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Smooth Functions on a Manifold

Definition (Smooth functions)

Let M be a manifold of dimension n.

@ A function f : M — R is said to be C* or smooth at a point
p € M when there is a chart (U, ¢) about p in M such that
the function f o ¢~ : #(U) — R is C*> at ¢(p) (here #(U) is
an open subset of R").

@ We say that f is C* on M when it is C*° at every point of M.




Smooth Functions on a Manifold

@ The smoothness condition is independent of the choice of the
chart (U, ¢).

e If (V,%)) is another chart about p and f o ¢! is C*°, then
foyp™l =(fFogp L) o(porp™t)is C> at p as well, since the
transition map ¢ ot lisa C*®,

e If a function f : M — R is C* at p, then it is automatically
continuous at p.

@ If (U, ) is a chart about p and f o ¢~ is C* at ¢(p), then
f = (fop 1) o ¢ is continuous at p, since ¢ is a continuous
map.

@ Therefore, any C°-function on M is continuous.




Smooth Functions on a Manifold

Proposition (Proposition 6.3)
Let f : M — R be a function. Then TFAE:

Q@ fisC>®onM.

@ For every chart (U, ¢) on M, the function f o L : p(U) — R
is C*°.




Smooth Maps Between Manifolds

In what follows M is a manifold of dimension m and N is a
manifold of dimension n.

Definition (Smooth maps between manifolds)

Let F: N — M be a continuous map.

@ We say that F is C* or smooth at p € N when there are a
chart (U, ¢) about p in N and a chart (V1) about F(p) on
N such that the map 1o Fog™t: ¢p(F-H(V)NU) = R™is
C> at ¢(p) (here ¢(F~1(V) N U) is an open set in R").

@ Then map F is C* on N when it is C* at every point p € N.




Smooth Maps Between Manifolds

@ We assume F : N — M to be continuous to ensure that
F~1(V) is an open set in \V.

@ When M = R™ the continuity assumption can be dropped.

Proposition (Remark 6.6)

A map F: N — N is C> at p if and only if there is a chart (U, ¢)
about p in N such that the map F o ¢! : ¢(U) — R™ is C*® at p
(here ¢(U) is an open set in R").
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Smooth Maps Between Manifolds

Proposition (Proposition 6.7)

Suppose that F : N — M is C* at p. Then, for every chart (U, ¢)
about p in N and every chart (V,1) about F(p) in M, the map
poFogp l:p(FL(V)NU)— R™is C® at ¢(p).

Proposition (Proposition 6.8)

Let F: N — M be a continuous map. TFAE:
Q F isa C*® map.

@ For every chart (U, ¢) on N and every chart (V,4) on M, the
map po Fogl:p(FL(V)NU)— R™is C=.




Smooth Maps Between Manifolds

Proposition (Proposition 6.9; Composition of C* maps)

IfF:N— M and G: P — N are C*° maps (where P is a
manifold), then the composition F o G : P — M is a C*° map.




Diffeomorphisms

Definition

We say that a map F : N — M is a diffeomorphism when it is a
bijective C*> map with C> inverse F~1.

Proposition (Proposition 6.10)

If (U, ¢) is a chart on M, then the coordinate map
¢:U— ¢(U) CR™ is a diffeomorphism.

Proposition (Proposition 6.11)

Let U be an open subset of M. If F: U — F(U) CR" is a
diffeomorphism onto an open subset of R™, then the pair (U, F) is
a chart on M.




Smoothness in Terms of Components

Proposition (Propositions 6.12 & 6.13)
Let F: N — R™ be a map with components F*,...,F™: N — R
(so that F(p) = (F(p),...,F"(p)). Then TFAE:
Q F isa C®-map.
@ For every chart (U, $) on N, the map Fo ¢t : ¢(U) — R™ is
C®.

© All the components F1,...,F™ : N — R are C*® maps

RENEILS

We don't need to assume F to be continuous, since the 2nd and
3rd properties both imply that F is continuous.
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Smoothness in Terms of Components

Proposition (Propositions 6.15 & 6.16)

Let F: N — M be a continuous map. Then TFAE:
Q F isa C*® map.
@ For every chart (V,1) on M the vector-valued function
YoF:F Y V)= R™isC®.
© For very chart (V,) = (V,y!,...,y") the component
functions y' o F : F71(V) — R™ are C*®.

Remark

We assume F to be continuous to insure that in the 2nd and 3rd
properties F~1(V/) is an open subset of R”.
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Examples of Smooth Maps

Example (Example 6.17 + Exercise 6.18)

Let M; and M5 be manifolds.

© The 1st factor projection 71 : My x My — My,
m1(p1,p2) = p1 is a C* map. Likewise, the 2nd factor
projection 7 : My x My, — M5 is a smooth map.

@© Given a manifold N, amap f: N — My x My is C* if and
only if the components 7; 0 f : N — M; are C*° maps.
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Examples of Smooth Maps

Example (Example 6.19)

Let S C R™! be the unit sphere. If f : R"T! - Risa C®
function, then the restriction fiso : 8" — R is a C* function on S".
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Examples of Smooth Maps

Definition (Lie Groups)

A Lie group is a group G equipped equipped with a differentiable
structure such that:
(i) The multiplication map p: G x G — G, (x,y) = xy isa C*®
map.

