Commutative Algebra Chapter 4: Primary Decomposition

Sichuan University, Fall 2020

Reminder (Prime ideals; see Chapter 1)

- An ideal $\mathfrak p$ in a ring A is *prime* if $xy \in \mathfrak p \Rightarrow x \in \mathfrak p$ or $y \in \mathfrak p$.
- Equivalently, $\mathfrak p$ is prime if and only if $A/\mathfrak p$ is an integral domain.
- Every maximal ideal is prime.

Definition (Primary Ideals)

An ideal q in A is primary if $q \neq A$ and

$$xy \in \mathfrak{q} \Longrightarrow x \in \mathfrak{q} \text{ or } y^n \in \mathfrak{q} \text{ for some } n \ge 1.$$

Remarks

- If $q \neq A$, then q primary \iff every zero-divisor in A/q is nilpotent.
- 2 Every prime ideal is primary.
- **3** If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a primary ideal in B, then its contraction $\mathfrak{q}^c = f^{-1}(\mathfrak{q})$ is a primary ideal in A.

Reminder (Radicals of ideals; see Chapter 1)

• If a is an ideal in A, then its radical is

$$r(\mathfrak{a}) = \{x \in A; \ x^n \in \mathfrak{a} \text{ for some } n \ge 1\}.$$

- $r(\mathfrak{a})$ is the intersection of all the prime ideals that contain \mathfrak{a} . In particular, this is an ideal containing \mathfrak{a} .
- $r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$
- If \mathfrak{p} is a prime ideal, then $r(\mathfrak{p}^n) = \mathfrak{p}$ for all $n \geq 1$.

Remark

If \mathfrak{q} is an ideal $\neq A$, then \mathfrak{q} is primary if

$$xy \in \mathfrak{q} \Longrightarrow x \in \mathfrak{q} \text{ or } y \in r(\mathfrak{q}).$$

Proposition (Proposition 4.1)

Let q be a primary ideal in a ring A. Then r(q) is a prime ideal, and hence it's the smallest prime ideal containing p.

Definition

If $\mathfrak p$ is a prime ideal, then any primary ideal $\mathfrak q$ such that $r(\mathfrak q)=\mathfrak p$ is called $\mathfrak p$ -primary.

Remark

Warning! If $\mathfrak a$ is an ideal whose radical $r(\mathfrak a)$ is prime, then $\mathfrak a$ need not be primary (see slide 8).

Example

The primary ideals in \mathbb{Z} are (0) and (p^n) with p prime, since:

- They are primary ideals.
- ullet They are the only ideals in $\mathbb Z$ with prime radical.

Example

Let A = k[x, y], k field, and $\mathfrak{q} = (x, y^2)$. Then \mathfrak{q} is primary, since:

- $A/\mathfrak{q} \simeq (k[x,y]/(x))/((x,y^2)/(x)) \simeq k[y]/(y^2).$
- Every zero-divisor in $k[y]/(y^2)$ is a multiple of y, and hence is nilpotent in $k[y]/(y^2)$.

The radical of \mathfrak{q} is $\mathfrak{p} = (x, y)$. We have

$$\mathfrak{p}^2 \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}$$
.

This shows that a primary ideal need not be a prime-power.

Example

Let $A = k[x, y, z]/(xy - z^2)$, and denote by \overline{x} , \overline{y} , \overline{z} the images of x, y, z in A. Set $\mathfrak{p} = (\overline{x}, \overline{z})$.

- The ideal $\mathfrak p$ is prime, since $A/\mathfrak p \simeq k[x,y,z]/(x,z) \simeq k[y]$ is an integral domain.
- The ideal \mathfrak{p}^2 is not primary, since $\overline{xy} = \overline{z}^2 \in \mathfrak{p}^2$, but $\overline{x} \notin \mathfrak{p}^2$ and $\overline{y} \notin \mathfrak{p} = r(\mathfrak{p}^2)$.

This shows that a prime-power need be a primary ideal. However, we have the following result:

Proposition (Proposition 4.2)

If $\mathfrak a$ is an ideal in A whose radical radical $r(\mathfrak a)$ is maximal, then $\mathfrak a$ is primary. In particular, every power of a maximal ideal $\mathfrak m$ is $\mathfrak m$ -primary.

