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Dual Space

Definition

1 If V and W is are vector spaces we denote by Hom(V ,W )
the vector space of all linear maps f : V →W .

2 The dual space Hom(V ,R) is denoted by V ∨. It consists of
all linear forms f : V → R.

3 The elements of V ∨ are called covectors.

Convention

We assume that V is a finite-dimensional space with basis
e1, . . . , en.

Fact

Every v ∈ V can be uniquely written as v =
∑

v iei with v i ∈ R.
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Dual Space

Definition

The i -coordinate function αi : V → R is defined by

αi (v) = v i if v =
∑

v jej .

Remark

We have

αi (ej) = δij =

{
1 for i = j ,
0 for i 6= j .

Here δij is called the Kronecker symbol.
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Dual Space

Proposition (Proposition 3.1)

The coordinate functions α1, . . . , αn form a basis of V ∨.

Definition

The basis α1, . . . , αn is called the dual basis of the basis e1, . . . , en.

Corollary (Corollary 3.2)

The dual space V ∨ has the same dimension as V , and hence has
finite dimension.
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Permutations

Definition (Permutations)

1 A permutation is any bijection of {1, . . . , k} onto itself.

2 The set of all permutations of {1, . . . , k} is denoted by Sk .

Remarks

1 In other words a permutation σ ∈ Sk is a reordering of the set
{1, . . . , k}.

2 |Sk | = k! (number of elements of Sk).

3 It is sometimes convenient to represent a permutation σ ∈ Sk
by its matrix, [

1 2 · · · k
σ(1) σ(2) · · · σ(k)

]
.
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Permutations

Facts

1 The composition of maps induces a group law on Sk ,

(στ) = σ ◦ τ, σ, τ ∈ Sk

2 The identity permutation is the identity element of Sk .

Definition

Sk is called the symmetric group of degree k .
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Permutations

Definition (Transposition)

The transposition τ = (a, b), a 6= b, is the permutation that
exchanges a and b and leaves all other elements unchanged, i.e.,

τ(j) =


b for i = a,
a for i = b,
i otherwise.

Example

The transposition (1, 2) ∈ S3 has matrix[
1 2 3
2 1 3

]
.
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Permutations

Definition (r -Cycles)

An r -cycle σ = (a1, . . . , ar ), where the ai are distinct, is the
permutation such that

1 σ(ai ) = ai+1 for i = 1, . . . , r − 1.

2 σ(ar ) = a1.

3 It leaves all other elements unchanged.

Example

The 3-cycle (123) ∈ S4 has matrix,[
1 2 3 4
2 3 1 4

]
.

Remarks

1 Any 1-cycle (a) is the identity permutation.

2 2-cycles are just transpositions.
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Permutations

Example (The symmetric group S2)

The symmetric group S2 consists of

The identity (1).

The transposition (1, 2).

Example (The symmetric group S3)

The symmetric group S3 consists of

The identity (1).

Transpositions: (1, 2), (1, 3), and (2, 3).

3-cycles: (123) and (132).
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Permutations

Example (The symmetric group S4)

The symmetric group S4 consists of

The identity (1).

Transpositions: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

3-cycles: (123), (124), (134), (234), (132), (142), (143),
(243).

4-cycles: (1234), (1324), (1432), (1243), (1342), (1423).

Products of 2-cycles: (12)(34), (13)(24), (14)(23).

Fact

Any permutation σ ∈ Sk can be written as a product of disjoint
cycles.
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Permutations

Facts

1 Any permutation σ ∈ Sk can be written as a product of
transpositions,

σ = τ1τ2 · · · τn.
2 The decomposition is not unique, but the parity of n depends

only on σ.

Definition

We say that σ is even (resp., odd) when n is even (resp., odd).
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Permutations

Example

We have

(1234) = (14)(13)(12)

= (12)(24)(23)

= (23)(14)(12)(13)(23).

Fact

Any r -cycle (a1, . . . , ar ) can be decomposed as the product of
r − 1 transpositions,

(a1ar )(a1ar−1) · · · (a1a2).

Therefore, it has the opposite parity of r .
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Permutations

Definition (Sign of a Permutation)

The sign of a permutation σ ∈ Sk is

sgn(σ) =

{
1 if σ is even,
−1 if σ is odd.

Fact

The map sgn : Sk → {±1} is a morphism of groups, i.e.,

sgn(στ) = sgn(σ) sgn(τ), sgn ((1)) = 1.

