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Dual Space

Definition
@ If V and W is are vector spaces we denote by Hom(V, W)
the vector space of all linear maps f : V — W.

@ The dual space Hom(V,R) is denoted by VV. It consists of
all linear forms f : V. — R.

© The elements of V'V are called covectors.

Convention

We assume that V is a finite-dimensional space with basis
€1,...,6n.

Every v € V can be uniquely written as v = 3" v/e; with v/ € R.




Dual Space

The i-coordinate function o : V — R is defined by

al(v)y=v if v= Z Ve;.

Remark
We have

| \

; i 1 fori=j,
a’(ef):‘sf':{ 0 for i

Here 51’-' is called the Kronecker symbol.




Dual Space

Proposition (Proposition 3.1)

The coordinate functions o, ..., a" form a basis of VV.

Definition

The basis a!,...,a" is called the dual basis of the basis ey, ..., e,.

Corollary (Corollary 3.2)

The dual space V' has the same dimension as V, and hence has
finite dimension.




Definition (Permutations)

@ A permutation is any bijection of {1,..., k} onto itself.
@ The set of all permutations of {1, ..., k} is denoted by S.

@ In other words a permutation o € Sy is a reordering of the set
{1,...,k}.
@ |Sk| = k! (number of elements of S).

© It is sometimes convenient to represent a permutation o € Sy
by its matrix,




@ The composition of maps induces a group law on Sy,

(o7)=0o0T, o, T € Sk

@ The identity permutation is the identity element of S.

Definition
Sk is called the symmetric group of degree k.
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Definition (Transposition)

The transposition T = (a, b), a # b, is the permutation that
exchanges a and b and leaves all other elements unchanged, i.e.,

b fori=a,
7(j)=1< a fori=b,
i otherwise.

The transposition (1,2) € S3 has matrix

1 2 3
2 1 3|°




Definition (r-Cycles)

An r-cycle 0 = (a1,...,ar), where the a; are distinct, is the
permutation such that

Q o(aj)=ajy1fori=1,...,r—1
Q o(a;) = a1.

© It leaves all other elements unchanged.

The 3-cycle (123) € S4 has matrix,
1 2 3 4
2 3 1 4|°

© Any l-cycle (a) is the identity permutation.

@ 2-cycles are just transpositions.




Example (The symmetric group S,)

The symmetric group S, consists of
@ The identity (1).
@ The transposition (1,2).

Example (The symmetric group S3)

The symmetric group S3 consists of
@ The identity (1).
e Transpositions: (1,2), (1,3), and (2, 3).
@ 3-cycles: (123) and (132).




Example (The symmetric group Si)

The symmetric group S; consists of
@ The identity (1).
e Transpositions: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).
e 3-cycles: (123), (124), (134), (234), (132), (142), (143),
(243).
o d-cycles: (1234), (1324), (1432), (1243), (1342), (1423).
@ Products of 2-cycles: (12)(34), (13)(24), (14)(23).

Any permutation o € Sx can be written as a product of disjoint
cycles.
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Permutations

© Any permutation o € Sy can be written as a product of
transpositions,

O =TT Tp-

@ The decomposition is not unique, but the parity of n depends
only on o.

Definition

We say that o is even (resp., odd) when n is even (resp., odd).
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We have

(1234) = (14)(13)(12)
= (12)(24)(23)
— (23)(14)(12)(13)(23).

Fact

Any r-cycle (ai,...,a,) can be decomposed as the product of
r — 1 transpositions,

| A\

(a1a,)(a1a,-1) - - - (a132).

Therefore, it has the opposite parity of r.
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Definition (Sign of a Permutation)

The sign of a permutation o € S is

1 ifois
(@) =1\ 1 ifois

even,
odd.

The map sgn : Sy — {£1} is a morphism of groups, i.e.,

sgn((1)) = 1.

sgn(or) = sgn(o)sgn(7),

Consequence

If o € Sk is the product of p cycles of even length and g cycles of

odd length, then

sgn(o) = (—1)P.
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Multilinear Functions

Set VK=V x --- x V, where V is a vector space.

@ A function f : VK — R is k-linear when it is linear in each of
its arguments, i.e.,

(v, ooy AV + puwj, - -+, vp)
=M (Viy ooy Vigeoe V) + uf(Va, ooy Wiy oo, V).

@ The space of k-linear maps on V is denoted by Li(V).

© A 2-linear function is called bilinear.

© A k-linear map is also called a k-tensor or tensor of degree k.
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Multilinear Functions

The dot product on R” is bilinear,

vVeow = E vw!, where v = E Ve, w= g we;.

Here ey, ..., e, is the canonical basis of R”.

The determinant of vectors in R" is n-linear,

(Viy...y V) —> detfvy - vp).
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Multilinear Functions

Let f: VK — R be a k-linear function.

