Commutative Algebra Chapter 3: Rings and Modules of Fractions

Sichuan University, Fall 2020

The Field of Fractions of an Integral Domain

Reminder

We say that a ring A is an *integral domain* when it has no non-zero divisors, i.e.,

$$xy = 0 \iff x = 0 \text{ or } y = 0.$$

Fact

In the same way we construct the rational field \mathbb{Q} from the ring of integers \mathbb{Z} , with any integral domain A we can associate its field of fractions $\operatorname{Frac}(A)$.

The Field of Fractions of an Integral Domain

Facts

Let A is an integral domain. Set $S = A \setminus \{0\}$. On $A \times S$ define a relation \equiv by $(a,s) \equiv (b,t) \iff at = bs$.

This relation is reflexive and symmetric,

$$(a,s) \equiv (a,s), \qquad (a,s) \equiv (b,t) \Longleftrightarrow (b,t) \equiv (a,s).$$

• To check transitivity, suppose that $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$, i.e., at = bs and bu = ct. Then

$$t(au - cs) = (at)u - (ct)s = (bs)u - (bu)s = 0.$$

- As $t \neq 0$ and A is an integral domain, this implies that au = cs, i.e., $(a, s) \equiv (c, u)$.
- Therefore, the relation \equiv is an equivalence relation on $A \times S$.

The Field of Fractions of an Integral Domain

Definition

- **1** The class of (a, s) is denoted by a/s.
- ② The set of equivalence classes is denoted by Frac(A).

Proposition

• Frac(A) is a field with respect to the addition and multiplication given by

$$(a/s) + (b/t) = (at + bs)/st,$$
 $(a/s) \cdot (b/t) = ab/st.$

② The map $A \ni a \to a/1 \in \operatorname{Frac}(A)$ is an injective ring homomorphism, and hence embeds A as a subring into $\operatorname{Frac}(A)$.

Definition

The field Frac(A) is called the *field of fractions* of A.

Examples

- **1** If $A = \mathbb{Z}$, then $Frac(A) = \mathbb{Q}$.
- ② If A is a polynomial ring k[x], k field, then Frac(A) is the field of rational functions over k.
- **3** If A is the ring of holomorphic functions on an open $\Omega \subset \mathbb{C}$, then $\operatorname{Frac}(A)$ is the field of meromorphic functions on Ω .

Remark

- The construction of the field Frac(A) uses the fact that A is an integral domain.
- It still can be adapted for arbitrary rings.

In what follows we let A be a ring.

Definition

A subset S of A is called *multiplicatively closed* when

$$1 \in S$$
 and $x, y \in S \Longrightarrow xy \in S$.

Example

The ring A is an integral domain if and only if $A \setminus \{0\}$ is multiplicatively closed.

Facts

Let S be a multiplicatively closed subset of A. On $A \times S$ define a relation \equiv by

$$(a,s) \equiv (b,t) \Longleftrightarrow \exists u \in S \text{ such that } (at-bs)u = 0.$$

- This relation is reflexive and symmetric.
- To check transitivity, suppose that $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$, i.e., there are $v, w \in S$ such that

$$(at - bs)v = (bu - ct)w = 0.$$

• Then (au - cs)tvw is equal to

$$[(at)v]uw - [(ct)w]sv = -[(bs)v]uw + [(bu)w]sv = 0.$$

- As S is multiplicatively closed, $tvw \in S$, and so $(a, s) \equiv (c, u)$.
- Thus, we have an equivalence relation on $A \times S$.

Definition

- The class of (a, s) is denoted by a/s.
- ② The set of equivalence classes is denoted by $S^{-1}A$.

Proposition

$$(a/s) + (b/t) = (at + bs)/st,$$
 $(a/s) \cdot (b/t) = ab/st.$

② The map $f: A \to S^{-1}A$, $a \to a/1$ is a ring homomorphism.

Remarks

- **1** The ring homomorphism $f: A \to S^{-1}A$ is not injective in general.
- ② If A is an integral domain and $S = A \setminus \{0\}$, then $S^{-1}A$ is the field of fractions Frac(A).

Definition

The ring $S^{-1}A$ is called the *ring of fractions* of A with respect to S.

