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The Quotient Topology

Reminder

An equivalence relation on a set S is given by a subset Z C S x S
with the following properties:

e Transitivity: (x,x) € Z for all x € S.
e Symmetry: (x,y) € Z < (y,x) € Z.
e Transitivity: (x,y) € Z and (y,z) € Z = (x,z) € Z%.

When (x, y) € #Z we say that x and y are equivalent and write
Xy,

The set Z is called the graph of the equivalence relation.




The Quotient Topology

Let ~ be an equivalence relation on S.

@ The class of x € S, denoted [x], is the subset of S consisting
of all y € S that are equivalent to x.

@ The set of equivalence classes is denoted S/~ and is called
the quotient of S by ~.

@ Themap 7:S — S/~ , x — [x] is called the natural
projection map (or canonical projection)

RENEIS

© The equivalence classes form of partition of S.

@ The canonical projection 7 : S — S/~ is always onto.




The Quotient Topology

Fact

Suppose that S is a topological space. Let T be the collection of
subsets U C S/~ such that 7=1(U) is an open in S.

@ 7 is closed under unions and finite intersections: if U, € T
and V; € T, then

7 (JUa) =7 M (Ua) and 771 (ViNV,) = 71 (Vi) 1(Va)

are again contained in 7T .

@ Therefore T defines a topology on S/~ .

@ The topology 7 is called the quotient topology.

e Equipped with this topology S/~ s called the quotient space
of S by ~.




The Quotient Topology

@ A subset U C S/~ is open if and only if 7=1(U) is an open
in S.

@ This implies that the projection map 7:S — S/~ is
automatically continuous.

© The quotient topology is actually the strongest topology on
S/~ for which the map 7 : S — S/~ is continuous.




Continuity of a Map on a Quotient

Fact
Let f : S — Y be a map that is constant on each equivalence
class, i.e., x ~y = f(x) = ().

Then f descends to a map f : S/~ — Y such that
f([x]) = f(x), xeSs.

@ The definition of f means that if ¢ is an equivalence class in
S/~ then f(c) = f(x) for any x € c.
@ The equality ([x]) = f(x) for all x € S means that fo7 = f.
That is, we have a commutative diagram,
s—f sy

| A

S/~
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Continuity of a Map on a Quotient

Proposition (Proposition 7.1)

The induced map f : S/~ — Y is continuous if and only if the
original map f : S — Y is continuous.

A map g : S/~ — Y is continuous if and only if the composition
gom:S — Y is continuous.




Indentification of a Subset to a Point

Fact

Let A be a subset of S. We can define an equivalence relation ~
on S by declaring:

X ~ X for all x € S,

X~y for all x,y € A.

In other words, if we let A = {(x,x);x € S} be the diagonal of
S x S, then the graph of the relation is just

Z=NAU(AxA).

It can be checked this is an equivalence relation.

Definition

We say that the quotient space S/~ is obtained by identifying A
to a point.




Identification of a Subset to a Point

Example

Let / be the unit interval [0, 1] and //~ the quotient space by
identifying 0,1 to a point, i.e., by identifying 0 and 1.

© The equivalence classes consists of the singletons {t},
t € (0,1), and the pair {0,1}.
@ Let S! C C be the unit circle, and define f : / — St by
f(t) = e*™t. As £(0) = (1) it induces a map f : [/~ — St.

f

© The induced map f : I/~ — Sl is continuous, since f is
continuous.

Proposition (Proposition 7.3)

The induced map f : |/~ — S is a homeomorphism.




A Necessary Condition for a Hausdorff Quotient

o If X is a Hausdorff topological space, then every singleton
{x}, x € X, is a closed set in X.

o If the quotient space S/~ is Hausdorff, then every singleton
{[x]}, x € S, is closed in S/~ . This means that the preimage
77 ({[x]}) = [x] is closed in S.

Proposition (Proposition 7.4)

If the quotient space S/~ is Hausdorff, then all the equivalence
classes [x], x € S, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the
quotient space S/~ is not Hausdorff.
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A Necessary Condition for a Hausdorff Quotient

Let ~ be the equivalence relation on R obtained by identifying the
open interval (0,00) to a point. Then:

@ The equivalence class [1] is the whole interval (0, c0).

