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C∞ Bump Functions

Reminder (Support of a function)

If f : X → R is a (continuous) function on a topological space X ,
then its support, denoted supp(f ), is the closure in X of the points
at which f is non-zero. That is,

supp(f ) = {x ∈ X ; f (x) 6= 0}.

We say that f is compactly supported when supp(f ) is compact.

Remark

The complement X \ supp(f ) is the interior of the zero-set of
f . That is, x 6∈ supp(f ) if and only if f = 0 near x .

Thus, if f = 0 on an open set U, then U ⊂ X \ supp(f ), and
hence supp(f ) ⊂ X \ U.
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C∞ Bump Functions

Definition

Given a point q in a manifold M and an open neighborhood U of q
in M a bump function at q supported in U is any continuous
function ρ : M → R such that:

0 ≤ ρ ≤ 1, ρ = 1 near q, supp(ρ) ⊆ U.
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Fig. 13.1. A bump function at 0 on R.

The only bump functions of interest to us are C∞ bump functions. While the
continuity of a function can often be seen by inspection, the smoothness of a function
always requires a formula. Our goal in this subsection is to find a formula for a C∞

bump function as in Figure 13.1.

Example. The graph of y = x5/3 looks perfectly smooth (Figure 13.2), but it is in
fact not smooth at x = 0, since its second derivative y′′ = (10/9)x−1/3 is not defined
there.
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Fig. 13.2. The graph of y = x5/3.

In Example 1.3 we introduced the C∞ function

f (t) =

{
e−1/t for t > 0,

0 for t ≤ 0,

with graph as in Figure 13.3.
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Fig. 13.3. The graph of f (t).

3 / 30



C∞ Bump Functions

We are more especially interested in smooth bump functions. Our
aim is to establish the following result:

Proposition (Exercise 13.1)

For every point q ∈ M and any neighborhood U of p in M, there
exists a C∞ bump function at q supported in U.

Remark

We shall first construct a C∞ bump functions on R, and then we
are going to extend the construction to Rn and manifolds.
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C∞ Bump Functions

Step 1 (Example 1.3 and Problem 1.2)

Let f : R→ R be defined by

f (t) =

{
e−1/t for t > 0,
0 for t ≤ 0.

By definition 0 ≤ f ≤ 1 and f (t) = 0 if and only if t ≤ 0. It can
also be shown that f is smooth (see Problem 1.2).
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C∞ Bump Functions

Step 2

Let g : R→ R be given by

g(t) =
f (t)

f (t) + f (1− t)
, t ∈ R.

Here g(t) is well defined, since f (t) + f (1− t) > 0. Indeed:

f ≥ 0, and so f (t) + f (1− t) ≥ max{f (t), f (1− t)}.
f (t) > 0 for t > 0, and f (1− t) > 0 for 1− t > 0, i.e., t < 1.

Thus, f (t) + f (1− t) > 0 on (0,∞) ∪ (−∞, 1) = R.

The function g is C∞, since f is C∞ and f (t) + f (1− t) is
C∞ and > 0.

As f ≥ 0, we have 0 ≤ g ≤ 1. Furthermore:

g(t) = 0⇐⇒ f (t) = 0⇐⇒ t ≤ 0,

g(t) = 1⇐⇒ f (1− t) = 0⇐⇒ 1− t ≤ 0⇐⇒ t ≥ 1.
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C∞ Bump Functions

Step 2

142 §13 Bump Functions and Partitions of Unity

The main challenge in building a smooth bump function from f is to construct a
smooth version of a step function, that is, a C∞ function g : R→ R with graph as in
Figure 13.4. Once we have such a C∞ step function g, it is then simply a matter of

1

1
g(t)

t

g(t) =

{
0 for t ≤ 0,

1 for t ≥ 1.

Fig. 13.4. The graph of g(t).

translating, reflecting, and scaling the function in order to make its graph look like
Figure 13.1.

We seek g(t) by dividing f (t) by a positive function !(t), for the quotient
f (t)/!(t) will then be zero for t ≤ 0. The denominator !(t) should be a positive
function that agrees with f (t) for t ≥ 1, for then f (t)/!(t) will be identically 1 for
t ≥ 1. The simplest way to construct such an !(t) is to add to f (t) a nonnegative
function that vanishes for t ≥ 1. One such nonnegative function is f (1− t). This
suggests that we take !(t) = f (t)+ f (1− t) and consider

g(t) =
f (t)

f (t)+ f (1− t)
. (13.1)

Let us verify that the denominator f (t)+ f (1− t) is never zero. For t > 0, f (t) >
0 and therefore

f (t)+ f (1− t)≥ f (t) > 0.