Consequence

If σ ∈ Sk is the product of p cycles of even length and q cycles of
odd length, then

sgn(σ) = (−1)p.
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Multilinear Functions

Definition

Set V k = V × · · · × V , where V is a vector space.

1 A function f : V k → R is k-linear when it is linear in each of
its arguments, i.e.,

f (v1, . . . , λvi + µwi , · · · , vn)

= λf (v1, . . . , vi , · · · , vn) + µf (v1, . . . ,wi , · · · , vn).

2 The space of k-linear maps on V is denoted by Lk(V ).

Remarks

1 A 2-linear function is called bilinear.

2 A k-linear map is also called a k-tensor or tensor of degree k .
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Multilinear Functions

Example

The dot product on Rn is bilinear,

v · w =
∑

v jw j , where v =
∑

v jej , w =
∑

w jej .

Here e1, . . . , en is the canonical basis of Rn.

Example

The determinant of vectors in Rn is n-linear,

(v1, . . . , vn) −→ det[v1 · · · vn].
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Multilinear Functions

Definition

Let f : V k → R be a k-linear function.

1 We say that f is symmetric when

f (vσ(1), . . . , vσ(k)) = f (v1, . . . , vk) for all σ ∈ Sk .

2 We say that f is alternating when

f (vσ(1), . . . , vσ(k)) = sgn(σ)f (v1, . . . , vk) for all σ ∈ Sk .

Remark

If f : V 2 → R is bilinear, then

f is symmetric ⇐⇒ f (v ,w) = f (u,w) ∀v ,w ∈ V ,
f is alternating ⇐⇒ f (v ,w) = −f (u,w) ∀v ,w ∈ V .
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Multilinear Functions

Fact

Let f : V k → R be k-linear. TFAE:

(i) f is symmetric.

(ii) f (v1, . . . , vn) remains unchanged whenever two arguments are
interchanged, i.e.,

f (v1, . . . , vi , . . . , vj , . . . , vn) = f (v1, . . . , vj , . . . , vi , . . . , vn).

Fact (Problem 3.4 + Problem 3.5)

Let f : V k → R be k-linear. TFAE:

(i) f is alternating.

(ii) f (v1, . . . , vn) changes sign whenever two arguments are
interchanged, i.e.,

f (v1, . . . , vi , . . . , vj , . . . , vn) = −f (v1, . . . , vj , . . . , vi , . . . , vn).

(iii) f (v1, . . . , vn) = 0 whenever two arguments agree.
17 / 40



Multilinear Functions

Fact

More generally, it can be shown that if f : V k → R is an
alternating k-linear function, then

f (v1, . . . , vn) = 0 whener v1, . . . , vn are linearly dependent.

Consequence

Any alternating k-linear function on V with k > dimV must be
zero.
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Multilinear Functions

Examples

1 The dot product v · w on Rn is symmetric.

2 The determinant of vectors det[v1 · · · vn] on Rn is alternating.

3 The cross product v × w on R3 is alternating.

Example

Let f , g : V → R be linear maps, and define their wedge product
f ∧ g : V 2 → R by

(f ∧ g)(u, v) = f (u)g(v)− f (v)g(u).

Then f ∧ g is an alternating bilinear map.
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Multilinear Functions

Definition

Let V be a vector space.

1 Ak(V ) is the space of all alternating k-linear maps
f : V k → R.

2 Elements of Ak(V ) are called alternating k-tensors,
k-covectors, or multicovectors of degree k .

Remarks

1 By convention a 0-covector is a scalar, so that A0(V ) = R.

2 A 1-covector is just a covector, and so A1(V ) = V ∨.

3 Ak(V ) = {0} for k > dimV .
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Permutation Action on Multilinear Functions

Definition

Given a k-linear function on V and a permutation σ ∈ Sk , we
define the k-linear function σf by

(σf )(v1, . . . , vk) = f (vσ(1), . . . , vσ(k)), vi ∈ V .

Remark

f is symmetric ⇐⇒ σf = f ∀σ ∈ Sk ,
f is alternating ⇐⇒ σf = sgn(σ)f ∀σ ∈ Sk .
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Permutation Action on Multilinear Functions

Lemma (Lemma 3.11)

Let f : V k → R be k-linear. Then

τ(σf ) = (τσ)f ∀σ, τ ∈ Sk .

Definition

Given a set X and a group G with identity e, a left action is a map
G × X 3 (g , x)→ gx ∈ X such that

1 ex = x for all x ∈ X .

