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Differential 1-Forms and the Differential of a Function

Definition (Cotangent Space)

The cotangent space to R" at p, denoted by T;(]R”) or T;R", is
the dual space T,(R")" of the tangent space T,(R").

Remark

In other words an element of T;(R") is just a covector or linear
functional on T,(R").

Definition (Differential 1-Forms)

A differential 1-form (or covector field, or simply I-form) on an
open subset U C R” is a function w that assigns to each p € U a
covector w, € T (R"),

w:U— | TZ®RT),  p— w, e THR.
peU




Differential 1-Forms and the Differential of a Function

Definition (Differential of a Function)

The differential of a C*° function f : U — R is the 1-form df
defined by

(df)p(v) = D, f forall p € U and v € TH(R").

Remarks
@ If X =3 a2 is any vector field on U, then

(df)p(Xp) = Xof = (XF)(p) = Za/(p

© We also denote by df‘p the value of df at p.




Differential 1-Forms and the Differential of a Function

e If x1,...,x" are the coordinate functions, then

(dx')p(v) = V' for any v = Z vjaaxj‘p in Tp(R").
@ In particular, we have

@ (al,) =5={ s iz

Proposition (Proposition 4.1)

{(dx")p,...,(dx"),} is a basis of the cotangent space T;(R").
This is the dual basis of the basis {% veeos o]} of the

x! 1 p X" | p
tangent space T,(R").




Differential 1-Forms and the Differential of a Function

Q If wis a 1-form on U, then, for every p € U, we have a unique
decomposition,

wo =Y alp)(dx')p,  ailp) €R

Q@ We write '
w = Z ajdx’,

where the coefficients a’ now are functions on U.

Definition

| \

We say that the 1-form w is C* when all the coefficient functions
ai,...,an are all C* on U.




Differential 1-Forms and the Differential of a Function

Proposition (Proposition 4.2; the differential in coordinates)
Iff: U— R isa C* function, then

of

f = -
d ox!

If f is a C*° function on U, then its differential df is a C* I-form.

The definition of dx!, ..., dx" as 1-forms gives a rigorous meaning
to this notation in elementary calculus.
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Differential k-Forms

Definition

A differential form of degree k (or a k-form) is a function w that
assigns to each p € U an an alternating k-linear form on the
tangent space T,(R"), i.e., wp € Ak(TH(R")).

© As Ai(Tp(R")) = T;(R,) this generalizes the notion of
1-form.

@ As Ag(T,(R")) =R a 0-form is merely a function on U.

© There are no non-zero forms of degree k > n, since
dim T,(R") = n, and hence A, (Tp(R")) = {0} for k > n.
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Differential k-Forms

If I =(i,...,I) is an ascending k-index i < ... < ix the k-form
dx! is defined by

(dx)p=dxt A Adxk,  peU.

A\

Reminder (see Proposition 3.29)

At each point p the k-covectors dx,,’J form a basis of Ax(T,(R"))
(cf. Proposition 3.29).




Differential k-Forms

Q If wis a k-form, then, at each point p, we have a unique
decomposition,

wp=> a(p)dx,  a(p) ER,

where the summation goes over all ascending k-indices.

Q@ We write
w= Z adx!,

where the coefficients a; now are functions on U.

Definition

We say that the k-form is C°° on U when the coefficient functions
a; are all C*° on U.




Differential k-Forms

Definition
QK(U) is the vector space of C* k-forms on U.

QO(U) = C>(U), since 0-forms are functions.
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Differential k-Forms

Definition (Wedge Product)

Given a k-form w and ¢-form 7, their wedge product is defined
pointwise,
(WAT), =wp A Tp, peU.

Remarks
© If we write w = " ajdx! and 7 = Y bydx”?, then

WAT = Za,dex’ A dx”.
1,J

@ If | and J are not disjoints, then dx! A dx? = 0. Thus,

WAT = Z a;bydx! A dx”.

1,J disjoint
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Differential k-Forms

@ The wedge product is a bilinear map,
A QK(U) x QYU) — Q).

@ This bilinear map is anticommutative and associative (cf.
Proposition 3.21 and Proposition 3.25).

o As QO(U) = C>=(U), for k = 0 the wedge product reduces to
the pointwise multiplication of differential forms by functions,

(f Aw)p = f(p) Awp = f(p)wp.

Thus, if £ € C®(U) and w € Q(U), then f Aw = fw.
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Differential k-Forms

Let x, y, z be the coordinates in R3.

@ The C* 1-forms on R3 are
fdx + gdy + hdz, f,g, he CP(R3).
@ The C* 2-forms on R3 are
fdx A dy + gdx A dz 4 hdy A dz, f,g, he C(R3).

@ The C> 3-forms on R3 are

fdx A dy A dz, f € C®(R3).
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Differential k-Forms

Define

n

Q*(U) = éﬂ"(U) =P k).
k=0

k=0
@ With the wedge product as multiplication and the degree of a

form as grading, Q*(U) is an anticommutative graded algebra.