Proposition (Universal Property of $S^{-1}A$; Proposition 3.1)

Let $g:A\to B$ be a ring homomorphism such that g(s) is a unit in B for all $s\in S$. Then there is a unique ring homomorphism $h:S^{-1}A\to B$ such that $g=h\circ f$.

Fact

The ring $S^{-1}A$ and the homomorphism $f:A\to S^{-1}A$ satisfy the following properties:

- (i) f(s) is a unit in $S^{-1}A$ for all $s \in S$.
- (ii) If f(a) = 0, then as = 0 for some $s \in S$.
- (iii) Every element of $S^{-1}A$ is of the form $f(a)f(s)^{-1}$ with $a \in A$ and $s \in S$.

Corollary (Corollary 3.2)

Let B be a ring and $g:A\to B$ a ring homomorphism satisfying the properties (i)–(iii) above. Then there is a unique ring isomorphism $h:S^{-1}A\to B$ such that $g=h\circ f$.

Example

- The single set $S = \{0\}$ is multiplicatively closed.
- In this case $S^{-1}A$ is the zero ring, since $(a,0) \equiv (0,0)$ for all $a \in A$.
- In fact, we have

$$S^{-1}A$$
 is the zero ring $\iff 0 \in S$.

Example

Let α be an ideal in A, and set

$$S = 1 + \mathfrak{a} = \{1 + x; \ x \in \mathfrak{a}\} = \{x \in A; x = 1 \bmod \mathfrak{a}\}.$$

Then *S* is multiplicatively closed.

Example

Let $f \in A$ and set $S = \{f^n; n \ge 0\}$.

- The subset *S* is multiplicatively closed.
- We write A_f for $S^{-1}A$ in this case.
- If $A = \mathbb{Z}$ and $f = q \in \mathbb{Z}$, then A_f consists of rational numbers of the form mq^{-n} with $m \in \mathbb{Z}$ and $n \geq 0$.

Reminder

• An ideal p of A is called a prime ideal when

$$xy \in \mathfrak{p} \iff x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}.$$

- Any maximal ideal is prime.
- A local ring is a ring that has a unique maximal ideal.

Example

Let $\mathfrak p$ be a prime ideal, and set $S=A\setminus \mathfrak p$. We have

 \mathfrak{p} is prime \iff S is multiplicatively closed.

We denote by A_p the ring $S^{-1}A$ in this case.

Facts

Let \mathfrak{m} be the subset of $A_{\mathfrak{p}}$ consisting of elements of the form a/s with $a \in \mathfrak{p}$ and $s \in S$.

- \mathfrak{m} is an ideal of $A_{\mathfrak{p}}$.
- If $b/t \notin \mathfrak{m}$, then $b \notin \mathfrak{p}$, i.e, $b \in S$, and so b/t is a unit in $A_{\mathfrak{p}}$ (with inverse t/b).
- Thus, if $\mathfrak a$ is an ideal such that $\mathfrak a \not\subset \mathfrak m$, then $\mathfrak a$ contains a unit, and hence $\mathfrak a = A$.
- It follows that $\mathfrak m$ is a maximal ideal of $\mathfrak a$ and is the only such ideal. Thus, $A_{\mathfrak p}$ is a *local ring*.

Definition

The ring A_p is called the *localization* of A at p.

Example

 $A = \mathbb{Z}$ and $\mathfrak{p} = (p)$, where p is a prime number. Then $\mathbb{Z}_{\mathfrak{p}}$ consists of all rational numbers of the form m/n where n is prime to p.

Example

 $A = k[t_1, \dots, t_n]$, where k is a field, and \mathfrak{p} is a prime ideal in A.

- $A_{\mathfrak{p}}$ consists of all rational functions f/g, where $g \notin \mathfrak{p}$.
- Let V be the variety defined by \mathfrak{p} , i.e.,

$$\mathfrak{p}=\bigcap_{f\in\mathfrak{p}}f^{-1}(0)\subset k^n.$$

If k is infinite, then A_p can be identified with the ring of all rational functions on k^n that are defined on almost all points of V. It is called the *local ring of* k^n along V.

• This is the prototype of local rings that arise in algebraic geometry.

The construction of $S^{-1}A$ can be further extended to A-modules.

Facts

Let S be a multiplicatively closed subset of A and M an A-module. On $M \times S$ we define a relation \equiv by

$$(m,s)\equiv (m,s')\Longleftrightarrow \exists t\in S \text{ such that } t(s'm-sm')=0.$$

As before, this is an equivalence relation.