Lemma (Lemma 4.3)

If $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ are \mathfrak{p} -primary ideals, then $\mathfrak{q} = \bigcap_{i=1}^n \mathfrak{q}_i$ is \mathfrak{p} -primary.

Reminder (Ideal quotients; see Chapter 1)

• If \mathfrak{a} is an ideal in A and $x \in A$, then

$$(\mathfrak{a}:x)=\{y\in A;\ xy\in\mathfrak{a}\}.$$

In particular, $(\mathfrak{a} : x)$ is an ideal.

• $(\mathfrak{a}:x)\cap(\mathfrak{b}:x)=(\mathfrak{a}\cap\mathfrak{b}:x).$

Lemma (Lemma 4.3)

Let q be a p-primary ideal, and let $x \in A$. Then:

- (i) If $x \in q$, then (q : x) = (1).
- (ii) If $x \notin \mathfrak{q}$, then (q : x) is \mathfrak{p} -primary. In particular, $r(\mathfrak{q} : x) = \mathfrak{p}$.
- (iii) If $x \notin \mathfrak{p}$, then $(\mathfrak{q} : x) = \mathfrak{q}$.

Definition (Primary Decomposition)

• A primary decomposition of an ideal α in A is of the form,

$$\mathfrak{a} = \bigcap_{1 \leq i \leq n} \mathfrak{q}_i, \qquad \mathfrak{q}_i \text{ primary ideal.}$$

- We say that the primary decomposition is minimal if
 - (i) $r(\mathfrak{q}_i) \neq r(\mathfrak{q}_j)$ for $i \neq j$.
 - (ii) $q_i \supseteq \bigcap_{j \neq i} q_j$ for i = 1, ..., n.

Remarks

- Some ideals don't admit a primary decomposition. An ideal that admits a primary decomposition is called decomposable.
- 2 Any primary decomposition can be reduced to a minimal one:
 - Lemma 4.3 allows us ro to reach (i) by taking the intersections of the q_i with same radical.
 - Once we have (i) we achieve (ii) by throwing away the primary ideals \mathfrak{q}_i such that $\mathfrak{q}_i \supseteq \cap_{j \neq i} \mathfrak{q}_j$.

Theorem (1st Uniqueness Theorem; Theorem 4.5)

Let $\mathfrak a$ be a decomposable ideal and $\mathfrak a=\cap_{i=1}^n\mathfrak q_i$ a primary decomposition. Set $p_i=r(\mathfrak q_i),\ i=1,\ldots,n$. Then the $\mathfrak p_i$ are exactly the prime ideals of the form $r(\mathfrak a:x),\ x\in A$. In particular, they don't depend on the primary decomposition of $\mathfrak a$.

Remarks

- The proof of the uniqueness theorem shows that for each i there is $x_i \in A$ such that $r(\mathfrak{a} : x_i)$ is \mathfrak{p}_i -primary.
- The primary components are not independent of the minimal decomposition in general (see next slide).

Example

Let A = k[x, y], k field, and $\mathfrak{a} = (x^2, xy)$.

• Set $\mathfrak{p}_1 = (x)$ and $\mathfrak{p}_2 = (x, y)$. Then $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2^2$

This is a (minimal) primary decomposition, since:

- \mathfrak{p}_1 is a prime ideal, and hence is primary.
- \mathfrak{p}_2 is a maximal ideal, since $k[x,y]/(x,y) \simeq k$ is a field.
- The ideal \mathfrak{p}_2^2 then is \mathfrak{p}_2 -primary by Proposition 4.2.
- We have another minimal primary decomposition,

$$\mathfrak{a}=(x)\cap(x^2,y).$$

Here (x^2, y) can be shown to be primary in the same way as in the example of slide 7.

• Thus, we may have distinct minimal primary decompositions.

Definition

Let \mathfrak{a} be a decomposable ideal in A and $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ the prime ideals associated with any minimal primary decomposition.

- The prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are said to *belong to* \mathfrak{a} or to be associated with \mathfrak{a} .
- The minimal elements of the set $\{p_1, ..., p_n\}$ are called *minimal* or *isolated* prime ideals associated with \mathfrak{a} .
- The other prime ideals are called *embedded*.

Remark

The terminology isolated/embedded comes from algebraic geometry (see Atiyah-MacDonald's book).