2 g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

Fact

The map (σ, f )→ σf is a left action of the symmetric group Sk on
the vector space Lk(V ) of k-linear functions.

Remark

Each permutation σ ∈ Sk acts linearly on Lk(V ).
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Permutation Action on Multilinear Functions

Remark

1 We also define a right action as a map
X × G 3 (x , g)→ xg ∈ X such that

1 ex = x for all x ∈ X .
2 (xg)h = x(gh) for all g , h ∈ G and x ∈ X .

2 If (g , x)→ gx is a left action, then (x , g)→ xg−1 is a right
action.
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Symmetrizing and Alternating Operators

Definition (Symmetrizing Operator)

The symmetrizing operator S : Lk(V )→ Lk(V ) is defined by

Sf =
∑
σ∈Sk

σf .

That is,

(Sf )(v1, . . . , vk) =
∑
σ∈Sk

f
(
vσ(1), . . . , vσ(k)

)
.

Definition (Alternating Operator)

The alternating operator S : Lk(V )→ Lk(V ) is defined by

Sf =
∑
σ∈Sk

sgn(σ)σf .
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Symmetrizing and Alternating Operators

Proposition (Proposition 3.12)

Let f : V k → R be k-linear. Then

1 Sf is symmetric.

2 Af is alternating.

Lemma (Lemma 3.14)

If f : V k → R is k-linear and alternating, then Af = (k!)f .

Remark

Let f : V k → R be k-linear. Then

f is symmetric ⇐⇒ Sf = (k!)f ,
f is alternating ⇐⇒ Af = (k!)f .
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The Tensor Product

Definition

Let f : V k → R be k-linear and let g : V ` → R be `-linear. Their
tensor product is the (k + l)-linear function f ⊗ g : V k+` → R
defined by

(f ⊗ g)(v1, . . . , vk+`) = f (v1, . . . , vk)g(vk+1, . . . , vk+`), vi ∈ V .

Example

Let e1, . . . , en be a basis of V and α1, . . . , αn its dual basis. Given
a bilinear map g : V × V → R, set gij = g(ei , ej). Then

g =
∑

gijα
i ⊗ αj .
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The Tensor Product

Exercise (Exercise 3.17, Associativity of the tensor product)

If f , g and h are multilinear functions on V , then

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
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The Wedge Product

Definition

Given alternating functions f ∈ Ak(V ) and g ∈ A`(V ), their wedge
product (or exterior product) is the alternating function
f ∧ g ∈ Ak+`(V ) defined by

f ∧ g =
1

k!`!
A(f ⊗ g).

That is,

(f ∧ g)(v1, . . . , vk+`) =

1

k!`!

∑
σ∈Sk+`

sgn(σ)f
(
vσ(1), . . . , vσ(k)

)
g
(
vσ(k+1), . . . , vσ(k+`)

)
.
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The Wedge Product

Example (Example 3.19; wedge product of covectors)

If f ∈ A1(V ) and g ∈ A2(V ), then

(f ∧ g)(v1, v2) = f (v1)g(v2)− f (v2)g(v2).

Example (Example 3.18)

If f ∈ A2(V ) and g ∈ A1(V ), then

(f ∧ g)(v1, v2, v3) =

f (v1, v2)g(v3)− f (v1, v3)g(v2) + f (v2, v3)g(v1).
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The Wedge Product

Definition

A permutation σ ∈ Sk+` is a called a (k , `)-shuffle when

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + `).

Fact

It can be shown that if f ∈ Ak(V ) and g ∈ A`(V ), then

(f ∧ g)(v1, . . . , vk+`) =∑
(k, `)-shuflles

σ

sgn(σ)f
(
vσ(1), . . . , vσ(k)

)
g
(
vσ(k+1), . . . , vσ(k+`)

)
.
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Anticommutativity of the Wedge Product

Proposition (Proposition 3.21)

The wedge product is anticommutative, i.e., if f ∈ Ak(V ) and
g ∈ A`(V ), then

g ∧ f = (−1)k`f ∧ g .

Corollary (Corollary 3.23)

If f ∈ Ak(V ) and k is odd, then f ∧ f = 0.
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Associativity of the Wedge Product

Lemma (Lemma 3.24)

Let f ∈ Ak(V ) and g ∈ A`(V ). Then

(i) A(A(f )⊗ g) = k!A(f ⊗ g).

(ii) A(f ⊗ A(g)) = `!A(f ⊗ g).

