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Differential Forms

Reminder (see Section 3)

Let V be a vector space (over R). Set n =dim V.

@ A k-covector on V is an alternating k-linear map f : VK - R,
f(va(l), 500g Vo(k)) = (sgn o*)f(vl, s00g Vn) Vo € S.

e We denote by Ax(V) the space of k-covectors on V.

@ We have

A(V)=R,  A(V)=V*,  A(V)={0}, k>n+l.|

N
w
S



Differential Forms

Reminder (Wedge product; see Section 3)

o If f € Ax(V) and g € Ay(V), the wedge product f A g is the
(k + ¢)-covector in Ay (V) defined by

(FAG)(ve, s Vie) =
1
M Z sgn(a)f (Vg(l), 5o0g Va(k)) g (Va(k+1)7 6o0g Va(k+£)) e

0ESkie
@ The wedge product A : Ax(V) x Ag(V) — Akie(V) is a
bilinear map which is anti-commutative and associative, i.e.,
fAg=(-1)gnf, fAf=0 (kodd),
(FAg)ANh=1FNA(gAh).




Differential Forms

Reminder (Wedge products of 1-covectors; see Section 3)
k

o If al,..., &k are 1-covectors, then

(@' A Aaf) (v, .. vi) =det[ai(v)], vieV.

o Let B1,..., 3% be k-covectors such that

j i - ' kxk
g = Z aj, for some matrix A = [a]] € R***.
J

Then

BLA--ABK = (detA)al A--- Ak




Differential Forms

Definition

i n is the set of ascending multi-indices / = (i1, ..., ix) such that
1<ip<---<ik<n

Reminder (Bases of k-covectors; see Section 3)

Let e, ..., e, be a basis of V and let o!,...,a" be the dual basis
of V¥ = A(V). For | = (i,...,ix) € Fkn set
al =at A Ak

o If J= (jl,...,jk) S jk,n and e; = (ejl,...,ejk), then
ol(ey) = dl.

o The k-covectors o/, | € Zk.n, form a basis of A,(V).
o In particular dim A, (V) = () for k < n.




Differential Forms

@ Any linear map F : V — W gives rise to a linear map
F*: A(W) — Ak(V) defined by

F*g(V]_,...,Vk) :g(FV17"'7FVk)7 g € Ak(W)7 vi € V.

o If F:V— Wand G: W — Z are linear maps, then
(Go F)* = F*o G*.

Consequence

The construction V — A(V) is a (contravariant) functor from the
category Vecty to itself.
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Differential Forms

@ There is a another construction V — AX(V) called k-th
exterior power.

@ This is a covariant functor on Vecty.
@ We have A, (V) = AK(V*), so the space of k-covectors is

often denoted AK(V*).




Differential Forms

Definition (Differential k-forms)

Let M be a smooth manifold.
o The space Ay(T,M) is denoted A*(TM).
@ An element of /\k(T,;‘I\/I) is called a k-covector at p.

e A differential k-form (or a k-covector field) is the assignment
for each p € M of a k-covector w € A*(T;M).

RENEIS

| A

@ Differential k-forms are also called differential forms of degree
k, or simply k-forms.

@ A differential form of degree k = dim M is called a top form.




Differential Forms

Definition

If w is a differential k-form and Xi, ..., X are vector fields on M,
we denote by w(Xi,..., Xk) the function on M defined by

w(Xl,...,Xk)(p):wp((Xl)p,...,(Xk)p), pE M.

Proposition (Proposition 8.1)

Let w be a differential k-form. For any vector fields X, ..., X and
function h on M, we have

w(hXq, ..., hX) = hw(X1, ..., Xe).




Differential Forms

Let (U,x,...,x™) be a chart for M.
o If pc U, then {9/0x! p,...,@/ax”’p} is a basis of T,M.
e The dual basis of TyM is {(dx'),,..., (dx"),}.
@ For I = (i1,...,ik) € Fk.n let dx! be the k-form defined by
I i in
(dx)p:(dxl)p/\---/\(dx )p, peU.

By the results of Section 3 (see slide 5) {(dx')p; I € Sk} is
a basis of /\k(TI;"I\/I) for every p € U.

10/32



Local Expression for a k-Form

o Let pe U. As {(dx")p; | € i n} is a basis of A*(T; M),
every k-covector wp € /\k(T;I\/I) can be uniquely written as

Wp = Z a,(dx’)p, a € R.
IEjk,,,

o Set 9; = 0/0x" and for | = (i, ..., i) € Fn set
0y = (0, -..,0;). By the results of Section 3 (see slide 5):

dx'(8,) = ¢!,

; _ I _
It follows that if wp = 37c 5 ar(dx') . then aj = wp(0)).
@ In particular, every k-form w on U can be uniquely written as

w= Z aydx’ with a; = w(0y).
IE,VkYn
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Local Expression for a k-Form

Proposition (Proposition 18.3)

