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Differential 1-Forms and the Differential of a Function

Definition (Cotangent Space)

The cotangent space to Rn at p, denoted by T ∗p (Rn) or T ∗pRn, is
the dual space Tp(Rn)∨ of the tangent space Tp(Rn).

Remark

In other words an element of T ∗p (Rn) is just a covector or linear
functional on Tp(Rn).

Definition (Differential 1-Forms)

A differential 1-form (or covector field, or simply 1-form) on an
open subset U ⊂ Rn is a function ω that assigns to each p ∈ U a
covector ωp ∈ T ∗p (Rn),

ω : U −→
⋃
p∈U

T ∗p (Rn), p −→ ωp ∈ T ∗p (Rn).
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Differential 1-Forms and the Differential of a Function

Definition (Differential of a Function)

The differential of a C∞ function f : U → R is the 1-form df
defined by

(df )p(v) = Dv f for all p ∈ U and v ∈ Tp(Rn).

Remarks

1 If X =
∑

aj ∂
∂x j

is any vector field on U, then

(df )p(Xp) = Xpf = (Xf )(p) =
∑

aj(p)
∂f

∂x j
(p).

2 We also denote by df
∣∣
p

the value of df at p.
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Differential 1-Forms and the Differential of a Function

Example

If x1, . . . , xn are the coordinate functions, then

(dx i )p(v) = v i for any v =
∑

v j
∂

∂x j

∣∣∣
p

in Tp(Rn).

In particular, we have

(dx i )p
( ∂

∂x j

∣∣∣
p

)
= δij =

{
1 for j = i ,
0 for j 6= i .

Proposition (Proposition 4.1)

{(dx1)p, . . . , (dx
n)p} is a basis of the cotangent space T ∗p (Rn).

This is the dual basis of the basis
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
of the

tangent space Tp(Rn).
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Differential 1-Forms and the Differential of a Function

Fact

1 If ω is a 1-form on U, then, for every p ∈ U, we have a unique
decomposition,

ωp =
∑

ai (p)(dx i )p, ai (p) ∈ R.

2 We write
ω =

∑
aidx

i ,

where the coefficients ai now are functions on U.

Definition

We say that the 1-form ω is C∞ when all the coefficient functions
a1, . . . , an are all C∞ on U.
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Differential 1-Forms and the Differential of a Function

Proposition (Proposition 4.2; the differential in coordinates)

If f : U → R is a C∞ function, then

df =
∑ ∂f

∂x i
.

Corollary

If f is a C∞ function on U, then its differential df is a C∞ 1-form.

Remark

The definition of dx1, . . . , dxn as 1-forms gives a rigorous meaning
to this notation in elementary calculus.
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Differential k-Forms

Definition

A differential form of degree k (or a k-form) is a function ω that
assigns to each p ∈ U an an alternating k-linear form on the
tangent space Tp(Rn), i.e., ωp ∈ Ak(Tp(Rn)).

Remarks

1 As A1(Tp(Rn)) = T ∗p (Rn) this generalizes the notion of
1-form.

2 As A0(Tp(Rn)) = R a 0-form is merely a function on U.

3 There are no non-zero forms of degree k > n, since
dimTp(Rn) = n, and hence Ak(Tp(Rn)) = {0} for k > n.
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Differential k-Forms

Example

If I = (i1, . . . , ik) is an ascending k-index i1 < . . . < ik the k-form
dx I is defined by

(dx I )p = dx i1p ∧ · · · ∧ dx ikp , p ∈ U.

Reminder (see Proposition 3.29)

At each point p the k-covectors dx Ip form a basis of Ak(Tp(Rn))
(cf. Proposition 3.29).
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Differential k-Forms

Facts

1 If ω is a k-form, then, at each point p, we have a unique
decomposition,

ωp =
∑

aI (p)dx Ip, aI (p) ∈ R,

where the summation goes over all ascending k-indices.

2 We write
ω =

∑
aIdx

I ,

where the coefficients aI now are functions on U.

Definition

We say that the k-form is C∞ on U when the coefficient functions
aI are all C∞ on U.
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Differential k-Forms

Definition

Ωk(U) is the vector space of C∞ k-forms on U.

Remark

Ω0(U) = C∞(U), since 0-forms are functions.
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Differential k-Forms

Definition (Wedge Product)

Given a k-form ω and `-form τ , their wedge product is defined
pointwise,

(ω ∧ τ)p = ωp ∧ τp, p ∈ U.