Proposition (Proposition 3.25; Associativity of the wedge product)

Let f ∈ Ak(V ), g ∈ A`(V ), and h ∈ Am(V ). Then

(f ∧ g) ∧ h = f ∧ (g ∧ h).

Consequence

We may omit parantheses in wedge products and write (f ∧ h) ∧ h
and f ∧ (g ∧ h) simply as f ∧ g ∧ h.
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Associativity of the Wedge Product

Corollary (Corollary 3.26; corollary of the proof of Proposition 3.25)

If f ∈ Ak(V ), g ∈ A`(V ), and h ∈ Am(V ), then

f ∧ g ∧ h =
1

k!`!m!
A(f ⊗ g ⊗ h).

Fact

More generally, it can be shown by induction that if fi ∈ Aki (V ),
i = 1, . . . , r , then

f1 ∧ · · · ∧ fr =
1

k1! · · · kr !
A(f1 ⊗ · · · ⊗ fr ).
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Associativity of the Wedge Product

Proposition (Proposition 3.27; wedge product of 1-covectors)

If α1, . . . , αk are in A1(V ) = V ∨ and v1, . . . , vn are vectors in V ,
then (

α1 ∧ · · · ∧ αk
)
(v1, . . . , vk) = det

[
αi (vj)

]
.
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Associativity of the Wedge Product

Definition (Graded Algebras)

1 An algebra A over a field K called graded when it can be
decomposed as

A =
∞⊕
k=0

Ak ,

where the Ak are subspaces such that the multiplication maps
Ak × A` to Ak+`.

2 We then say that A is anticommutative (or graded
commutative) when

ba = (−1)k`ab for all a ∈ Ak and b ∈ A`.
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Associativity of the Wedge Product

Definition

Given graded algebras A = ⊕Ak and B = ⊕Bk , a graded algebra
homomorphism f : A→ B is an algebra homomorphism that
preserves the degree, i.e.,

f (Ak) ⊂ Bk for all k ≥ 0.

Example

The polynomial algebra A = R[x , y ] is graded by degree.

Here Ak consists of homogeneous polynomials of total degree
k, i.e., linear combinations of monomials xpyq with p + q = k .
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Associativity of the Wedge Product

Definition (Exterior Algebra)

If V is vector space of dimension n, its exterior algebra (or
Grassmann algebra) is the vector space,

A∗(V ) =
∞⊕
k=0

Ak(V ) =
n⊕

k=0

Ak(V ).

Fact

With respect to the wedge product A∗(V ) is an anticommutative
graded algebra.
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Basis of k-Covectors

Convention

V is an n-dimensional vector space with basis e1, . . . , en.

α1, . . . , αn is the dual basis of V ∨.

Definition

Given any multi-indice I = (i1, . . . , ik) we define

eI = (ei1 , . . . , eik ) and αI = αi1 ∧ · · · ∧ αik .

Remark

Here eI ∈ V k and αI ∈ Ak(V ).
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Basis of k-Covectors

Observation

By multi-linearity a k-linear function f : V k → R is completely
determined by its values on the k-tuples (ei1 , . . . , eik ).

Facts

Let f ∈ Ak and let (i1, . . . , ik) be a multi-index. Then

1 f (ei1 , . . . , eik ) = 0 whenever ip = iq for some p 6= q.

2 If all the ip are distincts, then there is a unique permutation
σ ∈ Sk such that iσ(1) < . . . < iσ(k).

3 We then have

f (ei1 , . . . .eik ) = sgn(σ)f (eiσ(1)
, . . . , eiσ(k)

).

Consequence

If f ∈ Ak(V ), then its completely determined by its values on
k-uples of the form,

(ei1 , . . . , eik ) with 1 ≤ i1 < i2 < · · · < ik ≤ n.
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Basis of k-Covectors

Lemma (Lemma 3.28)

Let I = (i1, . . . , ik) and J = (j1, . . . , jk) be strictly ascending
multi-indices, i.e., i1 < . . . < ik and j1 < . . . < jk . Then

αI (eJ) = δIJ =

{
1 for I = J,
0 for I 6= J.

Proposition (Proposition 3.29)

The k-covectors αI , I = (i1 < . . . < ik), form a basis of Ak(V ).

Corollary (Corollary 3.30 + Corollary 3.31)

1 If 0 ≤ k ≤ n, then dimAk(V ) =
(n
k

)
.

2 If k > n, then Ak(V ) = {0}.
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