(i) Theinverse mapt: G — G, x — x !

© The Euclidean spaces R” and C” are Lie groups under
addition.

is a C* map.

@ The set of non-zero complex numbers C* :=C\ 0 is a Lie
group under multiplication.

© The unit circle S' € C* is a Lie group under multiplication.

@ If G; and G; are Lie groups, then their Cartesian product
Gy X Gy is again a Lie group.




Examples of Smooth Maps

Example (Example 6.21; see Tu's book)

We saw in Section 5 that the general groups GL(n,R) and
GL(n,C) are manifolds. They are also Lie groups under
multiplication of matrices.

Further examples of Lie groups are studied in Section 15.
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Partial Derivatives

In what follows M is a manifold of dimension n. J
Reminder

If (U,¢) = (U,x*,...,x") achart on M, then by definition the
components x1,...,x" of ¢ are given by xX' =rfo¢: U — R.

Definition
Let f : M — R be a C* function. For p € U the partial derivative
of f with respect to x' at p is

o) =22 ) (o).

RENEILS

of
Ox'

The partial derivative 2-(p) is also denoted %‘pf.
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Partial Derivatives

As $~1(6(p)) 9f (p) = 207 (4(p)) can be
rewritten as

0o (6(e) = 2207 (o).

Thus, as functions on ¢(U) we have

I(f o gb*l)
ori

8X’ ¢_ B

In particular, this shows that 8f : U — R is C* function on U.

Proposition (Proposition 6.22)

If (U,x%,...,x") is a chart on M, then 2

= 5'.'_

8J




Partial Derivatives

In what follows M is a manifold of dimension m and N is a
manifold of dimension n. ’

Definition (Jacobian matrices and Jacobian determinants)
Let F: M — N be a C* map. Let (U,¢) = (U,x},...,x") be a
chart on N and (V,9) = (V,y!,...,y") a chart on M such that
F(U) C V. Denote F' := y'o F =rio4o F: U — R the j-th
component of F in the chart (V).
@ The matrix [8Fi/8xj] is called the Jacobian matrix of F
relative to the charts (U, ¢) and (V, ).

@ When m = n the determinant det [0F'/0x/] is called the
Jacobian determinant of F relative to the charts.

RENEILS

The Jacobian determinant is also denoted
O(FY, ..., F™)/o(xL, ..., x").
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Remark
If N = U is an open subset of R” and M = V is an open subset of
R™, and we use the charts (U, r*,...,r") and (V,rt ..., r™),

then the Jacobian matrix [8Fi/8rj] is the usual Jacobian matrix
from calculus.

Example (Example 6.24; Jacobian matrix of a transition map)

Let (U,¢) = (U,x,...,x") and (V,9) = (V,y',...,y") be
overlapping charts on N. The transition map

Yoo l:p(UNV)— y(UNV)is a diffeomorphism between
open subsets of R”. Given any p € UN V, we have

oy' v (oo )

Yo =20 (o).
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The Inverse Function Theorem

In what follows M and N are manifolds of dimension n.

D

Reminder

By Proposition 6.11, given an open U C M, any diffeomorphism
F : U C F(U) C R" defines a coordinate system on U, i.e., (U, F)
is a chart on M.

Definition

We say that a C*° map F : N — M is locally invertible or is local
diffeomorphism near p € N if there is an open neighborhood U of
p in N such that Fy : U — F(U) is a diffeomorphism.

RENEILS

If F=(F',...,F"): N — R" is locally invertible near p € N, then
it defines a coordinate system about p.
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The Inverse Function Theorem

Theorem (Theorem 6.25, Inverse Function Theorem for R”; see

also Appendix B)

Let F=(F',...,F"): W — R" be a C>®-map, where W is an
open set in R". Given any p € W, TFAE:

(i) F is locally invertible near p.
(i) The Jacobian determinant det[0F'/0x/(p)] is non-zero.
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The Inverse Function Theorem

Theorem (Theorem 6.26, Inverse Function Theorem for manifolds)
Let F: N — M be a C*®°-map. Given any p € N, TFAE:

(i) F is locally invertible near p.

(i) We have a non-zero Jacobian determinant det[0F'/0x/(p)].

@ In (ii) the Jacobian determinant det[0F'/9x/(p)] relatively to
some chart (U, x!,...,x") about p in N and some chart
(V,y',...,y") about F(p) in M and we have F' = y' o F.

@ The condition det[0F'/0x/(p)] # 0 is independent of the
choice of the charts.




The Inverse Function Theorem

U 4
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YoFog!
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Fig. 6.4. The map F is locally invertible at p because y o F o 9! is locally invertible at ¢(p).

Corollary (Corollary 6.27)

Let F=(F',...,F"): U— R" be C> map on a neighborhood U
of a point p in N. TFAE:

@ F = (F',...,F") defines a coordinate system near p.

Q det[0F'/0xi(p)] # 0.
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