

Differentiable Manifolds

§7. Quotients

Sichuan University, Fall 2020

The Quotient Topology

Reminder

An equivalence relation on a set S is given by a subset $\mathcal{R} \subset S \times S$ with the following properties:

- Transitivity: $(x, x) \in \mathcal{R}$ for all $x \in S$.
- Symmetry: $(x, y) \in \mathcal{R} \Leftrightarrow (y, x) \in \mathcal{R}$.
- Transitivity: $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R} \Rightarrow (x, z) \in \mathcal{R}$.

When $(x, y) \in \mathcal{R}$ we say that x and y are *equivalent* and write $x \sim y$.

The set \mathcal{R} is called the *graph* of the equivalence relation.

The Quotient Topology

Definition

Let \sim be an equivalence relation on S .

- The *class* of $x \in S$, denoted $[x]$, is the subset of S consisting of all $y \in S$ that are equivalent to x .
- The set of equivalence classes is denoted S/\sim and is called the *quotient of S by \sim* .
- The map $\pi : S \rightarrow S/\sim$, $x \rightarrow [x]$ is called the *natural projection map* (or *canonical projection*)

Remarks

- ① The equivalence classes form a partition of S .
- ② The canonical projection $\pi : S \rightarrow S/\sim$ is always onto.

The Quotient Topology

Fact

Suppose that S is a topological space. Let \mathcal{T} be the collection of subsets $U \subset S/\sim$ such that $\pi^{-1}(U)$ is an open in S .

- \mathcal{T} is closed under unions and finite intersections: if $U_\alpha \in \mathcal{T}$ and $V_i \in \mathcal{T}$, then

$$\pi^{-1}(\bigcup U_\alpha) = \bigcup \pi^{-1}(U_\alpha) \text{ and } \pi^{-1}(V_1 \cap V_2) = \pi^{-1}(V_1) \cap \pi^{-1}(V_2)$$

are again contained in \mathcal{T} .

- Therefore \mathcal{T} defines a topology on S/\sim .

Definition

- The topology \mathcal{T} is called the *quotient topology*.
- Equipped with this topology S/\sim is called the *quotient space* of S by \sim .

The Quotient Topology

Remarks

- ① A subset $U \subset S/\sim$ is open if and only if $\pi^{-1}(U)$ is an open in S .
- ② This implies that the projection map $\pi : S \rightarrow S/\sim$ is automatically continuous.
- ③ The quotient topology is actually the strongest topology on S/\sim for which the map $\pi : S \rightarrow S/\sim$ is continuous.

Continuity of a Map on a Quotient

Fact

Let $f : S \rightarrow Y$ be a map that is constant on each equivalence class, i.e.,

$$x \sim y \Rightarrow f(x) = f(y).$$

Then f descends to a map $\bar{f} : S/\sim \rightarrow Y$ such that

$$\bar{f}([x]) = f(x), \quad x \in S.$$

Remarks

- ① The definition of \bar{f} means that if c is an equivalence class in S/\sim , then $\bar{f}(c) = f(x)$ for any $x \in c$.
- ② The equality $\bar{f}([x]) = f(x)$ for all $x \in S$ means that $\bar{f} \circ \pi = f$. That is, we have a commutative diagram,

$$\begin{array}{ccc} S & \xrightarrow{f} & Y \\ \pi \downarrow & \nearrow \bar{f} & \\ S/\sim & & \end{array}$$

Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map $\bar{f} : S/\sim \rightarrow Y$ is continuous if and only if the original map $f : S \rightarrow Y$ is continuous.

Corollary

A map $g : S/\sim \rightarrow Y$ is continuous if and only if the composition $g \circ \pi : S \rightarrow Y$ is continuous.

Identification of a Subset to a Point

Fact

Let A be a subset of S . We can define an equivalence relation \sim on S by declaring:

$$x \sim x \quad \text{for all } x \in S,$$

$$x \sim y \quad \text{for all } x, y \in A.$$

In other words, if we let $\Delta = \{(x, x); x \in S\}$ be the diagonal of $S \times S$, then the graph of the relation is just

$$\mathcal{R} = \Delta \cup (A \times A).$$

It can be checked this is an equivalence relation.

