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Smoothness of a Vector Field

Reminder (The Tangent bundle; see Section 12)

Suppose that M is a smooth manifold of dimension n.

The tangent bundle TM =
⊔

p∈M TpM is a smooth vector
bundle of rank n over M with projection π : TM → M such
that

π(p, v) = p if v ∈ TpM, p ∈ M.

Any chart (U, φ) for M defines a chart (TU, φ̃) for TM, where
φ̃ : TU → φ(U)× Rn is given by

φ̃(p, v) =
(
φ(p), v1, . . . , vn

)
, v =

∑
v i

∂

∂x i

∣∣∣∣
p

∈ TpM, p ∈ M.

This also defines a trivialization (TU, ψ) of TM over TU,
where ψ = (φ−1 × 1Rn) ◦ φ̃ : TU → U × Rn is given by

ψ(p, v) =
(
p, v1, . . . , vn

)
, v =

∑
v i

∂

∂x i

∣∣∣∣
p

∈ TpM, p ∈ M.
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Smoothness of a Vector Field

Reminder (Sections and frames of a vector bundle; see Section 12)

Suppose E
π→ M is a smooth vector bundle or rank r over M.

A section of E over is any map s : M → TM such that
π ◦ s = 1U , i.e., s(p) ∈ Ep for all p ∈ M.

A smooth frame of E over U is given by smooth sections
s1, . . . , sr over U such that {s1(p), . . . , sr (p)} is a basis of the
fiber Ep for every p ∈ U.

Reminder (Proposition 12.2)

Let {s1, . . . , sr} be a C∞ frame of E over U. A section s =
∑

c i si
of E over U is smooth if and only if c1, . . . , c r are smooth
functions on U.
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Smoothness of a Vector Field

Definition (Vector field)

A vector field is a section X : M → TM. That is, it assigns to each
p ∈ m a tangent vector Xp ∈ TpM.

Lemma (see slides on Section 12)

If (U, x1, . . . , xn) is a chart for M, then
{

∂
∂x1

, . . . , ∂
∂xn

}
is a

smooth frame of TM over U.

Specializing Proposition 12.12 to the smooth frame
{

∂
∂x1

, . . . , ∂
∂xn

}

then gives:

Lemma (Lemma 14.1)

Let (U, x1, . . . , xn) be a chart for M. A vector field X =
∑

ai ∂
∂x i

on U is smooth if and only if the coefficients a1, . . . , an are smooth
functions on U.
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Smoothness of a Vector Field

Proposition

Let X be a vector field on M. TFAE:

(i) X is a smooth vector field.

(ii) There is a C∞ atlas of M such that, for each chart
(U, x1, . . . , xn) of the atlas, the coefficients ai of
X =

∑
ai ∂
∂x i

relative to the frame
{

∂
∂x i

}
are C∞ functions.

(iii) For every chart (U, x1, . . . , xn) of M, the coefficients ai of
X =

∑
ai ∂
∂x i

relative to the frame
{

∂
∂x i

}
are C∞ functions.

Remarks

1 It is immediate that (iii)⇒ (ii).

2 The implications (ii)⇒ (i) and (i)⇒ (iii) follow from the
previous lemma.

3 The equivalence (i)⇔ (ii) holds for any C∞ atlas of M. In
the case of the maximal C∞ atlas of M we obtain (i)⇔ (iii).
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Smoothness of a Vector Field

Facts

Suppose that X is a vector field on M.

Let p ∈ M. By definition TpM is the space of point-derivation
on the space of germs C∞p .

Thus, the tangent vector Xp ∈ T is a linear map C∞p → R
such that

Xp(fg) = Xp(f )g(p) + f (p)Xp(g), f , g ∈ C∞p .
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Smoothness of a Vector Field

Definition

If X is a vector field on M and f ∈ C∞(M), we define the function
Xf : M → R by

(
Xf
)
(p) = Xp(f ), p ∈ M.

Remark

Xp(f ) depends only on the germ of f at p. Thus,

f = g near p =⇒ Xp(f ) = Xp(g).

It follows that

f = g on an open V =⇒ X (f ) = X (g) on V .
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Smoothness of a Vector Field

Example

Let (U, φ) = (U, x1, . . . , xn) be a chart for M. Denote by
(r1, . . . , rn) the coordinates on Rn, so that x i = r i ◦ φ.

