, \dots, f^k)}{\partial(x^{i_1}, \dots, x^{i_k})}. \end{aligned}$$

Local Expression for a k -Form

Example

Let (V, y^1, \dots, y^n) be another chart. Then on $U \cap V$ we have

$$dy^J = \sum_I \frac{\partial(y^{j_1}, \dots, y^{j_k})}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I.$$

Corollary (Corollary 18.4)

Suppose that (U, x^1, \dots, x^n) is a chart for M , and let f, f^1, \dots, f^n be smooth functions on U . Then

$$df = \sum_i \frac{\partial f}{\partial x^i} dx^i,$$

$$df^1 \wedge \dots \wedge df^n = \frac{\partial(f^1, \dots, f^n)}{\partial(x^1, \dots, x^n)} dx^1 \wedge \dots \wedge dx^n.$$

Definition

- The *k-th exterior power of the cotangent bundle* is

$$\Lambda^k(T^*M) = \bigsqcup_{p \in M} \Lambda^k(T_p^*M) = \left\{ (p, \omega); \ p \in M, \ \omega \in \Lambda^k(T_p^*M) \right\}.$$

- The *canonical map* $\pi : \Lambda^k(T^*M) \rightarrow M$ is given by

$$\pi(p, \omega) = p, \quad p \in M, \quad \omega \in \Lambda^k(T_p^*M).$$

The Bundle Point of View

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M . Set $V = \phi(U)$.

- Every k -covector $\omega_p \in \Lambda^k(T_p^*M)$, can be uniquely written as

$$\omega_p = \sum_I a_I (dx^I)_p, \quad \text{with } a^I = \omega_p(\partial_I).$$

- We thus get a natural bijection $\tilde{\phi} : T^*U \rightarrow V \times \mathbb{R}^{\binom{n}{k}}$ such that, for all $p \in M$ and $\omega \in \Lambda^k(T_p^*M)$, we have

$$\tilde{\phi}(p, \omega) = ((x^i(p)), (\omega(\partial_I))).$$

Remark

In the same way as with the constructions of the tangent bundle TM and the cotangent bundle T^*M , the maps $\tilde{\phi}$ allow us to define a topology and a smooth structure on $\Lambda^k(T^*M)$.

The Bundle Point of View

Definition

Let (U, ϕ) be a chart for M and set $V = \phi(U)$. We endow $\Lambda^k(T^*U)$ with the topology such that

$$W \subset \Lambda^k(T^*U) \text{ is open} \iff \tilde{\phi}(W) \text{ is open in } V \times \mathbb{R}^{\binom{n}{k}}.$$

Proposition

Let $\{(U_\alpha, \phi_\alpha)\}$ be the maximal atlas of M .

- Define

$$\mathcal{B} = \bigcup_{\alpha} \left\{ W; \text{ } W \text{ is an open in } \Lambda^k(T^*U_\alpha) \right\}.$$

Then \mathcal{B} is the basis for a unique topology on $\Lambda^k(T^*M)$.

- The collection $\{(T^*U_\alpha, \tilde{\phi}_\alpha)\}$ is a C^∞ atlas on $\Lambda^k(T^*M)$, and hence $\Lambda^k(T^*M)$ is a smooth manifold.
- $\Lambda^k(T^*M) \xrightarrow{\pi} M$ is a smooth vector bundle over M .

Smooth k -Forms

Remark

A k -form on M is a section of the exterior power $\Lambda^k(T^*M)$.

Definition

- We say that k -form is C^∞ when it is C^∞ as a section of $\Lambda^k(T^*M)$.
- We denote by $\Omega^k(M)$ the space of smooth k -forms on M .

Remarks

- ① In other words, $\Omega^k(M)$ is the space of smooth sections of T^*M . In particular, this is a module over the ring $C^\infty(M)$.
- ② As $\Lambda^0(T_p^*M) = \mathbb{R}$, a 0-form is just a map from M to \mathbb{R} . Thus, a smooth 0-form is just a smooth function on M , i.e., $\Omega^0(M) = C^\infty(M)$.

Smooth k -Forms

Example

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M . Set $V = \phi(U)$.

- It can be shown that each k -form dx^I , $I \in \mathcal{I}_{k,n}$ is smooth.
- Thus, $\{dx^I; I \in \mathcal{I}_{n,k}\}$ is a smooth frame of $\Lambda^k(T^*M)$ over U .

Reminder (Proposition 12.2)

Let $\{s_1, \dots, s_r\}$ be a C^∞ frame of a vector bundle E over U . A section $s = \sum c^i s_i$ of E over U is smooth if and only if c^1, \dots, c^r are smooth functions on U .