For t ≤ 0, 1− t ≥ 1 and therefore

f (t)+ f (1− t)≥ f (1− t) > 0.

In either case, f (t)+ f (1− t) %= 0. This proves that g(t) is defined for all t. As the
quotient of two C∞ functions with denominator never zero, g(t) is C∞ for all t.

As noted above, for t ≤ 0, the numerator f (t) equals 0, so g(t) is identically zero
for t ≤ 0. For t ≥ 1, we have 1− t ≤ 0 and f (1− t) = 0, so g(t) = f (t)/ f (t) is
identically 1 for t ≥ 1. Thus, g is a C∞ step function with the desired properties.

Given two positive real numbers a < b, we make a linear change of variables to
map [a2,b2] to [0,1]:

x &→ x− a2

b2− a2
.

Let

h(x) = g

(
x− a2

b2− a2

)
.

Then h : R→ [0,1] is a C∞ step function such that

We have constructed a C∞ function g : R→ R such that

0 ≤ g ≤ 1,

g−1(0) = (−∞, 0], g−1(1) = [1,∞).
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C∞ Bump Functions

Step 3

Let 0 < a < b, and define ρ : R→ R by

ρ(x) = 1− g

(
x2 − a2

b2 − a2

)
, x ∈ R.

ρ(x) is a C∞ function, since g is C∞.

As 0 ≤ g ≤ 1, and hence 0 ≤ 1− g ≤ 1, we have 0 ≤ ρ ≤ 1.

We have

ρ(x) = 1⇔ g

(
x2 − a2

b2 − a2

)
= 0⇔ x2 − a2

b2 − a2
≤ 0⇔ x2 ≤ a2,

ρ(x) = 0⇔ g

(
x2 − a2

b2 − a2

)
= 1⇔ x2 − a2

b2 − a2
≥ 1⇔ x2 ≥ b2.

Thus,

ρ(x) = 1⇔ |x | ≤ a, ρ(x) = 0⇔ |x | ≥ b.
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C∞ Bump Functions

Step 3

13.1 C∞ Bump Functions 143

h(x) =

{
0 for x≤ a2,

1 for x≥ b2.

(See Figure 13.5.)

1 h(x)

xa2 b2

Fig. 13.5. The graph of h(x).

Replace x by x2 to make the function symmetric in x: k(x) = h(x2) (Figure 13.6).

1k(x)

x
a b−a−b

Fig. 13.6. The graph of k(x).

Finally, set

ρ(x) = 1− k(x) = 1−g

(
x2− a2

b2− a2

)
.

This ρ(x) is a C∞ bump function at 0 in R that is identically 1 on [−a,a] and has
support in [−b,b] (Figure 13.7). For any q ∈R, ρ(x−q) is a C∞ bump function at q.

ρ(x)

x
a b−a−b

1

Fig. 13.7. A bump function at 0 on R.

It is easy to extend the construction of a bump function from R to Rn. To get a
C∞ bump function at 0 in Rn that is 1 on the closed ball B(0,a) and has support in
the closed ball B(0,b), set

σ(x) = ρ(‖x‖) = 1−g

(‖x‖r2− a2

b2− a2

)
. (13.2)

We have constructed a C∞ function ρ : R→ R such that

0 ≤ ρ ≤ 1,

ρ−1(1) = [−a, a], ρ−1(0) = (−∞,−b] ∪ [b,∞).

In particular, ρ is a C∞ bump function at the origin on R.
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C∞ Bump Functions

Notation

If q ∈ Rn and r > 0, then B(q, r) is the open ball about q with
radius r in Rn and B(q, r) is its closure.

Step 4

Let q ∈ Rn, and define σ : Rn → R by

σ(x) = ρ
(
‖x − q‖

)
= 1− g

(‖x − q‖2 − a2

b2 − a2

)
, x ∈ Rn.

As g and x → ‖x − q‖2 are C∞ functions, σ is C∞ as well.

As 0 ≤ ρ ≤ 1, we have 0 ≤ σ ≤ 1.

As ρ−1(1) = [−a, a] and ρ−1(0) = (−∞,−b]∪ [b,∞), we get

σ−1(1) = B(q, a), σ−1(0) = Rn \ B(q, b).

