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Constant Rank Theorem

Let N be a manifold of dimension n and M a manifold of
dimension n.
@ The rank at p € N of a smooth map f : N — M is the rank of
its differential £, , : T,N — Tf‘(p)M.

@ The rank is always < min(m, n), where m = dim M and
n=dimM\.




Constant Rank Theorem

The constant rank theorem for smooth maps between Euclidean
spaces (see Appendix B) has the following analogue for smooth
maps between manifolds.

Theorem (Constant Rank Theorem; Theorem 11.1)

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n. Let f : N — M be a smooth map that has
constant rank k near a point p € N. Then, there are a chart

(U, ¢) centered at p in N and a chart (V1)) centered at f(p) in
M such that, for all (r*,...,r") € ¢(U), we have

(¢ofo¢_1)(r1,...,rn):(rl,...,rk,O,...,O).

If Kk = m, then
(Yofop™t)(rt,....r")=(rt,...,r™).




Constant Rank Theorem

Suppose that (U, ¢) = (U,x*,...,x") is a chart centered at p and
(V,¥) = (V,y!,...,y™) is a chart centered at f(p) such that

(¢ofo¢_1) (.. r")y = (..., rk0,...,0).
e For any g € U, we have ¢(q) = (x!(g),...,x"(g)) and
»(f(q)) = (y' o f(q),...,¥y™ o f(q)).
@ Thus,
(y' o f(q),- -,y of(q)) =4(f(a) = (o fos™) (4(q))
= (zp ofo ng*l) (xl(q), . ,x”(q))
= (xl(q), ... ,xk(q),O, . ,0).
@ Therefore, relative to the local coordinates (x!,...,x") and
(yl,...,y™) the map f is such that

(x%, ... x") — (xh, ..., xk,0,...,0).




Constant Rank Theorem

A consequence of the constant rank theorem is the following
extension of the regular level set theorem (Theorem 9.9) (see Tu's
book).

Theorem (Constant-Rank Level Set Theorem; Theorem 11.2)

Let N :— M be a smooth map and c € M. If f has constant rank
k in a neighborhood of the level set f~X(c) in N, then f~1(c) is a
regular submanifold of codimension k.

A neighborhood of a subset A C N is an open set containing A.




Constant Rank Theorem

Example (Orthogonal group; Example 11.3)

The orthogonal group O(n) is the subgroup of GL(n,R) of
matrices A such that AT A = I, (identity matrix),
e This is the level set f=1(1,), where f : GL(n,R) — GL(n,R),
A— ATA
@ It can be shown that 7 has constant rank (in fact it has rank
k = %n(n +1)).
@ Therefore, by the constant-rank level set theorem O(n) is a
regular submanifold of GL(n, R) (of codimension $n(n + 1)).
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The Immersion and Submersion Theorems

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n, and let f : N — M be a smooth map.

e f is an immersion at p if f, 1 ToN — T,y M is injective.

e f is a submersion at p if f. p: ToN — Tg(,)M is surjective.

Remark

Equivalently,

f is an immersion at p <= n < mand rkf, , = n

f is a submersion at p <= n > mand rkf, , = m.

As we always have rk f, , < min(m, n), we see that

f immersion /submersion at p <= f,, p has maximal rank.




The Immersion and Submersion Theorems

Set k = min(m, n), and denote by RX" the set of m x n matrices
A € R™*" of maximal rank.

@ An m X n-matrix has maximal rank if and only if it has a
non-zero k X k-minor.

@ The minors are polynomials in the coefficients of matrices,
and hence are continuous functions.