Definition

- **1** The equivalence class of (m, s) is denoted m/s.
- ② The set of equivalence classes is denoted $S^{-1}M$.

Proposition

 $S^{-1}M$ is an $S^{-1}A$ -module with respect to the addition and scalar multiplication given by

$$\big(m/s\big) + \big(m'/s'\big) = (s'm + sm')/ss', \qquad \big(a/s\big) \cdot \big(m/t\big) = am/st.$$

Definition

 $S^{-1}M$ is called the *module of fractions* of M with respect to S.

Fact

• If $u: M \to N$ is an A-module homomorphism, then we get an $S^{-1}A$ -module homomorphism,

$$S^{-1}u: S^{-1}M \longrightarrow S^{-1}N, \qquad m/s \longrightarrow u(m)/s.$$

• Thus, the operation S^{-1} is a functor from the category of A-modules to the category of $S^{-1}A$ -modules.

Proposition (Proposition 3.3)

The functor S^{-1} is exact, i.e., if $M' \xrightarrow{f} M \xrightarrow{g} M''$ is exact at M, then $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ is exact at $S^{-1}M$.

Remark

Let M' be a sub-module of M.

- Applying the previous result to $M' \hookrightarrow M \to 0$ produces an injective $S^{-1}A$ -module homomorphism $S^{-1}M' \to S^{-1}M$.
- This allows us to identify $S^{-1}M'$ with a sub-module of $S^{-1}M$.

Corollary (Corollary 3.4)

Let N and P be sub-modules of M. Then:

- $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P).$
- **3** The $S^{-1}A$ -modules $S^{-1}(M/N)$ and $S^{-1}M/S^{-1}N$ are isomorphic.

Proposition (Proposition 3.5)

We a canonical A-module isomorphism,

$$S^{-1}A \otimes_A M \simeq S^{-1}M$$
, $(a/s) \otimes m \longrightarrow am/s$.

Remarks

1 As $(a/s) \times m \to am/s$ is A-bilinear, by the universal property of the tensor product there is a unique A-module homomorphism $f: S^{-1}A \otimes_A M \to S^{-1}M$ such that

$$f((a/s) \otimes m) = am/s$$
.

2 The A-module map $g: SM \to S^{-1}A \otimes_A M$, $m/s \to (1/s) \otimes m$ is an inverse of f, since

$$f \circ g(m/s) = f((1/s) \otimes m) = 1m/s = m/s,$$

$$g \circ f((a/s) \otimes m) = g(am/s) = (1/s) \otimes am = (a/s) \otimes m.$$

Thus, $f: S^{-1}A \otimes_A M \to S^{-1}M$ is an A-module isomorphism.

Corollary (Corollary 3.6)

 $S^{-1}A$ is a flat A-module, i.e., the functor $S^{-1}A \otimes -$ preserves exactness of A-module sequences.

Proposition (Proposition 3.7)

If M and N are A-modules, then we have a canonical isomorphism,

$$S^{-1}M\otimes_{S^{-1}A}S^{-1}N\simeq S^{-1}(M\otimes_AN),\quad (m/s)\otimes (n/t)\longrightarrow (m\otimes n)/st.$$

In particular, for any prime ideal $\mathfrak p$ of A we get an $A_{\mathfrak p}$ -module isomorphism, $M_{\mathfrak p} \otimes_{A_{\mathfrak p}} N_{\mathfrak p} \simeq (M \otimes_A N)_{\mathfrak p}.$

Remarks

The proof is similar to that of Proposition 3.5.

- **1** Due to the $S^{-1}A$ -bilinearity of $(m/s) \times (n/t) \to (m \otimes n)/st$ there is a unique $S^{-1}A$ -module homomorphism $f: S^{-1}M \otimes_{S^{-1}A} S^{-1}N \to S^{-1}(M \otimes_A N)$ such that $f((m/s) \otimes (n/t)) = (m \otimes n)/st$.
- We also observe that

$$(m/s)\otimes (n/t) = [(1/s)(m/1)]\otimes [(1/t)(n/1)] = \frac{1}{st}[(m/1)\otimes (n/1)].$$

In particular, we have

$$(m/st)\otimes (n/1)=\frac{1}{st}[(m/1)\otimes (n/1)]=(m/s)\otimes (n/t).$$

1 Using this it can be checked that $(m \otimes n)/s \to (m/s) \otimes (n/1)$ is an inverse of f, and hence f is an isomorphism.

