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Tangent Space at the Identity of a Lie Group

Reminder (see Section 15)

Let G be a Lie group with unit e.

@ Given any g € G, the left-multiplication ¢, : G — G, x — gx
is a diffeomorphism such that /z(e) = g.

@ Thus, the differential ({g)se: TeG — ToG is a linear
isomorphism.

Consequence

Describing T.G allows us to describe T;G for every g € G.




Tangent Space at the Identity of a Lie Group

Example (Tangent space of GL(n,R) at /)
GL(n,R) is an open subset of the vector space R"*". Thus,

T; GL(n,R) = T;R™" = R™*",

Consequence

For any Lie subgroup G C GL(n, R) the tangent space T,G is a
linear subspace of R"*",




Tangent Space at the Identity of a Lie Group

Reminder (see Section 15)
o If X € R™" then

det (eX) — etlX],

@ The differential det, ; : R™" — R is given by
det, /(X) = tr(X), X e R™".




Tangent Space at the Identity of a Lie Group

Proposition (Tangent Space Criterion)

Let G be an embedded Lie subgroup of GL(n,R) and V a
subspace of R™" such that

dmV =dimG and e GVXeV.
Then T)G = V.

Proof.
o Let X € V. Then c¢(t) = eX t € R, is a smooth curve in
GL(n,R) with values in G such that ¢(0) =/ and ¢’(0) = X.
@ As G is a regular submanifold of GL(n,R), it follows that c(t)
is a smooth curve in G, and hence X = ¢/(0) € T)G.

@ Thus, V is a subspace of T;G. AsdimV =dim G =dim T, G
it follows that T,G = V.

The result is proved. []




Tangent Space at the Identity of a Lie Group

Example (Tangent space of SL(n,R) at /; Example 16.2)
o Let X € R™". As det(eX) = et"X), we have

eX € SL(n,R) <= det (eX) = ¥ = 1 <= tr(X) = 0.

@ Set V ={X € R™"tr(X) =0}. Then
eX eSL(nR)VX eV and dimV = n?—1=dimSL(n,R).

Thus,

T[SL(H,R) =V = {X c R"X";tr(X) = 0}
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of O(n) and SO(n) at /; Example 16.4)

@ Let K, be the space of skew-symmetric n X n matrices, i.e.,
Ko ={X eR™" XT = -X}.

e If X € K, then ( X)T X' =X = (eX) , and hence
(¥)TeX = ()
Thus, eX € O(n) for all X € K.
e As dim K, = 1n(n — 1) = dim O(n), we deduce that
T/ O(n) == Kn.

@ As SO(n) is an open set in O(n), we have
T;SO(n) = T, 0(n) = K,.




Tangent Space at the Identity of a Lie Group

Example (Tangent space of U(n) at /; Problem 16.2)

@ Let L, be the space of skew-Hermitian n x n matrices, i.e.,
Ly ={X € C™" Xx* = -Xx}.
o If X € L,, then (eX)* = X" = e=X = (X)L, and hence
(eX)*eX = (ex)_lex =1.
Thus, eX € U(n) for all X € L,
e As dim L, = n?> = dim U(n) (see Problem 16.1) we get
T;U(n) = L,.




Tangent Space at the Identity of a Lie Group

Example (Tangent space of SU(n) at /)

Defi
¢ Zeine 19 = {X € Ly; tr(X) =0}

o If X € L9, then X € U(n), and
det (eX) =e"X) = 0 =1,
Thus, eX € SU(n) for all X € L9
@ As dim L% = n? — 2 = dim SU(n), we deduce that
T;SU(n) = L% = {X e C™"; X* = - X, tr(X) = 0}.




Left-Invariant Vector Fields on a Lie Group

A vector field X on a Lie group G is called left-invariant if

(L) X=X Vgeg.

We denote by L(G) the space of left-invariant vector fields on G.

Remark

Let X be a vector field on G. Given any g € G, we have
[(Eg)*X]h = (gg)*,g_lh(xg—lh)v heG.
Thus, X is left-invariant if and only if

(gg)*,gflh(nglh) = Xp Vg, he G.

Equivalently,

(Lg)sn(Xn) = Xgn Vg, heG.




Left-Invariant Vector Fields on a Lie Group

RENEILS
Let X be a left-invariant vector field. Then

(Lg)sn(Xn) = Xgn Vg, heG.