© We say that f is symmetric when
f(Va(l)a“on(k)) = f(Vl,...,Vk) for all o € 5.

@ We say that f is alternating when

f(Vo(1) -+ Vo(k)) = sgn(o)f (v, ..., vk) for all o € 5.

If f: V2 — R is bilinear, then

f is symmetric <= f(v,w)=f(u,w) VYv,weV,
f is alternating <— f(v,w)=—f(u,w) Vv,we V.
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Multilinear Functions

Let f : VK — R be k-linear. TFAE:

(i) f is symmetric.

(i) f(vi,...,vn) remains unchanged whenever two arguments are
interchanged, i.e.,

f(Vi, ooy Viyeo s Vs oo V) = (Ve oo Voo Vi, V),

Fact (Problem 3.4 + Problem 3.5)

Let f: VK — R be k-linear. TFAE:
(i) f is alternating.

(i) f(v1,...,vn) changes sign whenever two arguments are
interchanged, i.e.,

f(vi, oo s Viyeo s Vjsoo oy V) = —f(Ve, oo, Voo Vs oo, V).

(i) f(v1,...,vs) = 0 whenever two arguments agree.
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Multilinear Functions

More generally, it can be shown that if f: VK — R is an
alternating k-linear function, then

f(viy...,vn) =0 whener vq,..., v, are linearly dependent.

Consequence

Any alternating k-linear function on V with k > dim V must be
zero.
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Multilinear Functions

© The dot product v - w on R” is symmetric.
@ The determinant of vectors det[v; - - - v,] on R” is alternating.

© The cross product v x w on R3 is alternating.
p g

Example
Let f,g: V — R be linear maps, and define their wedge product
fAg:V?—=Rby

(f A g)(u,v) = f(u)g(v) — F(v)g(v).

Then f A g is an alternating bilinear map.
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Multilinear Functions

Let V be a vector space.

O Ak(V) is the space of all alternating k-linear maps
f: VKR

@ Elements of Ac(V) are called alternating k-tensors,
k-covectors, or multicovectors of degree k.

© By convention a 0-covector is a scalar, so that Ag(V) = R.

@ A l-covector is just a covector, and so A (V) = VV.
© Ax(V)={0} for k > dim V.
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Permutation Action on Multilinear Functions

Definition
Given a k-linear function on V and a permutation o € S, we
define the k-linear function of by

() (vay ooy Vi) = F(Vo(rys - - -5 Vo(k))s vi e V.

f is symmetric <= of =f VYo € S,
f is alternating <= of =sgn(o)f Vo € 5.
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Permutation Action on Multilinear Functions

Lemma (Lemma 3.11)
Let f : VK — R be k-linear. Then
T7(of) = (ro0)f  Yo,T € Sk.

Definition
Given a set X and a group G with identity e, a left action is a map
G x X 3 (g,x) — gx € X such that

Q ex =x forall x € X.

@ g(hx) = (gh)x for all g,h € G and x € X.

Fact

The map (o, f) — of is a left action of the symmetric group Sk on
the vector space Ly (V) of k-linear functions.

| A

Each permutation o € Sy acts linearly on Li(V).




Permutation Action on Multilinear Functions

@ We also define a right action as a map
X x G 3 (x,8) = xg € X such that
@ ex = x forall x € X.
© (xg)h = x(gh) for all g,h € G and x € X.

1

@ If (g,x) — gx is a left action, then (x,g) — xg~ ' is a right

action.
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Symmetrizing and Alternating Operators

Definition (Symmetrizing Operator)

The symmetrizing operator S : Li(V) — Lk(V) is defined by

Sf = Z of.

cS
That is, 7=k

(Sf) Vi, . Z f 0(1)7 ey Vg(k)) 0

ogESK

Definition (Alternating Operator)

The alternating operator S : Ly (V) — Li(V) is defined by

Sf = Z sgn(o)of

TES)

A\
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Symmetrizing and Alternating Operators

Proposition (Proposition 3.12)

Let f : VK = R be k-linear. Then
Q Sf is symmetric.
@ Af is alternating.

Lemma (Lemma 3.14)

If f : VK — R is k-linear and alternating, then Af = (k!)f.

Let f: VK — R be k-linear. Then

f is symmetric <= Sf = (k!)f,
f is alternating <= Af = (k!)f.
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The Tensor Product

Definition
Let f : VK — R be k-linear and let g : V¥ — R be /-linear. Their

tensor product is the (k 4 /)-linear function f @ g : VK¢ — R
defined by

(f &® g)(vl, ceey Vk+g) =S f(Vl, ce vk)g(vk+1, ceey Vk+g), v, € V.

| A\

Example
Let e1,...,e, be a basis of V and al,...,a" its dual basis. Given
a bilinear map g : V x V = R, set g;j = g(ei, ¢j). Then

g = Zg,-jai ® ol
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The Tensor Product

Exercise (Exercise 3.17, Associativity of the tensor product)

If f, g and h are multilinear functions on V/, then

(fRg)®h=FfR(g®h).