Thus, σ is a C∞ bump function at q supported in B(q, b).
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C∞ Bump Functions

Step 5

Suppose that M is a manifold. Let U be an open set in M and
f : U → R a smooth function with compact support. Define
f̃ : M → R by

f̃ = f on U and f̃ = 0 on M \ U.

As f̃ = f on U, we see that f̃ is C∞ on U.

Set K = supp(f ). This is a compact in U. As the inclusion of
U into M is continuous, this is a compact in M as well.

Here f̃ = 0 on M \ U and f̃ = f = 0 on U \ K . Thus, f̃ = 0
on (M \ U) ∪ (U \ K ) = M \ K . In particular, f̃ is C∞ on the
open set M \ K .

As f̃ is C∞ on the open sets U and M \ K , it is C∞ on
U ∪ (M \ K ) = M.
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C∞ Bump Functions

Step 5 (continued)

As f̃ = 0 on the open set M \ K , it follows that supp f̃ ⊂ K
(cf. remark on slide 2).

If p ∈ K = supp(f ) ⊂ U, then f̃ = f near p and p is not an
interior point of f −1(0) = U ∩ f̃ −1(0). Thus p is in the
interior of f̃ −1(0), and hence p ∈ supp(f̃ ). Thus K ⊂ supp(f̃ )

It follows that supp(f̃ ) = K .

Therefore, we have proved the following result:

Lemma

Let U be an open set in M and f : U → R a smooth function with
compact support. Then f uniquely extends to a smooth function
f̃ : M → R such that

f̃ = 0 and supp(f̃ ) = supp(f ).
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C∞ Bump Functions

Step 6

Let p ∈ M and U an open in M containing p. Set n = dimM.

Let (V , φ) be chart near p. Possibly by replacing (V , φ) by
(V ∩ U, φ|V∩U) we may assume that V ⊂ U.

Set q = φ(p). Here φ : V → φ(V ) is a homeomorphism. In
particular, φ(V ) is an open in Rn containing q.

Let 0 < a < b be such that B(q, b) ⊂ φ(V ). Define
σ : Rn → R as in Step 4. Thus, σ is a C∞ function such that
0 ≤ σ ≤ 1, σ−1(1) = B(q, a) and σ−1(0) = Rn \ B(0, b).

Set ψ = σ ◦ φ : V → R. Then ψ is C∞ and 0 ≤ ψ ≤ 1.

We have ψ−1(1) = (σ ◦ φ)−1(1) = φ−1
(
σ−1(1)

)
.

ψ−1(1) = (σ ◦ φ)−1(1) = φ−1
(
σ−1(1)

)
= φ−1

(
B(q, a)

)
.

Thus, ψ = 1 on φ−1
(
B(q, a)

)
, which is an open containing

φ−1(q) = p. Hence ψ = 1 near p.
13 / 30



C∞ Bump Functions

Step 6 (continued)

The zero set ψ−1(0) = (σ ◦ φ)−1(0) is equal to

φ−1
(
σ−1(0)

)
= φ−1

(
Rn \ B(q, b)

)
= V \ φ−1

(
B(q, b)

)
.

Set K = φ−1(B(q, b)). This is a compact subset of V since
B(q, b) is compact and φ is a homeomorphism.

As V \ K ⊂ V \ φ−1
(
B(q, b)

)
= ψ−1(0), we see that ψ = 0

on the open set V \ K , and hence supp(ψ) ⊂ K .

By Step 5 we can extends ψ to a smooth function ψ̃ : M → R
such that ψ̃ = 0 on M \ V and supp(ψ̃) = K . In particular:

0 ≤ ψ̃ ≤ 1, ψ̃ = ψ = 1 near p, supp(ψ̃) ⊂ K ⊂ V ⊂ U.

Thus, ψ̃ is a C∞ bump function at p with support in U.

Note also that ψ̃ has compact support, since supp(ψ̃) is a
closed subset of the compact K .
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C∞ Bump Functions

To sum up we have proved:

Proposition

Suppose that M is a smooth manifold. For any p ∈ M and any
open neighborhood U of p in M there exists a C∞ bump function
at p with compact support in U.
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C∞ Bump Functions

Remark

Let f : U → R be a C∞ function on an open U of a manifold M.

If f is constant outside some compact set (or even some
closed set in M contained in U), then in a similar way as in
Step 5 we may extend f into a C∞ on the whole manifold M.