We immediately obtain:

Lemma (Lemma 18.6)

Let (U, x^1, \dots, x^n) be a chart for M . A k -form $\omega = \sum a_I dx^I$ on U is smooth if and only if the coefficients a_I are C^∞ functions on U .

In the same way as with vector fields and 1-forms by using the previous lemma we obtain:

Proposition (Proposition 18.7; 1st part)

Let ω be a k -form on M . Then TFAE:

- ① ω is a smooth k -form.
- ② M has an atlas such that, for every chart (U, x^1, \dots, x^n) of this atlas, we may write $\omega = \sum a_I dx^I$ on U with $a^I \in C^\infty(U)$.
- ③ For every chart (U, x^1, \dots, x^n) of M , we may write $\omega = \sum a_I dx^I$ on U with $a^I \in C^\infty(U)$.

Smooth k -Forms

Proposition (Proposition 18.7; 2nd part)

Let ω be a k -form on M . Then TFAE:

- 1 ω is a smooth k -form.
- 2 For any smooth vector fields X_1, \dots, X_k on M , the function $\omega(X_1, \dots, X_k)$ is smooth on M .

Proposition (Proposition 18.8)

Let τ be a smooth k -form defined on a neighborhood of p . Then there exists a smooth k -form $\tilde{\tau}$ on M which agrees with τ near p .

Pullback of k -Forms

Reminder (see slide 6)

Any linear $F : V \rightarrow W$ between vector spaces gives rise to a linear map $F^* : A_k(W) \rightarrow A_k(V)$ defined by

$$F^*g(v_1, \dots, v_k) = g(Fv_1, \dots, Fv_k), \quad g \in A_k(W), \quad v_i \in V.$$

Definition (Pullback of a k -form)

Let $F : N \rightarrow M$ be a smooth map. If ω is a k -form on M , then its *pullback* $F^*\omega$ is the k -form on N defined by

$$(F^*\omega)_p = (F_{*,p})^* \omega_{F(p)}, \quad p \in N.$$

That is,

$$(F^*\omega)_p(v_1, \dots, v_k) = \omega_p(F_{*,p}v_1, \dots, F_{*,p}v_k), \quad v_i \in T_p M.$$

Pullback of k -Forms

Proposition (Proposition 18.9)

Let $F : N \rightarrow M$ be a smooth map. If ω and τ are k -forms on M and a is a constant, then

$$\begin{aligned} F^*(\omega + \tau) &= F^*\omega + F^*\tau, \\ F^*(a\omega) &= aF^*\omega. \end{aligned}$$

Remark

We will see later that if ω is a smooth k -form, then its pullback $F^*\omega$ is a smooth as well (see slide 29).

The Wedge Product

Definition

If ω is a k -form and τ is a ℓ -form on M , then their *wedge product* $\omega \wedge \tau$ is the $(k + \ell)$ -form on M defined by

$$(\omega \wedge \tau)_p = \omega_p \wedge \tau_p \in \Lambda^{k+\ell}(T_p^*M), \quad p \in M.$$

Proposition (Proposition 18.10)

If ω and τ are smooth forms on M , then $\omega \wedge \tau$ is smooth on M .

Corollary

The wedge product induces an anti-commutative associative bilinear map,

$$\wedge : \Omega^k(M) \times \Omega^\ell(M) \longrightarrow \Omega^{k+\ell}(M).$$

The Wedge Product

Reminder (Graded Algebras)

- 1 An algebra A over a field \mathbb{K} is called *graded* when it can be decomposed as

$$A = \bigoplus_{k=0}^{\infty} A^k,$$

where the A^k are subspaces such that the multiplication maps $A^k \times A^\ell$ to $A^{k+\ell}$.

- 2 We say that A is *anticommutative* (or *graded commutative*) when

$$ba = (-1)^{k\ell} ab \quad \text{for all } a \in A^k \text{ and } b \in A^\ell.$$

The Wedge Product

Proposition

Define

$$\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M).$$

Then $\Omega^*(M)$ is anticommutative graded algebra under the wedge product.

Remark

$\Omega^*(M)$ is called the exterior algebra of differential forms on M .

Wedge Product and Pullback

Proposition (Proposition 18.11)

Let $F : N \rightarrow M$ be a smooth map. If ω and τ are differential forms on M , then

$$F^*(\omega \wedge \tau) = (F^*\omega) \wedge (F^*\tau).$$

This result is used to prove:

Lemma (Local expression for pullback)

Suppose that $F : N \rightarrow M$ is a smooth map. Let (U, x^1, \dots, x^m) be a chart for N and (V, y^1, \dots, y^n) a chart for M such that $U \subset F^{-1}(V)$. Set $F^j = y^j \circ F$. For any k -form $\omega = \sum b_J dy^J$ on V , we have

$$F^*\omega = \sum_{I,J} (b_J \circ F) \frac{\partial(F^{j_1}, \dots, F^{j_k})}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I \quad \text{on } U.$$

Wedge Product and Pullback

Proof.