Suppose that (U,x',...,x") is a chart for M, and let f*,... fk
be smooth functions on U. Then

a(fL, ..., fk)
dfP A AdFF =N 2 2 T g
Z (X))

In fact, in the same way as in Section 3 (see slide 4), we have

(dft A~ A df¥)(0)) = det [df(0;)] = det [0f /Ox"T]

i
GG

CO(x, LX)




Local Expression for a k-Form

Let (V,y!,...,y") be another chart. Then on UN V we have

dy? =S8 o V) gl

Corollary (Corollary 18.4)

Suppose that (U, x*,...,x") is a chart for M, and let f, ', ... f"
be smooth functions on U. Then

of
i ox’
o(ft, ..., f")

A(xL, ..., x")

df = dx’,

dfY A AdFT = dx A A dx".
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The Bundle Point of View

@ The k-th exterior power of the cotangent bundle is

N(T*M) = | | AS(TzM) = {(p,w); peM, we A"(T;,“I\/I)}.
peM

o The canonical map 7 : N<(T*M) — M is given by
m(pw)=p, pEM, weN(T;M).
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The Bundle Point of View

Let (U,¢) = (U,x},...,x") be a chart for M. Set V = ¢(U).
@ Every k-covector wp € /\k(T;I\/I), can be uniquely written as

wp =Y a(dx')p,  with a' =wy(9)).
l}

@ We thus get a natural bijection gzNS :T*U — V x R() such
that, for all p € M and w € A*(T;M), we have

d(p,w) = ((x'(p)); (w(91))) -

In the same way as with the constructions of the tangent bundle
TM and the cotangent bundle T*M, the maps ¢ allow us to define
a topology and a smooth structure on AX(T*M).
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The Bundle Point of View

Let (U, ¢) be a chart for M and set V = ¢(U). We endow
AK(T*U) with the topology such that

W C AK(T*U) is open <= G(W) is open in V x R(K).

Let {(Uqa, ¢a)} be the maximal atlas of M.

o Define
B = U {W; W is an open in /\k(T*Ua)} .

Then 2 is the basis for a unique topology on N*(T*M).

o The collection {(T*Uy, da)} is a C> atlas on AK(T*M), and
hence AK(T*M) is a smooth manifold.

o N“(T*M) = M is a smooth vector bundle over M.
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Smooth k-Forms

A k-form on M is a section of the exterior power AK(T*M).

o We say that k-form is C*° when it is C* as a section of
N(T*M).
o We denote by Q¥(M) the space of smooth k-forms on M.

Remarks
© |In other words, QX(M) is the space of smooth sections of
T*M. In particular, this is a module over the ring C*°(M).
@ As A°(T;M) =R, a 0-form is just a map from M to R.
Thus, a smooth 0-form is just a smooth function on M, i.e.,

QO(M) = C=(M).




Smooth k-Forms

Let (U,$) = (U,x*,...,x") be a chart for M. Set V = ¢(U).
@ It can be shown that each k-form dx’, | € Fk,n is smooth.
@ Thus, {dx; I € .#,,} is a smooth frame of AX(T*M) over U.

Reminder (Proposition 12.2)

Let {s1,...,s} be a C* frame of a vector bundle E over U. A
section s = Y. c's; of E over U is smooth if and only if c*,... c
are smooth functions on U.

r

We immediately obtain:

Lemma (Lemma 18.6)

Let (U,x%,...,x") be a chart for M. A k-form w =" a;dx’ on U
is smooth if and only if the coefficients a; are C*° functions on U.
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Smooth k-Forms

In the same way as with vector fields and 1-forms by using the
previous lemma we obtain:
Proposition (Proposition 18.7; 1st part)
Let w be a k-form on M. Then TFAE:
© w is a smooth k-form.

@ M has an atlas such that, for every chart (U,x*,...,x") of
this atlas, we may write w = >_ ajdx’ on U with a' € C>(U).
© For every chart (U,x%,...,x") of M, we may write

w =" aydx! on U with a' € C>®(V).
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Smooth k-Forms

Proposition (Proposition 18.7; 2nd part)
Let w be a k-form on M. Then TFAE:

@ w is a smooth k-form.

@ For any smooth vector fields X1, ..., X, on M, the function
w(Xi,...,Xk) is smooth on M.

Proposition (Proposition 18.8)

Let T be a smooth k-form defined on a neighborhood of p. Then
there exists a smooth k-form 7 on M which agrees with T near p.




Pullback of k-Forms

Reminder (see slide 6)

Any linear F : V — W between vector spaces gives rise to a linear
map F* : Ag(W) — Ak(V) defined by

Frg(vi,...,vk) = g(Fvi,..., Fv), g € A(W), vie V.

Definition (Pullback of a k-form)

Let F: N — M be a smooth map. If w is a k-form on M, then its
pullback F*w is the k-form on N defined by

(Fw), = (Fep) wrp),  PEN.

That is,
(F*w)p(vl, ce, V) = wP(F&pvl, e F*,pvk), vi e Tp,M.