@ Thus, if a matrix A has a non-zero k X k-minor, then this
minor is non-zero for any matrix that is sufficiently close to A,
and so those matrices have maximal rank.

o It follows that RX" is a neighbourhood of each of its

elements, and hence is an open set in R7*"




The Immersion and Submersion Theorems

Facts

Suppose that f : N — M is a smooth map. Let (U,x!,...,x") be
chart about p in M and (V,y!,...,y™) a chart about f(p) in M.
Set Umax = {q € U; fi 4 has maximal rank}.

o If g€ U, then f, g : TgM — T, is represented by the
matrix J(q) := [0f'/0x/(q)], with f' = y' o f, and hence
rk f, g = rkJ(q). Thus,

Unax = {q € U; J(q) € RDXM} = JH(REX").

@ It can be shown that ¢ — J(F)(q) is C*°, and hence is
continuous.

@ As R7X" is open, it follows that Umax is open as well.

@ In particular, if f, has maximal rank at p, then it has maximal
rank near p.




The Immersion and Submersion Theorems

As a consequence we obtain:

Proposition (Proposition 11.4)

If a smooth map f : N — M is a immersion (resp., a submersion)
at a point p € N, then it is an immersion (resp., submersion) near
p. In particular, it has constant rank near p.
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The Immersion and Submersion Theorems

By combining the previous proposition with the constant rank
theorem we obtain the following result.

Theorem (Theorem 11.5)

Let f : N — M be a smooth map.

@ Immersion Theorem. If f is an immersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V)
centered at f(p) in M such that near ¢(p) we have

(Yofop™b)(rt,....r") = (r}...,r",0,...,0).

@ Submersion Theorem. If f is a submersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V1))
centered at f(p) in M such that near ¢(p) we have

(Wofo™ ) (rt, ... rm ™ )y = (™).

11/30



The Immersion and Submersion Theorems

@ The immersion theorem implies that if f : N — M is an
immersion then, for every p € N, there are a chart
(U,x%,...,x") centered at pin N and a chart (V,y!,...,y™)
centered at f(p) in M relative to which f is such that

(%) (xl,...,x”)—>(x1,...,x”,0,...,0).

e Conversely, If f satisfies (x), then, setting fi=yiof, we have

orijoxl] = 210 | I .

Om—n m—n

In particular, [afi/axj] has maximal rank, which implies that
f is an immersion near p.
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The Immersion and Submersion Theorems

@ The submersion theorem implies that if f : N — M is a
submersion then, for every p € N, there are a chart
(U,x%,...,x") centered at pin N and a chart (V,y!,...,y™)
centered at f(p) in M relative to which f is such that

(Xl,...,X , X ,...,X")—>(x1,...,xm).

1 1

® The projection (x!,...,x™ x™1 . x") — (x},...,x™) is
an open map (see Problem A.7). This implies that f maps
any neighborhood of p onto a neighborhood of f(p).

@ As this is true for every p € N, we see that f is an open map.
Therefore, we obtain:

Corollary (Corollary 11.6)

Every submersion f : N — M is an open map.
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Images of Smooth Maps

Let us look at some examples of smooth maps f : R — R?.

Example (Example 11.7)

Let f(t) = (¢, t3).
@ This is a one-to-one map, since t — t3 is one-to-one.
e As f/(0) = (0,0) the differential f, g is zero, and so f is not an

immersion at 0.

@ The image of f is the cuspidal cubic y? = x3.
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Images of Smooth Maps

Example (Example 11.8)
Let f(t) = (t2 —1,t3 —t).
e As f'(t) = (2t,3t> — 1) # (0, 0) the differential f, is
one-to-one everywhere, and hence f is an immersion.
@ However, f is not one-one since (1) = f(—1) = (0,0).

@ The image of f is the nodal cubic y? = x?(x + 1) (see Tu's
book).
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Image of Smooth Maps

Example (The Figure-eight; Example 11.12)

Set | = (—m/2,37/2), and let f : | — R?, t — (cos t,sin 2t).

3+
A~

|
STE
ST

e f'(t) = (—sint,2cos2t) # (0,0), and so f is an immersion.
@ f is one-to-one, and so f is a bijection onto its image (/).
@ The inverse map =1 : f(/) — I is not continuous: if
t = (37/2)7, then f(t) — (0,0) = f(n/2), but
fYf(t) =t —3m/2& 1.