In general this is not possible. However, we still have the
following result:

Proposition (Proposition 13.2; Extension of smooth functions)

Let p ∈ M and let U be an open neighborhood of p. Then, for
every smooth function f : U → R, there exists a smooth function
f̃ : M → R such that f̃ = f near p and supp(f̃ ) ⊂ U.
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C∞ Bump Functions

Proof of Proposition 13.2.

Let ψ : M → R be a C∞ bump function at p whose support is
compact and contained in U. Then:

The product ψf is a smooth function on U whose support is
contained in supp(ψ), and hence is compact.

By Step 5 it extends to a smooth function f̃ : M → R such
that supp(f̃ ) = supp(ψf ) ⊂ U.

As f̃ = ψf on U 3 p and ψ = 1 near p, it follows that
f̃ = ψf = f near p.

This proves the result.
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Partitions of Unity

Definition

A family of subsets (Yα)α∈A of a topological space X is called
locally finite when, for every p ∈ X , there is a neighborhood V of
p such that meets at at most finitely many of the Yα, i.e., the
index subset {α ∈ A; Yα ∩ V 6= ∅} is finite.

Lemma (see Problem 13.7)

Let (Yα)α∈A be a locally finite family in a topological space X .
Then ⋃

Yα ⊂
⋃

Yα.
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Partitions of Unity

Facts

Let (fα)α∈A be a family of smooth (real-valued) functions on a
manifold M such that the family of supports (supp(fα))α∈A is
locally finite.

Let p ∈ M and V an open neighborhood of p such that
J := {α;V ∩ supp(fα) 6= ∅} is finite.

Then J(p) := {α;V ∩ supp(fα) 6= ∅} ⊂ J is finite. In
particular, fα(p) = 0 for α 6∈ J(p).

We then set ∑

α∈A
fα(p) :=

∑

α∈J(p)

fα(p).

This defines a function
∑

α∈A fα : M → R. Such a function is
called a locally finite sum.
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Partitions of Unity

Facts (continued)

If q ∈ V , then J(q) ⊂ J and fα(q) = 0 if α ∈ J \ J(q). Thus,

∑

α∈A
fα(q) =

∑

α∈J(q)

fα(q) =
∑

α∈J
fα(q).

That is,
∑

α∈A fα =
∑

α∈J fα on V .

As
∑

α∈J fα is a finite sum of C∞ function, we deduce that∑
α∈A fα is C∞ on V , and hence is C∞ near p.

As this is true for every p ∈ M, it follows that
∑

α∈A fα is C∞

function on M.
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Partitions of Unity

Lemma (see also Lemma 13.5)

Let
∑

fα be a locally finite sum of C∞ functions on M. Then

supp
(∑

fα
)
⊂
⋃

supp(fα).
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Partitions of Unity

Proof of the lemma.

Set f =
∑

fα. Recall that supp(f ) = f −1(R \ 0).

If fα(p) = 0 for all α, then f (p) =
∑

fα(p) = 0. Thus, if
f (p) 6= 0, then fα(p) 6= 0 for some α. That is,

f −1(0)(R \ 0) ⊂
⋃

f −1α (0)(R \ 0).

By assumption the family of subsets {supp(fα)} is locally
finite in M, and so {f −1α (0)(R \ 0)} is locally finite as well.

Thus, by the lemma of slide 18 we have

f −1(0)(R \ 0) ⊂
⋃

f −1α (0)(R \ 0) ⊂
⋃

f −1α (0)(R \ 0).

That is,
supp(f ) ⊂

⋃
supp(fα)

This proves the lemma.
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Partitions of Unity

Reminder

An open cover of M is a family of open sets (Uα)α∈A such that
M = ∪α∈AUα.

Definition

A C∞ partition of unity on M is a family (ρα)α∈A of real-valued
functions on M such that

(i) ρα ≥ 0 for all α ∈ A.

(ii) The family of supports {supp(ρα)}α∈A is locally finite.

(iii)
∑
ρα = 1 on M.

If (Uα)α∈A is an open cover of M such that supp(ρα) ⊂ Uα, then
we say that the partition of unity is subordinate to (Uα)α∈A.
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Partitions of Unity

Proposition (Proposition 13.6)

Suppose that M is a compact manifold, and let (Uα)α∈A be an
open cover of M. Then there exists a C∞ partition of unity
(ρα)α∈A subordinate to (Uα)α∈A.
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Partitions of Unity

Proof of Proposition 13.6 (Part 1)

Given q ∈ M, let α ∈ A be such that q ∈ Uα. Let ψq be a
C∞ bump function at q supported in Uα. In particular,
0 ≤ ψq ≤ 1 and ψq = 1 near q.