Let f ∈ C∞(U). For all p ∈ U, we have

∂f

∂x i
(p) =

∂

∂x i

∣∣∣∣
p

f =
∂

∂r i

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
=
∂
(
f ◦ φ−1

)

∂r i
[
φ(p)

]
.

That is,
∂f

∂x i
=
∂
(
f ◦ φ−1

)

∂r i
◦ φ on U.

It then follows that ∂f /∂x i is C∞ on U.

For instance, for f = x j = r j ◦ φ we get

∂x j

∂x i
=
∂r j

∂r i
◦ φ = δji .
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Smoothness of a Vector Field

Facts

Let (U, x1, . . . , xn) be a chart for M and let X =
∑

ai∂/∂x i be a
vector field on U.

Let f ∈ C∞(U). Then

Xf =
∑

ai
∂f

∂x i
.

We know from the previous example that ∂f /∂x i ∈ C∞(U).
Thus, if X is a C∞ vector field, then the coefficients ai are
C∞-functions on U, and hence Xf is C∞ on U.

For f = x j we get

X (x j) =
∑

1≤i≤n
ai
∂x j

∂x i
=
∑

1≤i≤n
aiδji = aj .

Thus, if Xf ∈ C∞(U) for all f ∈ C∞(U), then the coefficients
aj = X (x j) are C∞, and hence the vector field X is C∞ on U.
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Smoothness of a Vector Field

To sum up we have proved:

Lemma

Let (U, φ) be a chart for M and X a vector field on U. TFAE:

(i) X is a smooth vector field on U.

(ii) Xf ∈ C∞(U) for all f ∈ C∞(U).

More generally, we have:

Proposition (Proposition 4.3)

Let X be a vector field on M. TFAE:

(i) X is a smooth vector field.

(ii) Xf ∈ C∞(M) for all f ∈ C∞(M).
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Smoothness of a Vector Field

Proof of Proposition 4.3.

If X is a smooth vector field and f ∈ C∞(M), then Xf is C∞

on every domain of chart, and hence is C∞ on M.

Conversely, suppose that Xf ∈ C∞(M) for all f ∈ C∞(M).
Let (U, x1, . . . , xn) be a chart for M. Thus, X =

∑
ai∂/∂x i

on U with ai = X (x i ).

Let p ∈ U. By Proposition 13.2 there is x̃ i ∈ C∞(M) such
that x̃ i = x i near p, and then ai = X (x i ) = X (x̃ i ) near p.

As X (x̃ i ) ∈ C∞(M), it follows that the coefficients ai are C∞

near every p ∈ U, and hence are C∞ on U.

As this is true for every chart (U, φ) it follows from
Proposition 14.2 that X is a smooth vector field on M.

The proof is complete.
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Smoothness of a Vector Field

Reminder (Derivations of an algebra; see Section 2)

Let A be an algebra over a field K. A derivation of A is any linear
map D : A→ A such that

D(ab) = (Da)b + a(Db) for all a, b ∈ A.

Corollary

Let X is a smooth vector field on M. Then f → Xf is a derivation
of the algebra C∞(M).

Remark

Conversely, it can be shown that every derivation of C∞(M)
arises from a smooth vector field (see Problem 19.12).

We often identify a C∞ vector field X with the derivation
f → Xf .
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Smoothness of a Vector Field

Proof of the corollary.

As X is a smooth vector field Xf ∈ C∞(M) for all
f ∈ C∞(M). As Xf depends linearly on f , it follows that
f → Xf is a linear map from C∞(M) to itself.

Given f , g ∈ C∞(M) and p ∈ M, as Xp is a point-derivation
on C∞p , we have

X (fg)(p) = Xp(fg) = Xp(f )g(p) + f (p)Xp(g)

= X (f )(p)g(p) + f (p)X (g)(p).

Thus, X (fg) = (Xf )g + f (Xg), and so f → Xf is a derivation
of C∞(M).

The proof is complete.
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Smoothness of a Vector Field

Reminder (Proposition 12.9)

If E is smooth vector bundle over E , then the set of C∞ sections
Γ(E ) is a module over C∞(M) with respect to the scalar
multiplication,

(fs)(p) = f (p)s(p), f ∈ C∞(M), s ∈ Γ(E ), p ∈ M.