In particular, f : | — f(/) is not a homeomorphism.
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Image of Smooth Maps

Summary

As the previous examples show:
@ A one-to-one smooth map need not be an immersion.
@ An immersion need not be one-to-one.

@ A one-to-one immersion need not be a homeomorphism onto
its image.

Definition

A smooth map f : N — M is called an embedding if f is an
immersion and a homeomorphism onto its image f(/N) with respect
to the subspace topology.

RENEILS

A one-to-one immersion f : N — M is an embedding if and only if
it is an open map.
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Image of Smooth Maps

The importance of embeddings stems from the following result.

Theorem (Theorem 11.13)

If f : N — M is an embedding, then its image f(N) is a regular
submanifold in M.
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Image of Smooth Maps

Proof of Theorem 11.13.

As f is an immersion, by the immersion theorem, for any

p € N, there are a chart (U, x1,...,x") centered at p in N
and a chart (V,y!,...,y™) centered at f(p) relative to which
f is such that (xl,...,x”) — (xl,...,x”,O,...,O). Thus,

f(U)={qe Viy"(q)="--=y™(q) =0}

As f : N — f(N) is a homeomorphism, f(U) is an open set in
f(N) with respect to the subspace topology. That is, there is
an open V' in M such that f(U) = V' N f(N).

Thus,

VNV Af(N)=VnfU)=fU)={y"" =...=y™=0}.
Thatis, (VN V/,yl,...,y™) is an adapted chart relative to
f(N) near f(p) in M.

It follows that f(/N) is a regular submanifold.
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Image of Smooth Maps

We have the following converse of the previous theorem.

Theorem (Theorem 11.14)

If N is a regular submanifold in M, then the inclusion i : N — M is
an embedding.
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Image of Smooth Maps

Proof of Theorem 11.14.

Let N be a regular submanifold in M.

@ As N has the subspace topology, the inclusion i : N — M is a
homeomorphism onto its image.

@ As N is a regular submanifold, near every p € N, there is an
adapted chart (U, x!,...,x™) near p in M such that
(UNN,xt, ..., x") is a chart in N near p and

UNN={x"tl=... = x™=0}.
o Therefore, relative to the charts (UN N, x!,...,x") and
(U,x,...,x™) the inclusion i : N — M is such that
(Xl,...,x”) — (xl,...,x”,O,...,O).

@ By a previous remark, it follows that the map i : N — M is an
immersion near p.

Ol
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Image of Smooth Maps

RENEIS

© The images of smooth embeddings are called embedded
submanifolds.

@ The previous two results show that the regular submanifolds
and embedded submanifolds are the same objects.

© The images of one-to-one immersions are called immersed
submanifolds.

The figure-eight is an immersed submanifold in R? (but this is not
a regular submanifold).
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Smooth Maps into a Submanifold

Suppose that f : N — M is smooth map such that f(N) is
contained in a given subset S C M. If S is manifold, then is the
induced map f : N — S smooth as well?

Theorem (Theorem 11.15)

Suppose that f : N — M is a smooth map whose image is
contained in a regular submanifold S in M. Then the induced map
f:N— S is smooth.

© The above result does not hold if S is only an immersed
submanifold (see Tu's book).

© The converse holds. As S is a regular submanifold, the
inclusion i : S — M is smooth. Thus, if f : N — S is a
smooth map, then jof : N — M is a C*° map that induces f.
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Smooth Maps into a Submanifold

Proof of Theorem 11.15.

Set m=dimM and s =dim S, and let p € N.
@ As S is a regular submanifold and f(p) € S, there is an
adapted chart (V, %) = (V,y!,...,y™) near f(p) in M. Then
(VNS,ys)=(VNS,yt,...,y°) is a chart near f(p) in S.

@ As f is a C*°-map, the functions yi of are C* on
U := f~1(V) (which is an open neighbourhood of p in N
since f is continuous).