Local Properties

Definition

We say that a property P of a ring A (or an A-module M) is a local property when

A (or M) has $P \iff A_{\mathfrak{p}}$ (or $M_{\mathfrak{p}}$) has P for each prime ideal \mathfrak{p} of A.

The next propositions provide examples of local properties.

Proposition (Proposition 3.8)

Let M be an A-module. Then TFAE:

- **1** M = 0.
- 2 $M_p = 0$ for each prime ideal p of A.
- 3 $M_{\mathfrak{m}} = 0$ for each maximal ideal \mathfrak{m} of A.

Local Properties

Proposition (Proposition 3.9; 1st Part)

Let $\phi: M \to N$ be an A-module homomorphism. Then TFAE:

- $\mathbf{0}$ ϕ is injective.
- 2 $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective for every prime ideal \mathfrak{p} of A.
- **3** $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective for every maximal ideal \mathfrak{m} of A.

Proposition (Proposition 3.9; 2nd Part)

Let $\phi: M \to N$ be an A-module homomorphism. Then TFAE:

- **1** ϕ is surjective.
- ② $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is surjective for every prime ideal \mathfrak{p} of A.
- **3** $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is surjective for every maximal ideal \mathfrak{m} of A.

Local Properties

As the following result shows, flatness is a local property.

Proposition (Proposition 3.10)

Let M be an A-module. TFAE:

- M is a flat A-module.
- ② $M_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$ -module for every prime ideal \mathfrak{p} of A.
- 3 $M_{\rm m}$ is a flat $A_{\rm m}$ -module for every maximal ideal ${\rm m}$ of A.

Reminder

Let $f: A \rightarrow B$ be a ring homomorphism.

• If \mathfrak{a} is an ideal in A, then its extension \mathfrak{a}^e is the ideal in B generated by $f(\mathfrak{a})$. Thus, it consists of all finite sums,

$$\sum f(a_i)b_i, \quad a_i \in \mathfrak{a}, \quad b_i \in B.$$

- If \mathfrak{b} is an ideal in B, then its contraction \mathfrak{b}^c is the ideal $f^{-1}(\mathfrak{b})$ in A.
- If a and b are ideals in A, their ideal quotient is the ideal

$$(\mathfrak{a}:\mathfrak{b})=\big\{x\in A;x\mathfrak{b}\subseteq\mathfrak{a}\big\}.$$

When $\mathfrak{b} = (b)$ we write $(\mathfrak{a} : b)$ for (a : (b)).

Facts

Let $f: A \to S^{-1}A$ be the natural homomorphism $a \to a/1$.

• If \mathfrak{a} is an ideal in A, then any $y \in \mathfrak{a}^e$ is of the form

$$y = \sum f(a_i)(b_i/s_i) = \sum (a_i/1)(b_i/s_i) = \sum a_i b_i/s_i,$$

where $a_i \in \mathfrak{a}$, $b_i \in B$ and $s_i \in S$.

ullet Set $s=\prod s_i$ and $t_i=\prod_{j\neq i}s_j$, so that $1/s_i=t_i/s$. Then

$$y = \sum (a_i b_i t_i / s) = \left(\sum a_i b_i t_i\right) / s.$$

- Set $a' = \sum a_i b_i t_i$. Then $a' \in \mathfrak{a}$, and so $y = a'/s \in S^{-1}\mathfrak{a}$.
- We then deduce that

$$\mathfrak{a}^e = S^{-1}\mathfrak{a}.$$

Proposition (Proposition 3.11)

- If \mathfrak{q} is an ideal in $S^{-1}A$, then $\mathfrak{q} = S^{-1}(\mathfrak{q}^c)$. Thus, any ideal in $S^{-1}A$ is an extended ideal.
- ② If $\mathfrak a$ is an ideal in A, then $\mathfrak a^{\operatorname{ec}} = \cup_{s \in S} (\mathfrak a : s)$. In particular, $\mathfrak a^{\operatorname{e}} = (1)$ if and only if $S \cap \mathfrak a \neq \emptyset$.
- **3** An ideal α in A is a contracted ideal if and only if no element of S is a zero-divisor in A/α .
- We have a one-to-one correspondance $\mathfrak{p} \leftrightarrow S^{-1}\mathfrak{p}$ between prime ideal in $S^{-1}A$ and prime ideals in A that don't meet S.
- **5** The operation S^{-1} on ideals commutes with taking finite sums, products, intersections, and radicals.