Consequence

Let X (M) be the space of C∞ vector fields on M. Then X (M)
is a module over C∞(M). If f ∈ C∞ and X ∈X (M), then
fX ∈X (M) is given by

(fX )(p) = f (p)Xp, p ∈ M.
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Smoothness of a Vector Field

Proposition (Proposition 14.4)

Let X be a smooth vector field on an open U in M. Given any
p ∈ U, there is a smooth vector field X̃ on M such that

X̃ = X near p.
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Smoothness of a Vector Field

Proof of Proposition 14.4.

Let ρ : M → R be a C∞ bump function at p supported in U, and
define X̃ : M → M by

X̃ = ρX on U, X̃ = 0 on M \ U.

This defines a smooth section of TM over M. Namely:

X̃ agrees with the C∞ vector field ρX on U, and hence it is
C∞ on U.

X̃ = 0 on M \ U and U \ supp(ρ), and hence is C∞ on the
open set M \ supp(ρ).

Thus, X̃ is C∞ on U ∪ (M \ supp(ρ)) = M. In addition, as ρ = 1
near p, we have

X̃ = ρX = X near p.

This proves the result.
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The Lie Bracket

Facts

Suppose that X and Y are smooth vector fields on M.

If f ∈ C∞(M), then Yf and X (Yf ) are C∞ functions on M.

If f = g near p, then Yf = Yg near p. Thus, the germ of Yf
at p depends only on the germ of f at p. We then have

X (Yf )(p) = Xp(Yf ).

It follows we get a linear map,

C∞p 3 f −→ Xp(Yf ) ∈ R
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The Lie Bracket

Definition

If X and Y are smooth vector fields on M, then their Lie bracket
at a point p ∈ M is the linear map [X ,Y ]p : C∞p → R defined by

[X ,Y ]pf = Xp(Yf )− Yp(Xf ), f ∈ C∞p .

Lemma

[X ,Y ]p ∈ TpM, i.e., [X ,Y ]p is a derivation at p.

Definition

If X and Y are smooth vector fields on M, then their Lie bracket is
the vector field,

[X ,Y ] : M −→ TM, p −→ [X ,Y ]p.
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The Lie Bracket

Remark

If f ∈ C∞(M) and p ∈ M, then
(
[X ,Y ]f

)
(p) = [X ,Y ]p(f ) = Xp(Yf )− Yp(Xf )

= X (Yf )(p)− Y (Xf )(p).

Thus,
[X ,Y ]f = X (Yf ) = Y (Xf ) ∈ C∞(M).

As this is true for all f ∈ C∞(M), we obtain:

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X ,Y ] is a smooth
vector field on M as well.

Remark

If we regard X , Y and [X ,Y ] are derivations on C∞(M), then

[X ,Y ] = X ◦ Y − Y ◦ X .
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The Lie Bracket

Definition (Lie algebras)

A Lie algebra over a field K is a vector space g over K together
with an alternating bilinear map [·, ·] : g× g→ K satisfying
Jacobi’s identity,
[
X , [Y ,Z ]

]
+
[
Y , [Z ,X ]

]
+
[
Z , [X ,Y ]

]
= 0 for all X ,Y ,Z ∈ g.

Remark

In general, a Lie algebra (g, [·, ·]) need not be an algebra, since the
bracket [·, ·] may fail to be associative.
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The Lie Bracket

Example

Any vector space V over K is a Lie algebra with respect to the
zero bracket [x , y ] = 0. Such a Lie algebra is called an Abelian Lie
algebra.

Example

Any algebra A over K is a Lie algebra with respect to the bracket,

[x , y ] = xy − yx , x , y ∈ g.
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The Lie Bracket

Proposition (see Exercise 14.11)

The space X (M) of smooth vector fields on M is a Lie algebra
over R with respect to the Lie bracket of vector fields.

Remark

Let A be an algebra over K. Denote by Der(A) the space of
derivations of A.

If D1 and D2 are derivations of A, then

[D1,D2] := D1 ◦ D2 − D2 ◦ D1

is again a derivation of A.

(Der(A), [·, ·]) is a Lie algebra.

22 / 42



The Lie Bracket

Definition (Derivation of a Lie algebra)

A derivation of a Lie algebra g is a linear map D : g→ g such that

D
(
[X ,Y ]

)
= [DX ,Y ] + [X ,DY ] for all X ,Y ∈ g.

Example

Given X , define adX : g→ g by

adX Y = [X ,Y ], Y ∈ g.

Then adX is a derivation of the Lie algebra g, called the adjoint
endomorphism of X .

Remark

In fact, Jacobi’s identity is equivalent to adX being a derivation for
every X ∈ g.