@ As (0,00) is a not a closed set in R, the quotient space R/~
is not Hausdorff.
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Open Equivalence Relations

Reminder

A map f: X — Y is open when the image of any open set in X is
an open set in Y.

Definition
We say that an equivalence relation ~ on a topological space S is
open when the projection 7 : S — S/~ is an open map.

Remark
e If AC S, then 7(A) is open in S/~ if and only if
771 (7(U)) = Uxealx] is an open set in S.
@ Thus, the equivalence relation ~ is open if and only if, for
every open U in S, the set Uycy[x] is open in S.
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Open Equivalence Relations

Let ~ be the equivalence relation on R that identifies 1 and —1.
@ We have [x] = {x} for x # £1 and [-1] = [1] = {£1}.
@ For the open interval (—2,0) we get
U K= U K)ul-1=(-20u{1}.
x€(—2,0) x€(—2,0)
x#—1

@ As (—2,0) U {1} is not an open set, the equivalence relation
~ is not open.
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Open Equivalence Relations

Reminder

If ~ is an equivalence relation, then its graph is

X ={(x,y) €SS, x~y}CSxS.

Theorem (Theorem 7.7)

Suppose that ~ s an open equivalence relation on a topological
space S. Then the quotient space S/~ is Hausdorff if and only if
the graph % of ~ is closed in S x S.
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Open Equivalence Relations

Let ~ be the trivial equivalence relation x ~ y < x = y. Then:
o [x] ={x} forall x € S.
@ The graph of ~ is just the diagonal,

A ={(x,x); xeS} CcSxS.

e If S is a topological space, then the projection map
m:S — S/~ is a homeomorphism.

Corollary (Corollary 7.8)

A topological space S is Hausdorff if and only if the diagonal A is
closed in S x S.
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Open Equivalence Relations

Proposition (Proposition 7.9)

Suppose that ~ is an open equivalence relation on S. If {U,} is a
basis for the topology of S, then {m(U,)} is a basis for the
quotient topology on S/~ .

Corollary (Corollary 7.10)

If ~ is an open equivalence relation on S, and S is second
countable, then the quotient space S/~ is second countable.
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Real Projective Space

© Intuitively speaking the real projective space RP" is the set of
lines in R"™! through the origin.

@ Two non-zero vectors x,y € R"1\ 0 are the same line
through the origin if and only if there is t £ 0 such that
y = tx.

© We define an equivalence relation ~ on R"*1\ 0 by

X ~ y <=y = tx for some t # 0.

@ The conjugacy classes consist precisely of the lines through
the origin (with the origin deleted).
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Real Projective Space

Definition

The real projective space RP" is the quotient space (R"*1\ 0)/~ .

@ We denote by [a°, ..., a"] the class of (a°,...,a") € R™1/~
@ We call [a°, ..., a"] homogeneous coordinates on RP".
© We also let 7 : R"™1\ 0 — RP" be the canonical projection.




Real Projective Space

Remark

@ Every line in R™! through the origin meets the unit sphere
S"+1 at a pair of antipodal points.

© Conversely, there is a unique line through the origin and two
antipodal points of S™t!

W
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Real Projective Space

@ On S™1 we define an equivalence relation by
X~y x==y.

@ The restriction of the canonical projection mg: : 8" — RP"
induces a continuous map 7 : "/~ — RP".

@ The continuous map f : R™1\ 0 — ™1 x — ﬁ induces a
continuous map f : RP™ — §"/~ .

@ The maps 7 : S"/~ — RP" and f : RP" — S"/~ are
inverses of each other.

Proposition (Exercise 7.11)

The real projective space RP" is homeomorphic to the quotient
space S" /~ .
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Real Projective Space

Example (Real projective line RP!; see also Example 7.12)

e If we regard as the unit circle S as a subset of C, then the
map S — S!, z — 22 induces a continuous map S!/~ — St

@ This is a continuous bijection between compact spaces, and
hence this is a homeomorphism (by Corollary A.36).

@ Here S/~ is compact, since this is the image of S! by the
canonical projection map S — S/~ , which is continuous.