Definition

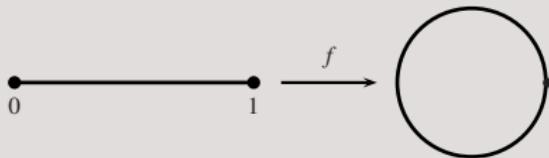
We say that the quotient space S/\sim is obtained by *identifying A to a point*.

Identification of a Subset to a Point

Example

Let I be the unit interval $[0, 1]$ and I/\sim the quotient space by identifying 0, 1 to a point, i.e., by identifying 0 and 1.

- ① The equivalence classes consists of the singletons $\{t\}$, $t \in (0, 1)$, and the pair $\{0, 1\}$.
- ② Let $\mathbb{S}^1 \subset \mathbb{C}$ be the unit circle, and define $f : I \rightarrow \mathbb{S}^1$ by $f(t) = e^{2i\pi t}$. As $f(0) = f(1)$ it induces a map $\bar{f} : I/\sim \rightarrow \mathbb{S}^1$.



- ③ The induced map $\bar{f} : I/\sim \rightarrow \mathbb{S}^1$ is continuous, since f is continuous.

Proposition (Proposition 7.3)

The induced map $\bar{f} : I/\sim \rightarrow \mathbb{S}^1$ is a homeomorphism.

A Necessary Condition for a Hausdorff Quotient

Facts

- If X is a Hausdorff topological space, then every singleton $\{x\}$, $x \in X$, is a closed set in X .
- If the quotient space S/\sim is Hausdorff, then every singleton $\{[x]\}$, $x \in S$, is closed in S/\sim . This means that the preimage $\pi^{-1}(\{[x]\}) = [x]$ is closed in S .

Proposition (Proposition 7.4)

If the quotient space S/\sim is Hausdorff, then all the equivalence classes $[x]$, $x \in S$, are closed sets in S .

Consequence

If there is an equivalence class that is not a closed set, then the quotient space S/\sim is not Hausdorff.

A Necessary Condition for a Hausdorff Quotient

Example

Let \sim be the equivalence relation on \mathbb{R} obtained by identifying the open interval $(0, \infty)$ to a point. Then:

- The equivalence class $[1]$ is the whole interval $(0, \infty)$.
- As $(0, \infty)$ is not a closed set in \mathbb{R} , the quotient space \mathbb{R}/\sim is not Hausdorff.

Open Equivalence Relations

Reminder

A map $f : X \rightarrow Y$ is open when the image of any open set in X is an open set in Y .

Definition

We say that an equivalence relation \sim on a topological space S is open when the projection $\pi : S \rightarrow S/\sim$ is an open map.

Remark

- If $A \subset S$, then $\pi(A)$ is open in S/\sim if and only if $\pi^{-1}(\pi(A)) = \bigcup_{x \in A} [x]$ is an open set in S .
- Thus, the equivalence relation \sim is open if and only if, for every open U in S , the set $\bigcup_{x \in U} [x]$ is open in S .

Example

Let \sim be the equivalence relation on \mathbb{R} that identifies 1 and -1 .

- We have $[x] = \{x\}$ for $x \neq \pm 1$ and $[-1] = [1] = \{\pm 1\}$.
- For the open interval $(-2, 0)$ we get

$$\bigcup_{x \in (-2, 0)} [x] = \left(\bigcup_{\substack{x \in (-2, 0) \\ x \neq -1}} [x] \right) \cup [-1] = (-2, 0) \cup \{1\}.$$

- As $(-2, 0) \cup \{1\}$ is not an open set, the equivalence relation \sim is not open.