23 / 42



Pushforwards and Related Vector Fields

Definition (Pushforward of tangent vector)

Let F : N → M be a C∞ map between smooth manifolds. Given
p ∈ N and Xp ∈ TpN, the tangent vector F∗(Xp) ∈ TF (p)M is
called the pushforward of X by F at p.

Remarks

1 By the very definition of the differential F∗ : TpN → TF (p)N
we have

F∗(Xp)g = Xp(g ◦ F ) for all g ∈ C∞F (p)(M).

2 In general, if X is a vector field on N there need not exist a
vector field X̃ on M such that F∗(Xp) = X̃F (p) for all p ∈ N.

3 However, this is possible when F is a diffeomorphism, since

F∗,p(Xp) = X̃F (p) ∀p ∈ N ⇐⇒ X̃q = F∗,F−1(q)

(
XF−1(q)

)
∀q ∈ M.
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Pushforwards and Related Vector Fields

Definition (Pushforward of a vector field)

Suppose that F : N → M is a diffeomorphism. The pushforward by
F of a vector field X on N is the vector field F∗X on M defined by

(F∗X )q = F∗,F−1(q)

(
XF−1(q)

)
, q ∈ M.
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Pushforwards and Related Vector Fields

Remark

If g ∈ C∞(M), then (F∗X )g(q) = (F∗X )qg is equal to

F∗,F−1(q)

(
XF−1(q)

)
g = XF−1(q)(g ◦ F ) = X (g ◦ F )

(
F−1(q)

)
.

Thus,
(F∗X )g =

[
X (g ◦ F )

]
◦ F−1.

In particular, if X is a smooth vector field, then (F∗X )g ∈ C∞(M)
for all g ∈ C∞(M). Therefore, we obtain:

Proposition

If F : N → M is a diffeomorphism and X is a smooth vector field
on N, then the pushforward F∗X is a smooth smooth vector field
on M.
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Pushforwards and Related Vector Fields

Definition (Related vector fields)

Let F : N → M be a smooth map. We say that a vector field X on
N and a vector field X̃ on M are F-related if

F∗,p(Xp) = X̃F (p) ∀p ∈ N.

Example

If F is a diffeomorphism, then X and F∗X are F -related.

In fact, F∗X is the unique vector field on M that is F -related
to X .
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Pushforwards and Related Vector Fields

Remark

Let X be a vector field on N and X̃ a vector field on M.

X and X̃ are F -related if and only if

F∗,p(X )g = X̃F (p)(g) ∀g ∈ C∞(M) ∀p ∈ N.

We have

F∗,p(X )g = Xp(g ◦ F ) = X (g ◦ F )(p),

X̃F (p)(g) = X̃ g
(
F (p)

)
=
(
X̃ g
)
◦ F (p).

Thus, X and X̃ are F -related if and only if

X (g ◦ F )(p) =
(
X̃ g
)
◦ F (p) ∀g ∈ C∞(M) ∀p ∈ N.
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Pushforwards and Related Vector Fields

From the previous remark we have the following result.

Proposition (Proposition 14.16)

Let F : N → M be a smooth map. Then a vector field X on N and
a vector field X̃ on M are F -related if and only if

X (g ◦ F ) =
(
X̃ g
)
◦ F ∀g ∈ C∞(M).

As an application of Proposition 14.16, we have:

Proposition (Proposition 14.17)

Let F : N → M be a smooth map. Suppose that X and Y are C∞

vector fields on M that are F -related to smooth vector fields X̃
and Ỹ on M, respectively. Then the Lie bracket [X ,Y ] is
F -related to [X̃ , Ỹ ].
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Pushforwards and Related Vector Fields

Proof of Proposition 14.17.

The proof is a consequence of Proposition 14.16.

Let g ∈ C∞(M). As X and Y are F -related to X̃ and Ỹ , by
Proposition 14.16 we have

Y (g ◦ F ) =
(
Ỹ g
)
◦ F ,

X
(
Y (g ◦ F )

)
= X

(
(Ỹ g) ◦ F

)
=
(
X̃ (Ỹ g)

)
◦ F =

(
X̃ Ỹ g

)
◦ F .

Likewise, Y
(
X (g ◦ F )

)
=
(
Ỹ X̃ g

)
◦ F . Thus,

[X ,Y ](g ◦ F ) = X
(
Y (g ◦ F )

)
− Y

(
X (g ◦ F )

)

=
(
X̃ Ỹ g

)
◦ F −

(
Ỹ X̃ g

)
◦ F

=
(
[X̃ , Ỹ ]g

)
◦ F .