- Thanks to Proposition 18.9, on $F^{-1}(V)$ we have

$$F^*\omega = F^*\left(\sum_J b_J y^J\right) = \sum_J F^* b_J F^*(dy^J) = \sum_J (b_J \circ F) F^*(dy^J).$$

- It remains to determine $F^*(dy^J)$. By Proposition 18.11,

$$F^*(dy^J) = F^*(dy^{j_1} \wedge \cdots \wedge dy^{j_k}) = (F^* dy^{j_1}) \wedge \cdots \wedge (F^* dy^{j_k}).$$

- By Proposition 17.10 pullback commutes with the differential:

$$(F^* dy^{j_\ell}) = d(F^* y^{j_\ell}) = d(y^{j_\ell} \circ F) = dF^{j_\ell}.$$

- Thus, on U we have

$$F^*(dy^J) = dF^{j_1} \wedge \cdots \wedge dF^{j_k} = \sum_I \frac{\partial(F^{j_1}, \dots, F^{j_k})}{\partial(x^{i_1}, \dots, x^{i_k})} dx^I.$$

The result follows. □

Wedge Product and Pullback

By combining the previous lemma with the characterization of smoothness of k -forms (Proposition 18.7) we obtain:

Proposition (Proposition 19.7)

Let $F : N \rightarrow M$ be a smooth map. If ω is a smooth k -form on M , then F^ω is a smooth form on N .*

Remark

- In Tu's book the above result is proved in Section 19. The main step is to prove the previous lemma.
- However, Tu's proof uses Proposition 19.5 whose statement requires Proposition 19.7 in order to make sense.
- Therefore, Proposition 19.5 cannot be used to prove Proposition 19.7.
- Tu's arguments are fine if we use Proposition 17.10 instead of Proposition 19.5 (as it is done in the previous slide).

Invariant Forms on a Lie Group

Definition

Let G be a Lie group. A k -form ω on G is said to be *left-invariant* if

$$\ell_g^* \omega = \omega \quad \forall g \in G,$$

where $\ell_g : G \rightarrow G$ is the left-multiplication by g .

Remark

The left-invariance condition means that

$$(\ell_g)_{*,x}^* (\omega_{gx}) = \omega_x \quad \forall g, x \in G.$$

In particular, by substituting e for x and g^{-1} for g we get

$$\omega_g = (\ell_{g^{-1}})_{*,g}^* (\omega_e) \quad \forall g \in G.$$

Thus, ω is uniquely determined by ω_e .

Invariant Forms on a Lie Group

Remark

Any k -covector $\omega \in \Lambda^k(T^*eG)$ generates a left-invariant k -form $\tilde{\omega}$ defined by

$$\tilde{\omega}_g = (\ell_{g^{-1}})_{*,g}^*(\omega), \quad g \in G.$$

Proposition (Proposition 18.14)

Every left-invariant k -form on G is smooth.

Consequence

Denote by $\Omega^k(G)^G$ the space of left-invariant k -forms on G . Then we have a linear isomorphism,

$$\Omega^k(G)^G \longrightarrow \Lambda^k(T_e^*G), \quad \omega \mapsto \omega_e.$$

In particular, if $n = \dim G$, then $\Omega^k(G)^G$ has dimension $\binom{n}{k}$.

Proposition (Problem 18.8)

Let $F : N \rightarrow M$ be a surjective submersion.

- The pullback by F gives rise to an injective linear map $F^* : \Omega^k(M) \rightarrow \Omega^k(N)$.
- This allows us to identify $\Omega^k(M)$ with a subspace of $\Omega^k(N)$.

Definition

- A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is 2π -periodic if $f(t + 2\pi) = f(t)$.
- A 1-form $f(t)dt$ on \mathbb{R} is said to be 2π -periodic if the function $f(t)$ is 2π -periodic.

Proposition (Proposition 18.12)

Let $h : \mathbb{R} \rightarrow \mathbb{S}^1$ be the map defined by

$$h(t) = (\cos t, \sin t).$$

Then:

- h is a surjective submersion.
- For $k = 0, 1$, under the pullback map $h^* : \Omega^k(\mathbb{S}^1) \rightarrow \Omega^k(\mathbb{R})$ the smooth k -forms on \mathbb{S}^1 corresponds to smooth 2π -periodic k -forms on \mathbb{R} .