Open Equivalence Relations

Reminder

If \sim is an equivalence relation, then its graph is

$$\mathcal{R} = \{(x, y) \in S \times S; x \sim y\} \subset S \times S.$$

Theorem (Theorem 7.7)

Suppose that \sim is an open equivalence relation on a topological space S . Then the quotient space S/\sim is Hausdorff if and only if the graph \mathcal{R} of \sim is closed in $S \times S$.

Open Equivalence Relations

Example

Let \sim be the trivial equivalence relation $x \sim y \Leftrightarrow x = y$. Then:

- $[x] = \{x\}$ for all $x \in S$.
- The graph of \sim is just the diagonal,

$$\Delta = \{(x, x); x \in S\} \subset S \times S.$$

- If S is a topological space, then the projection map $\pi : S \rightarrow S/\sim$ is a homeomorphism.

Corollary (Corollary 7.8)

A topological space S is Hausdorff if and only if the diagonal Δ is closed in $S \times S$.

Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that \sim is an open equivalence relation on S . If $\{U_\alpha\}$ is a basis for the topology of S , then $\{\pi(U_\alpha)\}$ is a basis for the quotient topology on S/\sim .

Corollary (Corollary 7.10)

If \sim is an open equivalence relation on S , and S is second countable, then the quotient space S/\sim is second countable.

Remarks

- ① Intuitively speaking the real projective space $\mathbb{R}P^n$ is the set of lines in \mathbb{R}^{n+1} through the origin.
- ② Two non-zero vectors $x, y \in \mathbb{R}^{n+1} \setminus 0$ are the same line through the origin if and only if there is $t \neq 0$ such that $y = tx$.

Fact

- ① We define an equivalence relation \sim on $\mathbb{R}^{n+1} \setminus 0$ by

$$x \sim y \iff y = tx \text{ for some } t \neq 0.$$

- ② The conjugacy classes consist precisely of the lines through the origin (with the origin deleted).

Definition

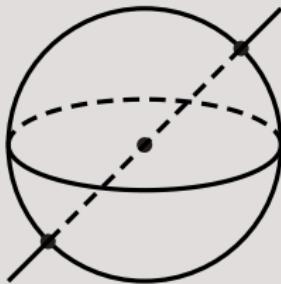
The *real projective space* $\mathbb{R}P^n$ is the quotient space $(\mathbb{R}^{n+1} \setminus 0)/\sim$.

Remarks

- ① We denote by $[a^0, \dots, a^n]$ the class of $(a^0, \dots, a^n) \in \mathbb{R}^{n+1}/\sim$.
- ② We call $[a^0, \dots, a^n]$ *homogeneous coordinates* on $\mathbb{R}P^n$.
- ③ We also let $\pi : \mathbb{R}^{n+1} \setminus 0 \rightarrow \mathbb{R}P^n$ be the canonical projection.

Remark

- ① Every line in \mathbb{R}^{n+1} through the origin meets the unit sphere \mathbb{S}^{n+1} at a pair of antipodal points.
- ② Conversely, there is a unique line through the origin and two antipodal points of \mathbb{S}^{n+1}



Real Projective Space

Facts

- On \mathbb{S}^{n+1} we define an equivalence relation by

$$x \sim y \iff x = \pm y.$$

- The restriction of the canonical projection $\pi_{|\mathbb{S}^n} : \mathbb{S}^n \rightarrow \mathbb{R}P^n$ induces a continuous map $\bar{\pi} : \mathbb{S}^n / \sim \rightarrow \mathbb{R}P^n$.
- The continuous map $f : \mathbb{R}^{n+1} \setminus 0 \rightarrow \mathbb{S}^{n+1}$, $x \mapsto \frac{x}{\|x\|}$ induces a continuous map $\bar{f} : \mathbb{R}P^n \rightarrow \mathbb{S}^n / \sim$.
- The maps $\bar{\pi} : \mathbb{S}^n / \sim \rightarrow \mathbb{R}P^n$ and $\bar{f} : \mathbb{R}P^n \rightarrow \mathbb{S}^n / \sim$ are inverses of each other.