In particular, for h = e we get

Xg = (lg), (X) Vg€

Thus, X is uniquely determined by X..
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Left-Invariant Vector Fields on a Lie Group

Definition

For any tangent vector A € T.G, we let A be the vector field on G

defined b "
cHnee >y A= (L), .(A)  Vged.

Proposition
Let A€ T.G. Then A is a left-invariant vector field on G.

Let g, h € G. Then by the chain rule we have
() 1(An) = (L), o (4n), (A) = (€an), (A) = Agh.

It follows that A is left-invariant (cf. slide 10). O
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Left-Invariant Vector Fields on a Lie Group

RENEIS

o We call A the left-invariant vector field generated by A.
@ As le = 1y, and hence (4¢)« = 17,6, we have

Ae = (Le), J(A) = 11.6(A) = A

@ Conversely, if A= X., where X is a left-invariant vector field,
then

Ay = (bg), o(Xe) = Xe.
That is, A = X.

Therefore, we obtain:

Proposition

The map X — X is a linear isomorphism from L(G) onto T¢G
with inverse A — A.

A\



Left-Invariant Vector Fields on a Lie Group

Reminder (see Problem 8.2)

@ Given any p € R", we have T,R" = R" under the
identification,

2.7

@ If L:R" — R™ is a linear map, then under the identifications
T,R" = R" and TF(p)Rm = R™, the differential L, , is a
linear map from R” to R™.

8?0' i s (ah...,a").

@ In fact (see Problem 8.2), we have

Lo=L VpeR"
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Left-Invariant Vector Fields on a Lie Group

Example (Left-invariant vector fields on GL(n,R))

o If g € GL(n,R), then Tz GL(n,R) = T,R"*" = R"™*" under

the identification,

> s
i Ulg
e If g € GL(n,R), then the left-multiplication
lg : R™" — R™" A — gAis a linear map.
@ Under the identifications T; GL(n,R) = T, GL(n,

we then have
Uole = s Vg € G.

@ Thus, if A= [a;] € R"™*" = T, GL(n,R), then

g— *e<zaua

R)

0
=) (8A)iz—
) %: T Oxij

— Ran




Left-Invariant Vector Fields on a Lie Group

Example (continued)

e If we use the coordinates g = (xj;), then (gA);j = >, Xikaxj

we get _ 9
=3 (S wau) o
k 1

ij g

@ In other words, the left-invariant vector field on GL(n, R)
generated by A is just

0
A= E Xikakj -
- Oxij

ij,k

All the left-invariant vector fields on GL(n,R) are of this form.
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Left-Invariant Vector Fields on a Lie Group

Reminder (Proposition 8.17 and Proposition 14.3)

@ A vector field X on a manifold M is smooth if and only if
Xf € C®°(M) for all f € C>*(M).

o Let X, € T,M and c : (—€,€) = M a smooth curve such that
¢(0) = p and ¢/(0) = X. Then

Xpf

d
= — f t fe C(M).

& roce)  vrecrm)
o If (U,x%,...,x") is a chart for M and f € C>°(M), then the

partial derivatives Of /Ox!,...,0f /Ox" are smooth functions
on U (see §§6.6).
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Left-Invariant Vector Fields on a Lie Group

Proposition (Proposition 16.8)

Every left-invariant vector field X on G is smooth.

The following result is proved in Lee's book:

Proposition

Every left-invariant vector field on G is complete, i.e., its flow is
defined on all R x M.
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The Lie algebra of a Lie group

Reminder (Lie algebras; see Section 14)

A Lie algebra over a field K is a vector space g over K together
with an alternating bilinear map [-,-] : g X g — K satisfying
Jacobi’s identity,

[X,[Y,Z]] + [V,[Z.X]] + [Z,[X, Y]] =0 forall X,Y,Z € g.

Definition
A Lie subalgebra of a Lie algebra (g, [-,:]) is a vector subspace h
which closed under the Lie bracket [-, ], i.e.,

[X,Y]€h VX,Y eb.

Remark
Any Lie subalgebra is a Lie algebra with respect to the original
bracket [-, ].
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The Lie algebra of a Lie group

Let h and g be Lie algebras.

@ A Lie algebra homomorphism f : h — g is a linear map such

M YD) = [FO0.F(Y)] XY e,

@ A Lie algebra isomorphism f : h — g is a Lie algebra
homomorphism which is a bijection.

If f:h — gis a Lie algebra isomorphism, then f~1: g — h is
automatically a Lie algebra homomorphism.
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The Lie Algebra of a Lie Group

Reminder (see Section 14)
Let M be a smooth manifold.