@ We thus have a sequence of homeomorphisms,

RP! ~ St/~ ~ St
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Real Projective Space

Proposition (Proposition 7.14)

The equivalence relation ~ on R"*1\ 0 is an open equivalence
relation.

Corollary (Corollary 7.15)

The real projective space RP" is second countable.

Corollary (Corollary 7.16)
The real projective space RP" is HausdorfF.




The Standard Differentiable Structure of RP"

@ Fori=0,...,n, define
U= {[%...,a" e RP"; a' £ 0}.

@ As the property a' # 0 remains unchanged when we replace
(a%,...,a") by (ta®, ..., ta") with t # 0, we see that U; is
well defined.

o We have 7= 1(U;) = 7 1(U;), where

0; = {(a°,. e R™\0; 2" £0}.

o As U; is an open set in R"t1 \ 0, this shows that U; is an

open set in RP".
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The Standard Differentiable Structure of RP"

@ Define gg,- Uy - R" by
0 i—1 i+l

0 _[a a a a"
(ﬁ,‘(a,...’a”)_(ai,..., a’. ,7,...,? .

o As ¢;i(tal, ... ta") = ¢;(a°,...,a") for all t # 0, the map ¢,
induces a map ¢; : U; — R" such that

) ([ao, e a”]) = gg,-(ao, coah),
aO ai—l ai+1 3"
= ;,...,7,7,...,; .

o As ¢~>,- - U; — R" is a continuous map, the induced map
¢; - Ui — R" is continuous as well.
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The Standard Differentiable Structure of RP"

@ The map ¢; : U; — R" is a bijection with inverse
i - R" — U, where

Dilxt, o x™) =[x XX X,

@ The inverse map v; = ¢,'_1 is continuous, since ¥; = 7o 1/;,-,
where ¥; : R" — U; is the continuous map given by

zzi(xl,...,x") = (X0 .. x 1 X x™).

@ Thus, the map ¢; : U; — R" is a homeomorphism.
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The Standard Differentiable Structure of RP"

@ We have

1 Pul

¢0(U0mU1):{<aoa"'a0>;aj€R7 307&07 31#0}
={(x* ) €R"™; x* #£0}.
@ The transition map ¢ o qﬁgl tpo(Up N Up) — R is given by
¢o o ¢1_1(x1,...,x") = ¢g ([1,x1, e 7x"]) ,

1 x? x"
= F,F,...,F .

In particular, this is a C*° map.

@ It can be similarly shown that all the other transition maps
¢i o gbjfl c¢j(Uin Uj) — R™ are C*° maps.
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The Standard Differentiable Structure of RP"

The collection {(U;, ¢;)}7_y is a C* atlas for RP", and so RP" is
a smooth manifold.

Definition

The differentiable structure defined by the atlas {(U;, ¢;)}7_, is
called the standard differentiable structure of RP".
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Complex Projective Space

We also define complex projective spaces.
@ On C"*! consider the equivalence relation

x~y <= I\ € C)\O0 such that x = \y.

In other words x ~ y if and only if x and y lie on the same
complex line through the origin.

@ The equivalence classes are the complex lines through the
origin (minus the origin).

@ The complex projective space CP" is the quotient space
(C™\0)/~ .

@ The class of a = (a°,...,a") is denoted [a°,...,a"]. We call
[a°, ..., a"] homogeneous coordinates.

@ The space CP" is Hausdorff and 2nd countable.
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Differentiable Structure on CP"

@ Fori=1,...,n, define
U= {[a°%...,a"; (&°%...,a") e C"*1\ 0, a' #0}.

This is an open set in CP".
@ Define ¢; : U; — C" by

0
o; ([aO,...,a”]) = <a

aifl ai+1 3"
a’ Al )

c ey 3 9oy

al 7 al al

This is a homeomorphism from U; on C". It has inverse
1 1 j i+1
vi(z+,...,2") = (z o2 1,2 ,...,Z”).
@ The transition maps ¢; o cbfl
holomorphic maps).

@ Thus, {(U;, i)}, isa C> atlas for CP", and so the
complex projective space CP” is a manifold.

are C* maps (they even are
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