Proposition (Exercise 7.11)

The real projective space $\mathbb{R}P^n$ is homeomorphic to the quotient space \mathbb{S}^n / \sim .

Example (Real projective line $\mathbb{R}P^1$; see also Example 7.12)

- If we regard as the unit circle \mathbb{S}^1 as a subset of \mathbb{C} , then the map $\mathbb{S}^1 \rightarrow \mathbb{S}^1$, $z \rightarrow z^2$ induces a continuous map $\mathbb{S}^1/\sim \rightarrow \mathbb{S}^1$.
- This is a continuous bijection between compact spaces, and hence this is a homeomorphism (by Corollary A.36).
- Here \mathbb{S}^1/\sim is compact, since this is the image of \mathbb{S}^1 by the canonical projection map $\mathbb{S}^1 \rightarrow \mathbb{S}^1/\sim$, which is continuous.
- We thus have a sequence of homeomorphisms,

$$\mathbb{R}P^1 \simeq \mathbb{S}^1/\sim \simeq \mathbb{S}^1.$$

Real Projective Space

Proposition (Proposition 7.14)

The equivalence relation \sim on $\mathbb{R}^{n+1} \setminus 0$ is an open equivalence relation.

Corollary (Corollary 7.15)

The real projective space $\mathbb{R}P^n$ is second countable.

Corollary (Corollary 7.16)

The real projective space $\mathbb{R}P^n$ is Hausdorff.

Facts

- For $i = 0, \dots, n$, define

$$U_i = \{[a^0, \dots, a^n] \in \mathbb{R}P^n; a^i \neq 0\}.$$

- As the property $a^i \neq 0$ remains unchanged when we replace (a^0, \dots, a^n) by (ta^0, \dots, ta^n) with $t \neq 0$, we see that U_i is well defined.
- We have $\pi^{-1}(U_i) = \pi^{-1}(\tilde{U}_i)$, where

$$\tilde{U}_i = \{(a^0, \dots, a^n) \in \mathbb{R}^{n+1} \setminus 0; a^i \neq 0\}.$$

- As \tilde{U}_i is an open set in $\mathbb{R}^{n+1} \setminus 0$, this shows that U_i is an open set in $\mathbb{R}P^n$.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts

- Define $\tilde{\phi}_i : \tilde{U}_i \rightarrow \mathbb{R}^n$ by

$$\tilde{\phi}_i(a^0, \dots, a^n) = \left(\frac{a^0}{a^i}, \dots, \frac{a^{i-1}}{a^i}, \frac{a^{i+1}}{a^i}, \dots, \frac{a^n}{a^i} \right).$$

- As $\tilde{\phi}_i(ta^0, \dots, ta^n) = \tilde{\phi}_i(a^0, \dots, a^n)$ for all $t \neq 0$, the map $\tilde{\phi}_i$ induces a map $\phi_i : U_i \rightarrow \mathbb{R}^n$ such that

$$\begin{aligned}\phi([a^0, \dots, a^n]) &= \tilde{\phi}_i(a^0, \dots, a^n), \\ &= \left(\frac{a^0}{a^i}, \dots, \frac{a^{i-1}}{a^i}, \frac{a^{i+1}}{a^i}, \dots, \frac{a^n}{a^i} \right).\end{aligned}$$

- As $\tilde{\phi}_i : \tilde{U}_i \rightarrow \mathbb{R}^n$ is a continuous map, the induced map $\phi_i : U_i \rightarrow \mathbb{R}^n$ is continuous as well.