As this holds for all g ∈ C∞(M), it follows from
Proposition 14.16 that [X ,Y ] and [X̃ , Ỹ ] are F -related.

The proof is complete.
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Pushforwards and Related Vector Fields

Corollary (see Problem 14.4)

Let F : N → M be a diffeormorphism. Given any smooth vector
field X and Y on N we have

F∗
(
[X ,Y ]

)
=
[
F∗X ,F∗Y

]
.

Proof.

F∗
(
[X ,Y ]

)
is the unique vector field on M that is F -related to

[X ,Y ] (see slide 27).

As F∗X and F∗Y are F -related to X and Y ,
Proposition 14.17 ensures us that [F∗X ,F∗Y ] is F -related to
[X ,Y ], and hence it agrees with F∗

(
[X ,Y ]

)
.

The proof is complete.
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Integral Curves and Flows

Definition

Suppose that X is a smooth vector field on M.

An integral curve of X is any smooth curve c : (a, b)→ M
satisfying the equation,

d

dt
c(t) = Xc(t) t ∈ (a, b).

If the interval (a, b) contains 0 and c(0) = p, then we say
that curve starts at p and p is its initial point.

We say that an integral curve is maximal if it cannot be
extended to an integral curve defined on a larger interval.

Remark

In other words, an integral curve is a curve that is tangent to X at
every point.
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Integral Curves and Flows

Remark

Let (U, φ) = (U, x1, . . . , xn) be a chart for M and c : I → U a C∞

curve in U. Set φ ◦ c(t) = (c1(t), . . . , cn(t)), with c i = x i ◦ c.

As X is a C∞ vector field, X =
∑

ai∂/∂x i on U with
ai ∈ C∞(U). In particular,

Xc(t) =
∑

ai
(
c(t)

) ∂
∂x i

, t ∈ I .

It is shown in Section 8 (see Propositions 8.11 and 8.15) that

dc

dt
=
∑

ċ i (t)
∂

∂x i

∣∣∣∣
c(t)

, t ∈ I .

Thus,

dc

dt
= Xc(t) ⇐⇒ ċ i (t) = ai

(
c(t)

)
for i = 1, . . . , n.

In other words the line integral equation for X on U reduces
to an ODE system for the components c1(t), . . . , cn(t).
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Integral Curves and Flows

Example

Let X = −y∂/∂x + x∂/∂y on R2.

If c(t) = (x(t), y(t)), then

dc

dt
=
(
ẋ(t), ẏ(t)

)
, Xc(t) = −y(t)∂/∂x + x(t)∂/∂y .

Thus,

dc

dt
= Xc(t) ⇔

{
ẋ(t) = −y(t),
ẏ(t) = x(t).

⇔
[
ẋ(t)
ẏ(t)

]
=

[
0 −1
1 0

] [
x(t)
y(t)

]

The solution of the ODE system is

[
x(t)
y(t)

]
=

[
cos t − sin t
sin t cos t

] [
x0
y0

]
.

The line integrals are circles about the origin.
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Integral Curves and Flows

Example (continued)

136 §12 The Tangent Bundle

12.4 Smooth Sections

A section of a vector bundle π : E→M is a map s : M→ E such that π ◦ s = 1M , the
identity map on M. This condition means precisely that for each p in M, s maps p
into the fiber Ep above p. Pictorially we visualize a section as a cross-section of the
bundle (Figure 12.3). We say that a section is smooth if it is smooth as a map from
M to E .

π

s(M)

p
M

s(p)

Fig. 12.3. A section of a vector bundle.

Definition 12.7. A vector field X on a manifold M is a function that assigns a tangent
vector Xp ∈ TpM to each point p ∈M. In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle π : T M→ M and the vector field is
smooth if it is smooth as a map from M to T M.

Example 12.8. The formula

X(x,y) =−y
∂

∂x
+ x

∂

∂y
=

[
−y

x

]

defines a smooth vector field on R2 (Figure 12.4, cf. Example 2.3).

Fig. 12.4. The vector field (−y,x) in R2.
The integral curves of X = −y∂/∂x + x∂/∂y .
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Integral Curves and Flows

Using ODE theory we obtain the following existence and
uniqueness theorem:

Theorem (see Theorem 4.7)

Let X be a smooth vector field on M. Given any p ∈ M, there is a
unique maximal integral curve for X that starts at p.