For each q ∈ M set Wq = {ψq > 0}. Then Wq is an open
neighborhood of q, and we have M = ∪q∈MWq.

As M is compact there are q1, . . . , qm in M such that
M = ∪mi=1Wqi .

Set ψ =
∑m

i=1 ψqi . This is a C∞ function on M.

If q ∈ M, then there i such that q ∈Wqi = {ψqi > 0}. Thus,

ψ(q) =
∑

ψqj (q) ≥ ψqi (q) > 0.

Hence ψ > 0 on M.
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Partitions of Unity

Proof of Proposition 13.6 (Part 1, continued)

For i = 1, . . . ,m, set

ϕi =
ψqi

ψ
=

ψqi∑m
j=1 ψqj

.

This is a well defined C∞ function on M since ψ > 0.

We have ϕi ≥ 0, and

∑

1≤i≤m
ϕi =

∑m
i=1 ϕqi∑m
j=1 ψqj

= 1.

For each i there is τ(i) ∈ A such suppψqi ⊂ Uτ(i), and hence

supp(ϕi ) ⊂ supp(ψqi ) ⊂ Uτ(i).

Thus, (ϕi )
m
i=1 is a (finite) C∞ partition of unity such that, for

each i there is α = τ(i) in A so that suppϕi ⊂ Uα.
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Partitions of Unity

Proof of Proposition 13.6 (Part 2)

Set I = {1, . . . ,m}. We have a map τ : i → τ(i) from I to A
such that suppϕi ⊂ Uτ(i). If α ∈ τ(I ), set

ρα =
∑

i∈τ−1(α)

ϕi .

Otherwise, set ρα = 0. In any case ρα ∈ C∞(M) and ρα ≥ 0.

Here supp ρα 6= ∅ ⇔ ρα 6= 0⇔ α ∈ τ(I ). As τ(I ) is finite,
this means that all but finitely of the supports supp ρα are
empty, and so the family {supp ρα}α∈A is locally finite.

As I = ∪α∈τ(I )τ−1(α) and ρα = 0 if α 6∈ τ(I ), we have
∑

α∈A
ρα =

∑

α∈τ(I )

ρα =
∑

α∈τ(I )

∑

i∈τ−1(α)

ϕi =
∑

1≤i≤m
ϕi = 1.
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Partitions of Unity

Proof of Proposition 13.6 (Part 2, continued).

If α 6∈ τ(I ), then ρα = 0, and hence supp ρα = ∅ ⊂ Uα.

If α ∈ τ(I ) and i ∈ τ−1(i), then suppϕi ⊂ Uτ(i) = Uα. Thus,
by using the lemma of slide 21 we get

supp ρα = supp
( ∑

i∈τ−1(α)

ϕi

)
⊂
⋃

i ∈ τ−1(α) supp(ϕi ) = Uα.

Therefore, {ρα}α∈A is a C∞-partition of the unity subordinate to
{Uα}α∈A. The proof is complete.
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Partitions of Unity

In general, we have the following result (see Appendix C of Tu’s
book for a proof).

Theorem (Theorem 13.7; Existence of C∞ partition of unity)

Let {U}α∈A be an open cover of M.

(i) There is a C∞ partition of unity (ϕk)k≥1 such that, for each
integer k ≥ 1, the support of ϕk is compact and contained in
some Uα.

(ii) If we do not require compact support, then there is a
C∞-partition of the unity {ρα}α∈A subordinate to {Uα}α∈A.

Remarks

1 Part (i) is the subsitute for Part 1 of the proof of
Proposition 13.6 in the noncompact case.

2 We deduce part (ii) from part (i) in a similar way as in Part 2
of Proposition 13.6, except for using locally finite sums
instead of finite sums. 29 / 30



Partitions of Unity

We shall use partitions of unity throughout the rest of the course.

Here is a couple of direct applications.

Proposition (Smooth Urysohn Lemma; Problem 13.3(a))

If A and B are disjoint closed sets in M, then there is f ∈ C∞(M)
such that f = 1 on A and f = 0 on B.

Theorem

Every closed set in M is the zero set of some non-negative smooth
function on M.

Remark

A proof of this result can be found in Chapter 2 of J.M. Lee’s book
”Introduction to Smooth Manifolds”.
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