Example

Let A = k[x, y] and $\mathfrak{a} = (x^2, xy) = (x) \cap (x, y)^2$. The only minimal prime ideal is (x), since $(x) \subset (x, y)$.

Reminder (see Chapter 1)

• If $x \in \mathfrak{a}$, then (0; x) is the annihilator of x, i.e.,

$$(0:x) = \{ y \in A; \ xy = 0 \}.$$

• Let *D* be the set of all zero-divisors in *A*. By Lemma 1.15 we have

$$D = \bigcup_{x \neq 0} (0 : x) = \bigcup_{x \neq 0} r(0 : x).$$

Proposition (Proposition 4.7)

Suppose that $\mathfrak a$ is a decomposable ideal in A. Let $\mathfrak a=\cap_{i=1}^n\mathfrak q_i$ be a minimal decomposition, and set $\mathfrak p_i=r(\mathfrak q_i)$. Then, we have

$$\bigcup_{1\leq i\leq n}\mathfrak{p}_i=\{x\in A;\ (\mathfrak{a}:x)\neq\mathfrak{a}\}.$$

In particular, if the zero ideal is decomposable, then the set D of zero-divisors is the union of the prime ideals that belong to 0.

Remark

Suppose that the zero ideal is decomposable. Let $0=\cap_{i=1}^n\mathfrak{q}_i$ be a minimal decomposition, and set $\mathfrak{p}_i=r(\mathfrak{q}_i)$. Let $\mathfrak{N}=r(0)$ be the nilradical of A. Then

$$\mathfrak{N}=r(\cap\mathfrak{q}_i)=\cap r(\mathfrak{q}_i)=\cap\mathfrak{p}_i.$$

That is, \mathfrak{N} is the intersection of all prime ideals that belong to 0.

Reminder (Rings of fractions; see Chapter 3)

Let S be a multiplicative subset of A.

• The ring of fractions $S^{-1}A$ consists of classes a/s with $a \in A$ and $s \in S$:

$$a/s = b/t \iff \exists u \in S \text{ such that } u(at - bs) = 0.$$

- The map $f: a \to a/1$ is a ring homomorphism from A to $S^{-1}a$.
- The extension of an ideal \mathfrak{a} is equal to $S^{-1}a$.

Notation

If \mathfrak{a} is an ideal in A, we denote by S(a) the contraction of $S^{-1}\mathfrak{a}$, i.e., $S(a)=f^{-1}(S^{-1}a)$.

Reminder (see Proposition 3.11)

• For any ideal α in A we have

$$S(a) = \bigcup_{s \in S} (\mathfrak{a} : s).$$

- There is a one-to-one correspondance $(\mathfrak{p} \leftrightarrow S^{-1}\mathfrak{p})$ between prime ideals of $S^{-1}A$ and prime ideals in A that don't meet S.
- $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = (S^{-1}\mathfrak{a}) \cap (S^{-1}\mathfrak{b}).$
- $r(S^{-1}\mathfrak{a}) = S^{-1}r(\mathfrak{a}).$

Proposition (Proposition 4.8)

Let S be a multiplicative closed subset of A and $\mathfrak q$ a $\mathfrak p$ -primary ideal of A.

- (i) If $S \cap \mathfrak{p} \neq \emptyset$, then $S^{-1}\mathfrak{q} = S^{-1}A$.
- (ii) If $S \cap \mathfrak{p} = \emptyset$, then $S^{-1}\mathfrak{q}$ is $S^{-1}\mathfrak{p}$ -primary and $S(\mathfrak{q}) = \mathfrak{q}$.

In particular, we have a one-to-one correspondance $(\mathfrak{q} \leftrightarrow S^{-1}\mathfrak{q})$ between primary ideals of $S^{-1}A$ and primary ideals of A whose radicals do not meet S.

Proposition (Proposition 4.9)

Let \mathfrak{a} be a decomposable ideal in A and $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ a primary decomposition. Set $\mathfrak{p}_i = r(q_i)$, and assume the indexation is so that S meets $\mathfrak{p}_{m+1}, \ldots, \mathfrak{p}_n$, but not $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$. Then

$$S^{-1}\mathfrak{a} = \bigcap_{1 \leq i \leq m} S^{-1}\mathfrak{q}_i, \qquad S(\mathfrak{a}) = \bigcap_{1 \leq i \leq m} \mathfrak{q}_i,$$

and these decompositions are minimal primary decompositions.