Remarks

1 If we write ω =
∑

aIdx
I and τ =

∑
bJdx

J , then

ω ∧ τ =
∑
I ,J

aIbJdx
I ∧ dxJ .

2 If I and J are not disjoints, then dx I ∧ dxJ = 0. Thus,

ω ∧ τ =
∑

I ,J disjoint

aIbJdx
I ∧ dxJ .

11 / 39



Differential k-Forms

Fact

The wedge product is a bilinear map,

∧ : Ωk(U)× Ω`(U) −→ Ωk+`(U).

This bilinear map is anticommutative and associative (cf.
Proposition 3.21 and Proposition 3.25).

As Ω0(U) = C∞(U), for k = 0 the wedge product reduces to
the pointwise multiplication of differential forms by functions,

(f ∧ ω)p = f (p) ∧ ωp = f (p)ωp.

Thus, if f ∈ C∞(U) and ω ∈ Ω`(U), then f ∧ ω = f ω.
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Differential k-Forms

Example

Let x , y , z be the coordinates in R3.

The C∞ 1-forms on R3 are

fdx + gdy + hdz , f , g , h ∈ C∞(R3).

The C∞ 2-forms on R3 are

fdx ∧ dy + gdx ∧ dz + hdy ∧ dz , f , g , h ∈ C∞(R3).

The C∞ 3-forms on R3 are

fdx ∧ dy ∧ dz , f ∈ C∞(R3).
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Differential k-Forms

Facts

Define

Ω∗(U) =
∞⊕
k=0

Ωk(U) =
n⊕

k=0

Ωk(U).

1 With the wedge product as multiplication and the degree of a
form as grading, Ω∗(U) is an anticommutative graded algebra.

2 With respect to the pointwise multiplication of functions, this
is also a module over the ring C∞(U).
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Differential Forms as Multilinear Functions on Vector Fields

Definition

If ω is C∞ 1-form and X is a C∞ vector field on an open subset
U ⊂ Rn, the function ω(X ) on U is defined by

ω(X )p = ωp(Xp), p ∈ U.

Fact

In coordinates, if ω =
∑

aidx
i and X =

∑
bj ∂
∂x j

with

ai , b
j ∈ C∞(U), then

ω(X ) =
∑

aib
i .

This shows that ω(X ) is a C∞ function on U.
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Differential Forms as Multilinear Functions on Vector Fields

Fact

Let ω be a C∞ 1-form on U.

Given any function f ∈ C∞(U) and any vector field
X ∈X (U), we have

ω(fX ) = f ω(X ).

Set F (U) = C∞(U). Then the 1-form ω defines an
F (U)-linear map,

X (U) 3 X −→ ω(X ) ∈ F (U).
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Differential Forms as Multilinear Functions on Vector Fields

Fact

Similarly, any C∞ k-form ω on U defines a k-linear map over
F (U),

X (U)× · · · ×X (U)︸ ︷︷ ︸
k times

→ F (U), (X1, . . . ,Xk)→ ω(X1, . . . ,Xk),

where

ω(X1, . . . ,Xk)p = ωp ((X1)p, . . . , (Xk)p) , p ∈ U.
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Exterior Derivative

Definition (Exterior Derivative)

The exterior derivative of a C∞ k-form on U is defined as follows:

For k = 0 the exterior derivative of a 0-form (i.e., a C∞

function) f on U is its differential,

df =
∑ ∂f

∂x i
dx i .

For k ≥ 1, the exterior derivative ω =
∑

aIdx
I ∈ Ωk(U) is

dω =
∑

daI ∧ dx I =
∑
I

(∑
j

∂aI
∂x j

dx j
)
∧ dx I .

Remarks

If ω ∈ Ωk(U), then dω ∈ Ωk+1(U).

In particular, dω = 0 for all ω ∈ Ωn(U).
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Exterior Derivative

Example

Let ω = fdx + gdy be a 1-form on R2, where f , g ∈ C∞(R2). Set
fx = ∂f

∂x and fy = ∂f
∂y . Then

dω = (gx − fy )dx ∧ dy .

19 / 39



Exterior Derivative

Definition (Antiderivation of a Graded Algebra)

Let A = ⊕∞k=0A
k be a graded algebra over a field K.

An antiderivation of A is any linear map D : A→ A such that

D(ab) = (Da)b + (−1)kaDb for all a ∈ Ak and b ∈ A.

We say that D has degree m when D(Ak) ⊂ Ak+m for all k .

Remark

We can extend the grading to negative integers by setting
Ak = {0} for k < 0.