@ On f~ (V) we have ysof = (ylof,...,y*of), and so
tsof: f1(V) — R® is a smooth map.
@ As (VN S,1s) is chart for S, it follows from Proposition 6.15

that the induced map f : f (V) — S is smooth, and hence
is smooth near p.

Ol
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Smooth Maps into a Submanifold

Example (Multiplication map of SL(n,R); Example 11.16)
SL(n,R) is the subgroup of GL(n,R) of matrices of determinant 1.

@ This is a regular submanifold in GL(n,R) (Example 9.11), and
so the inclusion ¢ : SL(n,R) < GL(n,R) is a smooth map.

@ By Example 6.21 we have a smooth multiplication map,
w: GL(n,R) x GL(n,R) — GL(n,R).
@ We thus get a smooth map,
o (¢ x¢):Sk(n,R) x SL(n,R) — GL(n,R).

@ As it takes values in SL(n,R), and SL(n,R) is a regular
submanifold in GL(n,R), we get a smooth multiplication map,

SL(n,R) x SL(n,R) — SL(n,R).
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Smooth Maps into a Submanifold

Theorem 11.5 and its converse are especially useful when M = R".
In this case we have:

Corollary

Let S be a regular submanifold in R™ and f : N — R™ a map such
that f(N) C S. Set f = (f1,...,f™). Then TFAE:

(i) f is smooth as a map from N to S.
(ii) f is smooth as a map from N to R™.

(ii) The components f1,... f™ are smooth functions on N.
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The Tangent Space to a Submanifold in R™

Let f : R™1 — R be a smooth function with no critical points on
its zero set N = £—1(0).

@ By the regular level set theorem N is a regular submanifold in
R of dimension n.

@ Then the inclusion i : N — R"*1 is an embedding, and so, for
every p € N, the differential i : T,N — TP]R”+1 is injective.

@ We thus can identify the tangent space T,N with a subspace
of TPR"“ ~ R"t1. More precisely, we regard it as a subspace
of R™1 through p.

o Thus, any v € T,N, is identified with a vector (v!,...v"),
which is then identified with the point x = p + (v!,...,v").

TN
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The Tangent Space to a Submanifold in R™

o Set p=(p!,...,p" 1) and x = (x}, ..., x"T1). Let
c: (—€,€) — R be a smooth curve such that ¢(0) = p,
c'(0) =v, and c(t) € N, i.e., f(c(t)) =0. Then

d o of L Of
0= 2| Flete) = SO T e(0) = v io)
o As v/ = x’ — p', we see that (x!,...,x") satisfies,
of ..
() o PIX = p')=0.

@ As p is a regular point, g)f,-(p) = 0 for some i, and so the

solution set of (*) has dimension n.

@ As dim N = n, the tangent space T,N has dimension n, and
so it is identified with the full solution set of (x).
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Therefore, we obtain the following result:

Proposition

Let f : R"1 — R be a smooth function with no critical points on
its zero set N = f=1(0). If p= (p*,...,p" ™) is a point in N,
then the tangent space T,N is defined by the equation,

® o) —p) =0

RENEILS

| \

Equivalently, T,N is identified with the hyperplane through p that
is normal to the gradient vector (Of /Ox*(p),...,0f /Ox"T1(p)).
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The Tangent Space to a Submanifold in R™

Example (Tangent plane to a sphere)

The sphere S? C R3 is the zero set of

f(x,y,z) =x>+y?>+ 22— 1.

@ We have
of of of

9oy, T 9 _ o,
ax 0 dy Yo 9z T

@ Thus, at p = (a, b, c) € S? the tangent plane has equation,

S (P)x = 3) + g (p)ly — b) + 5_(p)(z— ) =0,
<= a(x—a)+ by —b)+c(z—c)=0,
< ax+ by +cz=a’+ b’ + 3,
< ax+ by +cz=1.
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