Reminder

• The *nilradical* of A is the ideal

$$\mathfrak{N} = \{ x \in A; \ x^n = 0 \text{ for some } n \ge 1 \}.$$

• Equivalently, $\mathfrak N$ is the intersection of all the prime ideals of A (see Proposition 1.8).

Corollary (Corollary 3.12)

The nilradical of $S^{-1}A$ is precisely $S^{-1}\mathfrak{N}$.

Corollary (Corollary 3.13)

Let $\mathfrak p$ be a prime ideal of A. Then the prime ideals of the local ring $A_{\mathfrak p}$ are in one-to-one correspondence with the prime ideals of A that are contained in $\mathfrak p$.

Remarks

- By this corollary, passing from A to A_p cuts out all prime ideals except those contained in p.
- By Proposition 1.1, passing from A to A/\mathfrak{p} cuts out all prime ideals except those containing \mathfrak{p} .
- Thus, if \mathfrak{q} is a prime ideal contained in \mathfrak{p} , then passing to $(A_{\mathfrak{p}})/\mathfrak{q} \simeq (A/\mathfrak{q})_{\mathfrak{p}}$ restricts ourselves to those prime ideals between \mathfrak{q} and \mathfrak{p} .
- For q = p we obtain the *residual field* of p. It can be realized either as the fraction field of the integral domain A/p, or as the residue field of the local ring A_p .

Reminder

• If N and P are sub-modules of an A-module M, then

$$(N:P) = \{x \in A; xP \subset N\}.$$

This is an ideal of A.

The annihilator of M, denoted Ann(M), is the ideal (0 : M).
 That is,

$$Ann(M) = \{x \in A; xM = 0\}.$$

By Exercise 2.2 we have

$$Ann(N + P) = Ann(N) \cap Ann(P),$$

$$(N : P) = Ann((N + P)/N).$$

Proposition (Proposition 3.14)

Let M be a finitely generated A-module. Then

$$S^{-1}(Ann(M)) = Ann(S^{-1}M)$$
.

Remark

• If M is single generated, i.e., M = Ax. Then we have an exact sequence of A-modules,

$$0 \longrightarrow \operatorname{Ann}(M) \longrightarrow A \stackrel{a \to a \times}{\longrightarrow} M \longrightarrow 0.$$

ullet By exactness of the functor S this gives an exact sequence of $S^{-1}A$ -modules,

$$0\longrightarrow S^{-1}\left(\operatorname{Ann}(M)\right)\longrightarrow S^{-1}A\stackrel{a/s\to a\times/s}{\longrightarrow}S^{-1}M\longrightarrow 0,$$

which shows that $Ann(S^{-1}M) = S^{-1}(Ann(M))$.

Corollary (Corollary 3.15)

If N and P are sub-modules of M with P finitely generated, then

$$S^{-1}(N:P) = (S^{-1}N:S^{-1}P)$$
.

Remarks

- The fact that P is finitely generated implies that (N + P)/N is finitely generated as well.
- As (N : P) = Ann((N + P)/N) by applying the previous proposition we get

$$S^{-1}(N:P) = Ann \left[S^{-1} \left((N+P)/N \right) \right].$$

We have

$$S^{-1}((N+P)/P) = S^{-1}(N+P)/S^{-1}N = (S^{-1}N+S^{-1}P)/S^{-1}N.$$

Thus,

$$S^{-1}(N:P) = \operatorname{Ann}\left[\left(S^{-1}N + S^{-1}P\right)/S^{-1}N\right] = \left(S^{-1}N:S^{-1}P\right).$$

Proposition (Proposition 3.16)

Let $g:A\to B$ be a ring homomorphism, and $\mathfrak p$ a prime ideal in A. Then TFAE:

- (i) p is the contraction of a prime ideal in B.
- (ii) $\mathfrak{p}^{ec} = \mathfrak{p}$.