@ The space 2°(M) of smooth vector fields is a Lie algebra
under the Lie bracket of vector fields.

o If F: M — N is a diffeomorphism and X and Y are smooth
vector fields on M, then

F.([X, Y]) = [F.X, F.Y].
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The Lie Algebra of a Lie Group

Proposition (see Proposition 16.9)

If X and Y are left-invariant vector fields, then their Lie bracket
[X, Y] is left-invariant as well.

Proof.
Let g € G. As{z : G — G is a diffeomorphism, we have

(eg)* ([X, Y]) = [(Eg)*X’ (eg)*y] = [X,Y].

Thus, the vector field [X, Y] is left-invariant. O

Corollary

The space L(G) of left-invariant vector fields on G is a Lie
subalgebra of Z°(G). In particular, this is a Lie algebra under the
Lie bracket of vector fields.




The Lie Algebra of a Lie Group

e We know that A — A is a vector space isomorphism from
T.G onto L(G).

@ We can use this isomorphism to pullback the Lie algebra
structure of L(G) to T.G.

If A,B € T.G, then their Lie bracket [A, B] € TG is defined by
[A. B] = [A B],.
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The Lie Algebra of a Lie Group

Proposition (see Proposition 16.10)
(TeG,[-,]) is a Lie algebra which is isomorphic to L(G) as a Lie
algebra. In particular,

—_—

[A,B]=[AB] VA BeT.G.

Definition

(TeG,[,]) is called the Lie algebra of G and is often denoted g.

Remarks
@ For instance, the Lie algebras of GL(n,R), SL(n,R), SO(n),
U(n), SU(n) are denoted gl(n,R), sl(n,R), so(n), u(n),
su(n), etc..
@ Some authors defines the Lie algebra of G to be the Lie
algebra L(G).
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The Lie Bracket of gl(n,R)

Proposition (Proposition 16.4; see Tu's book)

Under the identification gl(n,R) = T; GL(n,R) ~ R"*" the Lie
bracket of gl(n,R) is given by

[A,B]=AB—BA, A BeR™"

Reminder (Problem 14.2)

If X =3 al(x)9/0x" and X =Y b(x)0/0x' are smooth vector
fields on R", then

; 0 P -Ob' -0a'
(X, Y] —Zc it where ¢ —JZ <aj<9xf —bfaxj)
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Pushforward of Left-Invariant Vector Fields

Reminder (see Section 14)
@ Let F: N — M be a smooth map. A smooth vector field X
on N and a smooth vector field X on M are F-related when

Fop(Xp) =Xe(py VP EN.

o If F is a diffeomorphism, then F, X is unique vector field on M
which is F-related to X.

@ In general we cannot define the pushforward F, X if F is not a
diffeomorphism.

<
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Pushforward of Left-Invariant Vector Fields

Definition

Let F: H— G be a Lie group homomorphism and X a
left-invariant vector field on H. The pushforward F, X is the
left-invariant vector field on G generated by F, o(X.). That is,

FiX = Fie(Xe)™

Proposition (Proposition 16.12)

Let F: H— G be a Lie group homomorphism and X a
left-invariant vector field on H. Then F. X is F-related to X.
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Pushforward of Left-Invariant Vector Fields

Proof of Proposition 16.12.

o As F, X is the left-invariant vector field generated by F, .(Xe),
(FX)g = (Eg)*ve(F*,e(Xe)) Vg € G.
@ Here F(e) = e, so the chain rule gives

(FX)g = (Eg)*,F(e) 0 Fie(Xe) = (g 0 F)se(Xe).

@ As F is a Lie group homomorphism, £gpy o F = F olp. Thus,
for g = F(h) we get

(FX)r(hy = (F o lh), o = Fety(e) © (h)re(Xe)-

o As X is left-invariant, (¢p)«.e(Xe) = Xp. Thus,
(F*X)F(h) = F*,h(Xh) Vhe H.

This shows that F. X is F-related to X. ]
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Pushforward of Left-Invariant Vector Fields

F. X is the unique left-invariant vector field on G which is
F-related to X.

Proof.
Let X be a left-invariant vector field on G which is F-related to X.

o As X and F.X are left-invariant, their uniquely determined by
Xe and F(X)e = *e(XNe) Thus, to show that X = F. X we
only need to show that X. = F, o(Xe).

@ As X is F-related to X, we have )N(e = F..e(Xe), and hence
X = F.X.