Remark

In particular, any integral curve starting at p extends to a
unique maximal integral curve.

This implies that two integral curves with same initial point
agree on their joint domain.
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Integral Curves and Flows

The following result is established in J.M. Lee’s book.

Theorem (Fundamental Theorem on Flows)

Suppose that X is a smooth vector field on M. Define

Ω =
⋃

p∈M
I (p) × {p} ⊂ R×M,

where I (p) is the open interval around 0 on which is defined the
maximal integral curve of X starting at p. Then:

(i) Ω is an open set in R×M containing {0} ×M.

(ii) There is a smooth map F : Ω→ M, (t, p)→ Ft(p) (called
the flow of X) such that, for every p ∈ M, the curve
I (p) 3 t → Ft(p) ∈ M is the maximal integral curve of X
starting at p.
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Integral Curves and Flows

Remarks

Let p ∈ M.

We have I (p) = {t ∈ R; (t, p) ∈ Ω}.
As Ft(p) is an integral curve for X starting at p, we have

d

dt
Ft(p)

∣∣∣∣
t=0

= XFt(p)

∣∣∣∣
t=0

= XF0(p) = Xp.

Thus, we recover the vector field X from its flow.
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Integral Curves and Flows

Remarks

For t ∈ R, the set Mt = {p ∈ M; (t, p) ∈ Ω} is open in M,
since Ω is an open set. Thus, we may regard Ft as a smooth
map p → Ft(p) from Mt to M.

Here M0 = M and F0(p) = p for all p ∈ M. Thus, F0 = 1M .

If s ∈ I (p), then t → Ft(Fs(p)) and t → Ft+s(p) are maximal
integral curves for X starting at Fs(p), and so they agree. It
follows that I (Fs(p)) = I (p) − s, and

Ft ◦ Fs = Ft+s on Ms+t ∩Ms = F−1s (Mt) ∩Ms .
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Definition

We say that X is a complete vector field when its the flow F is
defined on all R×M. In this case we call F a global flow.

Remarks

If F is a global flow defined on R, then Mt = M and Ft is a
smooth map from M to itself for all t ∈ R.

We then have

F0 = 1M , Fs ◦ Ft = Ft+s on M ∀s, t ∈ R.

For s = −t we get F−t ◦ Ft = Ft ◦ F−t = 1M , and hence
Ft : M → M is a diffeomorphism with inverse F−t .

Let Diff(M) be the group of diffeomorphisms of M. Then
t → Ft is a morphism from the additive group R to Diff(M).
It is called a one-parameter group of diffeomorphisms.
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Example (see Tu’s book)

Let X be the vector field −y∂/∂x + x∂/∂y on R2.

136 §12 The Tangent Bundle

12.4 Smooth Sections

A section of a vector bundle π : E→M is a map s : M→ E such that π ◦ s = 1M , the
identity map on M. This condition means precisely that for each p in M, s maps p
into the fiber Ep above p. Pictorially we visualize a section as a cross-section of the
bundle (Figure 12.3). We say that a section is smooth if it is smooth as a map from
M to E .

π

s(M)

p
M

s(p)

Fig. 12.3. A section of a vector bundle.

Definition 12.7. A vector field X on a manifold M is a function that assigns a tangent
vector Xp ∈ TpM to each point p ∈M. In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle π : T M→ M and the vector field is
smooth if it is smooth as a map from M to T M.

Example 12.8. The formula

X(x,y) =−y
∂

∂x
+ x

∂

∂y
=

[
−y

x

]

defines a smooth vector field on R2 (Figure 12.4, cf. Example 2.3).

Fig. 12.4. The vector field (−y,x) in R2.

It has a global flow F : R× R2 → R2 given by

Ft(p) =

[
cos t − sin t
sin t cos t

] [
x
y

]
, p =

[
x
y

]
, t ∈ R.

That is, Ft : R2 → R2 is the rotation of angle t about the origin.
Note that

d

dt

∣∣∣∣
t=0

Ft(p) =

[
0 −1
1 0

] [
x
y

]
=

[
−y
x

]
= −y ∂

∂x
+ x

∂

∂y
.

41 / 42



Integral Curves and Flows

Remark (see Lee’s book)

It can be shown that every compactly supported smooth
vector field is complete.

In particular, every smooth vector field on a compact manifold
is complete.

Remark

We will see in Section 16 that every left-invariant vector field on a
Lie group is complete.
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