This allows the degree m to be negative.
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Exterior Derivative

Reminder

Ω∗(U) = ⊕Ωk(U) is a graded algebra over R.

Proposition (Proposition 4.7)

The exterior derivative d : Ω∗(U)→ Ω∗(U) satisfies the following
properties:

(i) It is an antiderivation of degree 1, i.e.,

d(ω ∧ τ) = (dω) ∧ τ + (−1)degωω ∧ dτ.

(ii) d2 = 0, i.e., d(dω) = 0 for all ω ∈ Ω∗(U).

(iii) If f ∈ C∞(U) and X ∈X (U), then (df )(X ) = Xf .

Proposition (Proposition 4.8)

The exterior derivative is the unique map D : Ω∗(U)→ Ω∗(U) that
satisfies the properties (i)–(iii) above.
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Closed and Exact Forms

Definition

Let ω ∈ Ωk(U).

1 We say that ω is closed when dω = 0.

2 We say that ω is a exact when there is τ ∈ Ωk−1(U) such
that ω = dτ .

Remarks

1 As d(dτ) = 0 any exact k-form on U is closed. The converse
may or may not hold depending on U.

2 We have

ω is closed⇐⇒ ω ∈ ker d ,

ω is exact⇐⇒ ω ∈ ran d .
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Closed and Exact Forms

Example (see Exercise 4.9)

Consider the following 1-form on R2 \ 0,

ω =
−y

x2 + y2
dx +

x

x2 + y2
dy .

Then ω is closed, but it is not exact.

Remark

If f ∈ C∞(R2 \ 0) is such that df = ω, then it can be shown that

d

dt
f (cos t, sin t) = 1.

This implies that
∫ 2π
0

d
dt f (cos t, sin t)dt = 2π 6= 0, which is absurd.
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Closed and Exact Forms

Theorem (Poincaré Lemma; see Corollary 27.13)

If U is star shaped about a point and k ≥ 1, then every closed
form ω ∈ Ωk(U) is exact.

Remarks

1 In particular, any closed k-form on Rn or an open ball with
k ≥ 1 is exact.

2 Poincaré Lemma is a special case of a more general result for
“contractible manifolds” (see Section 27 of Tu’s book).

3 A direct proof of Poincaré Lemma can be found in the book
Introduction to Smooth Manifolds by John M. Lee.
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Closed and Exact Forms

Definition (Cochain Complexes)

A collection of vector spaces {V k}∞k=0 together with linear
maps dk : V k → V k+1 such that dk+1 ◦ dk = 0 is called a
cochain complex,

0 −→ V 0 d0−→ V 1 d1−→ V 2 d2−→ · · ·V k dk−→ V k+1 dk+1−→ · · ·

Its cohomology space of degree k is the quotient space,

Hk(V ) =
ker dk

ran dk−1
.

Remark

By convention d−1 = 0, and so ran d0 = {0} and H0(V ) = ker d0.
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Closed and Exact Forms

Definition (de Rham Cohomology)

If U is an open subset of Rn, then the cochain complex,

0 −→ Ω0(U)
d−→ Ω1(U)

d−→ Ω2(U)
d−→ · · ·

is called the de Rham complex of U.

Its cohomology spaces are called de Rham cohomology spaces
of U and are denoted by Hk(U).

Remark

H0(U) = ker{d : Ω0(U)→ Ω1(U)} = {f ∈ C∞(U); df = 0}.

For k ≥ 1, we have

Hk(U) =
ker{d : Ωk(U)→ Ωk+1(U)}
ran{d : Ωk−1(U)→ Ωk(U)}

=
{closed k-forms}
{exact k-forms}
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Closed and Exact Forms

Fact

In terms of de Rham cohomology, Poincaré Lemma means that if
U is star shaped, then

Hk(U) = {0} for all k ≥ 1.

Remark

It can be shown that the de Rham cohomology of U depends
only on its topology, or even its “homotopy type” (see Section
27 and Lee’s book).

It’s an instance of applying “differential” techniques to study
topology (differential topology).
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Closed and Exact Forms

Example

If f is a C∞ function on U, then

df = 0⇐⇒
∑ ∂f

dlx i
dx i = 0⇐⇒ ∂f

dlx1
= · · · =

∂f

dlxn
= 0.

Thus, df = 0 if and only if f is constant on each connected
component of U.