This prove the result. O
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The Differential as a Lie Algebra Homomorphism

Reminder (Proposition 14.17)

Suppose that F : N — M is a smooth map. Let X and Y be
smooth vector fields on N which are F-related to smooth vector
fields X and Y on M. Then [X, Y] is F-related to [X, Y].

30/38



The Differential as a Lie Algebra Homomorphism

Let F: H— G be a Lie group homomorphism, and let X and Y
be left-invariant vector fields on H. Then

F.([X,Y]) = [F.X, F.Y].

@ As F.X and F.Y are F-related to X and Y, their Lie bracket
[FiX, F.Y] is F-related to [X, Y].

@ As F,.X and F.Y are left-invariant, [F.X, F.Y] is
left-invariant.

@ By the previous slide F.[X, Y] is the unique left-invariant
vector field on G which is F-related to [X, Y].

o It follows that [F.X, F. Y] = F.([X, Y]).

The proof is complete. O
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The Differential as a Lie Algebra Homomorphism

Let F: H— G be a Lie group homomorphism. Then the
pushforward of left-invariant vector field gives rise to a Lie algebra
homomorphism,

F.:L(H) — L(G), X — F.X.

Corollary (Proposition 16.14)

If F: H— G is a Lie group homomorphism, then its differential at
the identity is a Lie algebra homomorphism,

Fre: TeH — TG, Fuc([A B]) = [FueA FueB.
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The Differential as a Lie Algebra Homomorphism

Proof of Proposition 16.14.

@ We have a commutative diagram,

Fie
TeH —— T.G.
@ The upper horizontal arrow is a Lie algebra homomorphism.
@ The vertical arrows are Lie algebra isomorphisms.

@ Therefore, the lower horizontal arrow is a Lie algebra
homomorphism.

The proof is complete. O
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The Differential as a Lie Algebra Homomorphism

Reminder (see Section 15)
A subgroup H of a Lie group G is called a Lie subgroup if
@ H is an immersed submanifold in G.

@ The multiplication and inversion maps of H are smooth.

Let H be a Lie subgroup of a Lie group G.

@ As H is an immersed submanifold, the inclusion ¢ : H — G is
an immersion.

@ Thus, the differential ¢ty : TeH — TG is injective.

@ This allows us to identify ToH with a subspace of T.G.
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The Differential as a Lie Algebra Homomorphism

Proposition

Let H be a Lie subgroup of a Lie group G. Then the Lie bracket of
its Lie algebra T¢H agrees with the Lie bracket of T.G on its
domain.

Proof.

@ The inclusion ¢ : H — G is a Lie group homomorphism, since
it is a smooth map and a group homomorphism.

@ Thus, the differential ¢ty ¢ : TeH — TG is a Lie group
homomorphism.

@ This implies that the Lie bracket of its Lie algebra T¢H agrees
with the Lie bracket of T.G.

The result is proved. [
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The Differential as a Lie Algebra Homomorphism

Let H be a Lie subgroup of a Lie group G. Let g = TG be the Lie
algebra of G. Then the Lie algebra h = To.H of H is a Lie

subalgebra of g.

Remarks (see Tu's book)

@ Conversely, it can be shown that every subalgebra h of g is the
Lie algebra of a unique connected Lie subgroup of G.

@ This gives a one-to-one correspondence between Lie
subalgebras of g and (connected) Lie subgroups H of G.

@ In particular, under this correspondence a Lie subalgebra may
correspond to a non-embedded Lie subgroup.
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The Differential as a Lie Algebra Homomorphism

@ The Lie algebra of GL(n,R) is gl(n, R) = R"™*" equipped with
the matrix Lie bracket,

[A,B]=AB—BA, A BeR™".

@ The following are Lie subalgebras of gl(n, R):
sl(n,R) = {A € R™"; tr(A) =0},
o(n) = so(n) = {A € R™"; AT = —A}.

There are the respective Lie algebras of SL(n,R), O(n), and
SO(n).
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The Differential as a Lie Algebra Homomorphism

@ The Lie algebra of GL(n, C) is gl(n, C) = C"*" equipped with
the matrix Lie bracket.

@ The following are Lie subalgebras of gl(n, C):

sl(n,C) = {A e C™"; tr(A)=0},
u(n) = {AeR™";, A" = —A},
su(n) = {A € R™" A* = —A, tr(A) = 0}.

There are the respective Lie algebras of SL(n, C), U(n), and
SU(n).
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