Facts

- The map $\phi_i : U_i \rightarrow \mathbb{R}^n$ is a bijection with inverse $\psi_i : \mathbb{R}^n \rightarrow U_j$, where

$$\psi_i(x^1, \dots, x^n) = [x^1, \dots, x^i, 1, x^{i+1}, \dots, x^n].$$

- The inverse map $\psi_i = \phi_i^{-1}$ is continuous, since $\psi_i = \pi \circ \tilde{\psi}_i$, where $\tilde{\psi}_i : \mathbb{R}^n \rightarrow \tilde{U}_i$ is the continuous map given by

$$\tilde{\psi}_i(x^1, \dots, x^n) = (x^0, \dots, x^i, 1, x^{i+1}, \dots, x^n).$$

- Thus, the map $\phi_i : U_i \rightarrow \mathbb{R}^n$ is a homeomorphism.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Facts

- We have

$$\begin{aligned}\phi_0(U_0 \cap U_1) &= \left\{ \left(\frac{a^1}{a^0}, \dots, \frac{a^n}{a^0} \right); a^j \in \mathbb{R}, a^0 \neq 0, a^1 \neq 0 \right\} \\ &= \{ (x^1, \dots, x^n) \in \mathbb{R}^n; x^1 \neq 0 \}.\end{aligned}$$

- The transition map $\phi_1 \circ \phi_0^{-1} : \phi_0(U_0 \cap U_1) \rightarrow \mathbb{R}^n$ is given by

$$\begin{aligned}\phi_0 \circ \phi_1^{-1}(x^1, \dots, x^n) &= \phi_0([1, x^1, \dots, x^n]), \\ &= \left(\frac{1}{x^1}, \frac{x^2}{x^1}, \dots, \frac{x^n}{x^1} \right).\end{aligned}$$

In particular, this is a C^∞ map.

- It can be similarly shown that all the other transition maps $\phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \rightarrow \mathbb{R}^n$ are C^∞ maps.

The Standard Differentiable Structure of $\mathbb{R}P^n$

Conclusion

The collection $\{(U_i, \phi_i)\}_{i=0}^n$ is a C^∞ atlas for $\mathbb{R}P^n$, and so $\mathbb{R}P^n$ is a smooth manifold.

Definition

The differentiable structure defined by the atlas $\{(U_i, \phi_i)\}_{i=0}^n$ is called the *standard differentiable structure* of $\mathbb{R}P^n$.

Complex Projective Space

Facts

We also define complex projective spaces.

- On \mathbb{C}^{n+1} consider the equivalence relation

$$x \sim y \iff \exists \lambda \in \mathbb{C} \setminus 0 \text{ such that } x = \lambda y.$$

In other words $x \sim y$ if and only if x and y lie on the same complex line through the origin.

- The equivalence classes are the complex lines through the origin (minus the origin).
- The *complex projective space* $\mathbb{C}P^n$ is the quotient space $(\mathbb{C}^{n+1} \setminus 0)/\sim$.
- The class of $a = (a^0, \dots, a^n)$ is denoted $[a^0, \dots, a^n]$. We call $[a^0, \dots, a^n]$ *homogeneous coordinates*.
- The space $\mathbb{C}P^n$ is Hausdorff and 2nd countable.

Facts

- For $i = 1, \dots, n$, define

$$U_i = \{[a^0, \dots, a^n]; (a^0, \dots, a^n) \in \mathbb{C}^{n+1} \setminus 0, a^i \neq 0\}.$$

This is an open set in $\mathbb{C}P^n$.

- Define $\phi_i : U_i \rightarrow \mathbb{C}^n$ by

$$\phi_i([a^0, \dots, a^n]) = \left(\frac{a^0}{a^i}, \dots, \frac{a^{i-1}}{a^i}, \frac{a^{i+1}}{a^i}, \dots, \frac{a^n}{a^i} \right).$$

This is a homeomorphism from U_i on \mathbb{C}^n . It has inverse

$$\psi_i(z^1, \dots, z^n) = (z^1, \dots, z^i, 1, z^{i+1}, \dots, z^n).$$

- The transition maps $\phi_i \circ \phi_j^{-1}$ are C^∞ maps (they even are holomorphic maps).
- Thus, $\{(U_i, \phi_i)\}_{i=1}^n$ is a C^∞ atlas for $\mathbb{C}P^n$, and so the complex projective space $\mathbb{C}P^n$ is a manifold.