@ With respect to the pointwise multiplication of functions, this
is also a module over the ring C>(U).
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Differential Forms as Multilinear Functions on Vector Fields

If wis C*° 1-form and X is a C* vector field on an open subset
U C R", the function w(X) on U is defined by

w(X)p = wp(Xp), peU.

@ |n coordinates, if w = Za,-dxi and X =) bf% with
ai, b € C®(U), then

w(X) = ab'.

@ This shows that w(X) is a C*> function on U.
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Differential Forms as Multilinear Functions on Vector Fields

Let w be a C*° 1-form on U.

@ Given any function f € C*°(U) and any vector field
X € Z(U), we have

@ Set .Z#(U) = C*°(U). Then the 1-form w defines an
Z (U)-linear map,

Z'(U) > X — w(X) € Z(U).
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Differential Forms as Multilinear Functions on Vector Fields

Fact

Similarly, any C* k-form w on U defines a k-linear map over
7 (U),

%(U) X .o X %(U)—)g(U), (Xl,...,Xk)—)w(Xl,...,Xk),

w(Xl,...,Xk)p:wp((Xl)p,...,(Xk)p), peU.
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Exterior Derivative

Definition (Exterior Derivative)

The exterior derivative of a C*° k-form on U is defined as follows:

@ For k = 0 the exterior derivative of a 0-form (i.e., a C*°
function) f on U is its differential,

of
ox!

df = dx’.

o For k > 1, the exterior derivative w = >_ ajdx’ € QX(U) is

dw:Zda//\de:Z( %dxj)/\dxl.
/ J

o If w e QK(U), then dw € QKL(U).
e In particular, dw = 0 for all w € Q" (V).
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Exterior Derivative

Let w = fdx + gdy be a 1-form on R2, where f,g € C®(R?). Set
fo =9 and f, = L. Then

dw = (g« — f,)dx A dy.
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Exterior Derivative

Definition (Antiderivation of a Graded Algebra)

Let A= @i‘;OAk be a graded algebra over a field K.
@ An antiderivation of A is any linear map D : A — A such that

D(ab) = (Da)b+ (—1)*aDb  for all a € A* and b € A.

o We say that D has degree m when D(AK) ¢ AK*m for all k.

@ We can extend the grading to negative integers by setting
Ak = {0} for k < 0.

@ This allows the degree m to be negative.
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Exterior Derivative

Reminder

Q*(U) = ®QK(U) is a graded algebra over R.

Proposition (Proposition 4.7)
The exterior derivative d : Q*(U) — Q*(U) satisfies the following
properties:

(i) It is an antiderivation of degree 1, i.e.,

d(wAT) = (dw) AT+ (=1)%8%w A dT.

(i) d®> =0, i.e., d(dw) = 0 for all w € Q*(V).
(iii) Iff € C°(U) and X € Z'(U), then (df)(X) = Xf.

Proposition (Proposition 4.8)

The exterior derivative is the unique map D : Q*(U) — Q*(U) that
satisfies the properties (i)—(iii) above.
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Closed and Exact Forms

Let w € QX(V).
@ We say that w is closed when dw = 0.

@ We say that w is a exact when there is 7 € QK~1(U) such
that w = dT.

Remarks

@ As d(d7) =0 any exact k-form on U is closed. The converse
may or may not hold depending on U.

© We have
w is closed <= w € kerd,

w is exact <= w € rand.




Closed and Exact Forms

Example (see Exercise 4.9)

Consider the following 1-form on R? \ 0,

_ Y X
w = x2—|—y2dx+x2+y2dy'

Then w is closed, but it is not exact.

Remark

If f € C*°(R2\ 0) is such that df = w, then it can be shown that

d
af(cos t,sint) = 1.

This implies that fo L -f(cos t,sint)dt = 2w # 0, which is absurd.
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Closed and Exact Forms

Theorem (Poincaré Lemma; see Corollary 27.13)

If U is star shaped about a point and k > 1, then every closed
form w € QX(U) is exact.

RENES

@ In particular, any closed k-form on R” or an open ball with
k > 1 is exact.

© Poincaré Lemma is a special case of a more general result for
“contractible manifolds” (see Section 27 of Tu's book).

© A direct proof of Poincaré Lemma can be found in the book
Introduction to Smooth Manifolds by John M. Lee.
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Closed and Exact Forms

Definition (Cochain Complexes)

@ A collection of vector spaces {V"}i":0 together with linear
maps di : VK — VK1 such that dipq o dy = 0 is called a
cochain complex,

d d d, d
0 — VO By yl Gy 2 By Gy ke B

@ Its cohomology space of degree k is the quotient space,

ker dj

HK(v) = —*X.
( ) randk,l

By convention d_; = 0, and so randp = {0} and H°(V) = ker do.
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Closed and Exact Forms

Definition (de Rham Cohomology)

@ If U is an open subset of R”, then the cochain complex,
0 — Q°(U) L t(u) L *(U) L -
is called the de Rham complex of U.

@ Its cohomology spaces are called de Rham cohomology spaces
of U and are denoted by H*(U).