Definition

Let $\mathfrak a$ be a decomposable idea. A set Σ of prime ideals belonging to $\mathfrak a$ is called *isolated* if, for any prime ideal $\mathfrak p'$ belonging to $\mathfrak a$, we have

$$\mathfrak{p}'\subseteq\mathfrak{p} \text{ for some } \mathfrak{p}\in\Sigma \implies \mathfrak{p}'\in\Sigma.$$

Remark

If $\Sigma = \{\mathfrak{p}\}\$, then Σ is isolated if and only if \mathfrak{p} is minimal.

Reminder (see Proposition 3.11)

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals and \mathfrak{a} an ideal in A. Then

$$\mathfrak{a} \subseteq \bigcup \mathfrak{p}_i \Longrightarrow \exists i \text{ such that } \mathfrak{a} \subseteq \mathfrak{p}_i.$$

Equivalently,

$$\mathfrak{a} \not\subseteq \mathfrak{p}_i \ \forall i \implies \mathfrak{a} \not\subseteq \bigcup \mathfrak{p}_i.$$

Facts

Let $\mathfrak a$ be a decomposable ideal and Σ an isolated set of prime ideals belonging to $\mathfrak a.$ Set

$$S = A \setminus \left(\bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p}\right) = \bigcap_{\mathfrak{p} \in \Sigma} (A \setminus \mathfrak{p}).$$

- S is a multiplicative closed subset of A, since this is the intersections of such subsets.
- Let \mathfrak{p}' be a prime ideal belonging to \mathfrak{a} . If $\mathfrak{p}' \in \Sigma$, then $\mathfrak{p}' \cap S = \emptyset$.
- Moreover, by Proposition 3.11:

$$\mathfrak{p}'\not\in\Sigma\implies\mathfrak{p}'\not\subseteq\bigcup_{p\in\Sigma}\mathfrak{p}\implies\mathfrak{p}'\cap S\neq\emptyset.$$

Thus,

$$S \cap \mathfrak{p}' = \emptyset \iff \mathfrak{p}' \in \Sigma.$$

Theorem (2nd Uniqueness Theorem; Theorem 4.10)

Let $\mathfrak a$ be a decomposable ideal in A and $\mathfrak a = \cap_{i=1}^n \mathfrak q_i$ a primary decomposition. Set $\mathfrak p_i = r(\mathfrak q_i)$, and let $\Sigma = \{\mathfrak p_{i_1}, \ldots, \mathfrak p_{i_m}\}$ be an isolated set of prime ideals belonging to $\mathfrak a$. Then $\mathfrak q_{i_1} \cap \cdots \cap \mathfrak q_{i_m}$ is independent of the decomposition.

In particular, we have:

Corollary (Corollary 4.11)

The isolated primary components (i.e., the components whose radicals are minimal primary ideals belonging to $\mathfrak a$) are uniquely determined by $\mathfrak a$.

Proof of 2nd Uniqueness Theorem.

Set
$$S = A \setminus (\cup_{\mathfrak{p} \in \Sigma} \mathfrak{p}) = A \setminus (\cup_{l=1}^m \mathfrak{p}_{i_l}).$$

- From slide 22 we know that S is multiplicatively closed and $\mathfrak{p}_i \cap S = \emptyset \Longleftrightarrow \mathfrak{p}_i \in \Sigma$.
- Applying Proposition 4.9 then gives

$$S(\mathfrak{a}) = \bigcap_{\mathfrak{p}_i \cap S = \emptyset} \mathfrak{q}_i = \bigcap_{l=1}^m \mathfrak{q}_{i_l}.$$

- Observe that S only depends on the prime ideals p_{i_l} . By the 1st uniqueness theorem these prime ideals only depends on \mathfrak{a} . Thus, $S(\mathfrak{a})$ depends only on \mathfrak{a} .
- It then follows that $\mathfrak{q}_{i_1} \cap \cdots \cap \mathfrak{q}_{i_m}$ only depends on \mathfrak{a} , and hence is independent of the decomposition.

The result is proved.