Pullback of k-Forms

Proposition (Proposition 18.9)

Let F: N — M be a smooth map. If w and 7 are k-forms on M
and a is a constant, then

Flw+7)=F'w+ F*r,
F*(aw) = aF*w.

We will see later that if w is a smooth k-form, then its pullback
F*w is a smooth as well (see slide 29).

N
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The Wedge Product

Definition

If wis a k-form and 7 is a /-form on M, then their wedge product
w A T is the (k + ¢)-form on M defined by

(WAT), =wp ATp € NF(TEM), pe M.

Proposition (Proposition 18.10)

If w and T are smooth forms on M, then w A T is smooth on M.

The wedge product induces an anti-commutative associative
bilinear map,

A QK(M) x QY (M) — QK (M.




The Wedge Product

Reminder (Graded Algebras)
© An algebra A over a field K is called graded when it can be

decomposed as
oo
A=p A,
k=0

where the AX are subspaces such that the multiplication maps
AR x Al to AKHE,

@ We say that A is anticommutative (or graded commutative)
when

ba=(—1)%ab  for all a € A¥ and b € A"




The Wedge Product

Proposition

Define n

Then Q*(M) is anticommutative graded algebra under the wedge
product.

Q*(M) is called the exterior algebra of differential forms on M.




Wedge Product and Pullback

Proposition (Proposition 18.11)

Let F: N — M be a smooth map. If w and T are differential forms

on M. then — pa(w A1) = (F*w) A (F*7).

This result is used to prove:

Lemma (Local expression for pullback)

Suppose that F : N — M is a smooth map. Let (U,x*,...,x™) be
a chart for N and (V,y,...,y") a chart for M such that
Uc FY(V). Set F/ =y o F. For any k-form w =" bydy”’ on
V., we have
O(Fh, ... Fix
Frw = (bjoF) ( : )

I
v, 8(X’1, . ,xik) dxon U.




Wedge Product and Pullback

o Thanks to Proposition 18.9, on F~1(V/) we have

Frw=F" (Y by’) =" Fb,F(dy’) = (bjoF) F*(dy”).
J J

J

o It remains to determine F*(dy’). By Proposition 18.11,

F*(dy”) = F*(dy A+ A dy/) = (F*dyt) A~ A (F*dy).

@ By Proposition 17.10 pullback commutes with the differential:

(F*dyjz) _ d(F*yjz) _ d(ng oF) = dFe.
@ Thus, on U we have

F.ll ) FJk) dX/_

xik)

F*(dy?) = dF* A+ A dFic = Z

The result follows. ]

~
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Wedge Product and Pullback

By combining the previous lemma with the characterization of
smoothness of k-forms (Proposition 18.7) we obtain:

Proposition (Proposition 19.7)

Let F: N — M be a smooth map. If w is a smooth k-form on M,
then F*w is a smooth form on N.

@ In Tu's book the above result is proved in Section 19. The
main step is to prove the previous lemma.

@ However, Tu's proof uses Proposition 19.5 whose statement
requires Proposition 19.7 in order to makes sense.

@ Therefore, Proposition 19.5 cannot be used to prove
Proposition 19.7.

e Tu's arguments are fine if we use Proposition 17.10 instead of
Proposition 19.5 (as it is done in the previous slide).
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Invariant Forms on a Lie Group

Definition
Let G be a Lie group. A k-form w on G is said to be left-invariant
if

lpw = w Vg € G,

where £ : G — G is the left-multiplication by g.

Remark
The left-invariance condition means that

(Eg)I,x(ng) = Wx Vg,x € G.

In particular, by substituting e for x and g~! for g we get
Wg = (Eg_1):7g (we) Vg € G.

Thus, w is uniquely determined by we.
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Invariant Forms on a Lie Group

Any k-covector w € Af(T*eG) generates a left-invariant k-form &

defined by Qg = (ﬁg—l)ig(w)7 g€ 6.

Proposition (Proposition 18.14)

Every left-invariant k-form on G is smooth.

Consequence

Denote by Qk(M)C the space of left-invariant k-forms on G. Then
we have a linear isomorphism,

Q(G)C — A(T2G), w— we.

In particular, if n = dim G, then Q¥(G)® has dimension (7).
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Differential Forms on S!

Proposition (Problem 18.8)

Let F: N — M be a surjective submersion.
@ The pullback by F gives rise to an injective linear map
F*: QK(M) — QK(N).
o This allows us to identify QX(M) with a subspace of Q¥(N).

Definition

@ A function f : R — R is a 2w-periodic if f(t + 27) = f(t).

e A 1-form f(t)dt on R is said to be 27-periodic if the function
f(t) is 2m-periodic.
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Differential Forms on S!

Proposition (Proposition 18.12)

Let h: R — S! be the map defined by
h(t) = (cos t,sin t).

Then:
@ h is a surjective submersion.
o For k = 0,1, under the pullback map h* : Q¥(S) — Q(R)
the smooth k-forms on S' corresponds to smooth 27-periodic
k-forms on R.

v
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