Remark
HO(U) = ker{d : Q°(U) — Q}(U)} = {f € C=(V); df = 0}.
For k > 1, we have

H¥(U) = ker{d : Q%(U) — Q<1 (U)} _ {closed k-forms}
ran{d : Qk-1(U) — Qk(U)}  {exact k-forms}
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Closed and Exact Forms

In terms of de Rham cohomology, Poincaré Lemma means that if
U is star shaped, then

HY(U)={0}  forall k> 1.

Remark

@ It can be shown that the de Rham cohomology of U depends
only on its topology, or even its “homotopy type" (see Section
27 and Lee's book).

@ It's an instance of applying “differential” techniques to study
topology (differential topology).




Closed and Exact Forms

If fis a C* function on U, then

. of of
df—O@ZWd =0 == =0

Thus, df = 0 if and only if f is constant on each connected
component of U.

Fact

For every open subset U C R”,

where m is the number of connected components of U .
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Closed and Exact Forms

One of the goal of this course is the generalization of de Rham
cohomology to manifolds (see Sections 24-29).

29 /39



Applications to Vector Calculus

Definition

A vector valued function on an open subset U C R3 is a function,

F=(P,Q,R): U—R.

RENEILS

A vector valued function assigns to each p € U a vector
Fr € R~ T,(R®)

Therefore, a vector valued function on U can also be thought of as
a vector field on U.

V.
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Applications to Vector Calculus

Reminder

Gradient, curl and divergence are operators on scalar-valued

functions and vector-valued functions,

curl

{scal. func.} e {vect. func.} — {vect

0/0x
gradf = |0/dy| f
0/0z

0/0x P
o
0/0z R

. func.} v, {scal. func.},

P 0/0x P
div | Q| = [9/oy| - |Q| =P+ Q +R;
R 0/0z R
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Applications to Vector Calculus

© We identify 1-forms and vector fields on U via

P
Pdx + Qdy + Rdz +— [Q
R

@ Under this identification, for any f € C*°(U), we have

fx
df = fudx + f,dy + f,dz +— {fy} = gradf.
fz
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Applications to Vector Calculus

@ We also identify 2-forms with vector fields,

P
Pdy A dz + Qdz N dx + Rdx A dy <— {Q] .
R

@ For any 1-form w = Pdx + Qdy + Rdz, we have
dw = (R, — Q;)dy ANdz — (R« — P;)dz A dx + (Qx — Py)dx Ady.
Thus,
R, — Q; P

dw<+— |=(R« — P;)| =curl [Q
QX_Py R
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Applications to Vector Calculus

@ We identify 3-forms with functions
fdx Ndy N dz «— f
@ For any 2-form w = Pdy A dz + Qdz A dx + Rdx A dy we have
dw = (Px + Q, + R;)dx A dy A dz.
Thus,
P

dw +— P+ Q, + R, =div | Q
R
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Applications to Vector Calculus

Summary

If U is an open subset of R3, the identification of differential forms
with functions and vector fields the exterior derivative corresponds
to the operators grad, curl and div:

QO(U) — QY(U) —L Q2(U) —2— Q3(U)

§ i i I

co(U) 224 27 (U) L 27 (U) —E c(u).
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Applications to Vector Calculus

Consequence

If U is an open subset of R3, then the equality d o d on Q°(U) and
Q(U) translates into the following:

Proposition (Proposition A)

For every function f € C*°(U), we have

curl(grad f) =

o O O

Proposition (Proposition B)

For every vector field F € 2 (U), we have

div(curl F) = 0.
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Applications to Vector Calculus

Consequence

@ If U is an open subset of R3, then a C vector field
F=(P,Q,R) on U is the gradient of a function f € C*(U)
if and only the corresponding 1-form Pdx + Qdy + Rdz is df.

@ Therefore, Poincaré Lemma for 1-forms translates into:

Proposition (Proposition C)

Assume that U is a star shaped open subset of R3. Then a C®
vector field F on U is the gradient of a function f € C*°(U) if and
only if curl F = 0.

V.
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Convention on Subscripts and Superscripts

Convention (Covectors)

e Coordinates x*,...,x" and multicovectors/forms w!, ... )

are indexed by superscripts.

@ The coordinates of k-forms with respect to the basis {dx'}
are index by subscripts,

w:Za;dxi, w:Za/dxl.

@ The subscripts in a; or a; “cancel out” the superscripts in dx’

or dx!.

38/39



Convention on Subscripts and Superscripts

Convention (Vectors)

0 0

@ Coordinate vector fields =21, ..., =2 are considered to have
ox1? %

subscripts since the index / in 8‘1; is in the lower half of the
fraction.

@ Vectors vy, ..., vk and vector fields Xi, ..., X are indexed by
subscripts.

o Coordinates of a vector v in a given basis {e;} or a vector

field in the basis {6‘2,} are indexed by superscripts,

v:Zvie;, X:ZXi(,)ii.

@ The superscripts in v/ or X' “cancel out” the subscripts in e;

0
or 5.
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