Fact

For every open subset U ⊂ Rn,

H0(U) ' Cm,

where m is the number of connected components of U .
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Closed and Exact Forms

Remark

One of the goal of this course is the generalization of de Rham
cohomology to manifolds (see Sections 24–29).
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Applications to Vector Calculus

Definition

A vector valued function on an open subset U ⊂ R3 is a function,

F = 〈P,Q,R〉 : U −→ R3.

Remark

A vector valued function assigns to each p ∈ U a vector

Fp ∈ R3 ' Tp(R3)

Therefore, a vector valued function on U can also be thought of as
a vector field on U.
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Applications to Vector Calculus

Reminder

Gradient, curl and divergence are operators on scalar-valued
functions and vector-valued functions,

{scal. func.} grad−→ {vect. func.} curl−→ {vect. func.} div−→ {scal. func.},

grad f =

∂/∂x∂/∂y
∂/∂z

 f =

fxfy
fz

 ,
curl

PQ
R

 =

∂/∂x∂/∂y
∂/∂z

×
PQ
R

 =

Ry − Q − z
−(Rx − Pz)
Qx − Py

 ,
div

PQ
R

 =

∂/∂x∂/∂y
∂/∂z

 ·
PQ
R

 = Px + Qy + Rz .
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Applications to Vector Calculus

Facts

1 We identify 1-forms and vector fields on U via

Pdx + Qdy + Rdz ←→

PQ
R

 .
2 Under this identification, for any f ∈ C∞(U), we have

df = fxdx + fydy + fzdz ←→

fxfy
fz

 = grad f .
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Applications to Vector Calculus

Facts

1 We also identify 2-forms with vector fields,

Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy ←→

PQ
R

 .
2 For any 1-form ω = Pdx + Qdy + Rdz , we have

dω = (Ry −Qz)dy ∧dz− (Rx −Pz)dz ∧dx + (Qx −Py )dx ∧dy .

Thus,

dω ←→

 Ry − Qz

−(Rx − Pz)
Qx − Py

 = curl

PQ
R

 .
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Applications to Vector Calculus

Facts

1 We identify 3-forms with functions

fdx ∧ dy ∧ dz ←→ f

2 For any 2-form ω = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy we have

dω = (Px + Qy + Rz)dx ∧ dy ∧ dz .

Thus,

dω ←→ Px + Qy + Rz = div

PQ
R

 .
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Applications to Vector Calculus

Summary

If U is an open subset of R3, the identification of differential forms
with functions and vector fields the exterior derivative corresponds
to the operators grad, curl and div:

Ω0(U) Ω1(U) Ω2(U) Ω3(U)

C∞(U) X (U) X (U) C∞(U).

o

d

o

d

o

d

o
grad curl div
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Applications to Vector Calculus

Consequence

If U is an open subset of R3, then the equality d ◦ d on Ω0(U) and
Ω1(U) translates into the following:

Proposition (Proposition A)

For every function f ∈ C∞(U), we have

curl(grad f ) =

0
0
0

 .
Proposition (Proposition B)

For every vector field F ∈X (U), we have

div(curlF) = 0.
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Applications to Vector Calculus

Consequence

If U is an open subset of R3, then a C∞ vector field
F = 〈P,Q,R〉 on U is the gradient of a function f ∈ C∞(U)
if and only the corresponding 1-form Pdx + Qdy + Rdz is df .

Therefore, Poincaré Lemma for 1-forms translates into:

Proposition (Proposition C)

Assume that U is a star shaped open subset of R3. Then a C∞

vector field F on U is the gradient of a function f ∈ C∞(U) if and
only if curlF = 0.
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Convention on Subscripts and Superscripts

Convention (Covectors)

Coordinates x1, . . . , xn and multicovectors/forms ω1, . . . , ωk

are indexed by superscripts.

The coordinates of k-forms with respect to the basis {dx I}
are index by subscripts,

ω =
∑

aidx
i , ω =

∑
aIdx

I .

The subscripts in ai or aI “cancel out” the superscripts in dx i

or dx I .
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Convention on Subscripts and Superscripts

Convention (Vectors)

Coordinate vector fields ∂
∂x1

, . . . , ∂
∂xn are considered to have

subscripts since the index i in ∂
∂x i

is in the lower half of the
fraction.

Vectors v1, . . . , vk and vector fields X1, . . . ,Xk are indexed by
subscripts.

Coordinates of a vector v in a given basis {ei} or a vector
field in the basis { ∂

∂x i
} are indexed by superscripts,

v =
∑

v iei , X =
∑

X i ∂

∂x i
.

The superscripts in v i or X i “cancel out” the subscripts in ei
or ∂

∂x i
.
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