27 /40



The Wedge Product

Definition

Given alternating functions f € Ax(V) and g € Ay(V), their wedge
product (or exterior product) is the alternating function

f Ag € Akie(V) defined by

1

That is,

(FAg)(va,. .oy Vipr) =

1
m Z sgn(a)f (Va(1)7 ooy Va(k)) g (Va(k-i—l)a so0g Va(k—',-é)) 0

TESk1e
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The Wedge Product

Example (Example 3.19; wedge product of covectors)
If f € Ai(V) and g € Ax(V), then

(f Ag)(vi, v2) = f(v1)g(v2) — f(v2)g(v2).

\

Example (Example 3.18)
If f e Ay(V) and g € A1(V), then

(f A g)(vl, Vo, V3) =
f(vi, v2)g(vs) — f(v1, v3)g(va) + f(va, v3)g(v1).

&
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The Wedge Product

A permutation o € Sy is a called a (k, £)-shuffle when

o(l) <---<oa(k) and ok+1)<---<oa(k+2?).

It can be shown that if f € Ax(V) and g € Ay(V), then

(f/\g)(vl,. cy Vk+g) =

Z sgn(a)f (VO'(].)7 cooy Va(k)) g (Va(k-l—l)? 009 Va(k-‘,—Z)) .
(k, £)-shuflles
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Anticommutativity of the Wedge Product

Proposition (Proposition 3.21)

The wedge product is anticommutative, i.e., if f € Ax(V) and
g € Ay(V), then
gANf=(-D)Kfrg.

Corollary (Corollary 3.23)
If f € Ac(V) and k is odd, then f N f = 0.
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Associativity of the Wedge Product

Lemma (Lemma 3.24)

Let f € A(V) and g € Ay(V). Then
(i) A(A(f)® g) = kIA(f® g).

(i) A(f @ A(g)) =A(f ® g).

Proposition (Proposition 3.25; Associativity of the wedge product)
Let f € A(V), g € Al(V), and h € Ap,(V). Then

(FAg)Nh=FfA(gAh).

| \

Consequence

We may omit parantheses in wedge products and write (f A h) A h
and f A (g A h) simply as f A g A h.
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Associativity of the Wedge Product

Corollary (Corollary 3.26; corollary of the proof of Proposition 3.25)
Iff € Ak(V), g € Al(V), and h € An(V), then

A(f ® g ® h).

1
f/\g/\h_klﬂl

More generally, it can be shown by induction that if f; € A (V),
i=1,...,r, then

fl/\.../\frziklA(fl(g...@fr).
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Associativity of the Wedge Product

Proposition (Proposition 3.27; wedge product of 1-covectors)

Ifat,... ok arein Ay (V) = VV and vi,...,v, are vectors in V,
then _
(P A /\ak)(vl, o, vk) = det [/ (v))] .
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Associativity of the Wedge Product

Definition (Graded Algebras)

© An algebra A over a field K called graded when it can be
decomposed as

where the AX are subspaces such that the multiplication maps
Ak x AL to A+

@ We then say that A is anticommutative (or graded
commutative) when

ba=(—1)%ab  forall a € AK and b € A"
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Associativity of the Wedge Product

Definition
Given graded algebras A = $AX and B = @B, a graded algebra

homomorphism f : A — B is an algebra homomorphism that
preserves the degree, i.e.,

f(AK) c BX  forall k> 0.

@ The polynomial algebra A = R|[x, y] is graded by degree.

@ Here A¥ consists of homogeneous polynomials of total degree
k, i.e., linear combinations of monomials xPy9 with p+ g = k.
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Associativity of the Wedge Product

Definition (Exterior Algebra)

If V is vector space of dimension n, its exterior algebra (or
Grassmann algebra) is the vector space,

A(V) = P AV) = P Au(V).
k=0 k=0

With respect to the wedge product A.(V) is an anticommutative
graded algebra.
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Basis of k-Covectors

Convention

@ V is an n-dimensional vector space with basis ey, ..., e,.

e ol,...,a" is the dual basis of VV.

o

Given any multi-indice | = (i1, ..., ix) we define

e = (&j,---,€j) and al =at A A akk,

\

Here ¢ € VK and o € A, (V).
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Basis of k-Covectors

Observation

By multi-linearity a k-linear function f : VX — R is completely
determined by its values on the k-tuples (ej;, ..., € ).

Facts
Let f € Ag and let (i1, ..., ix) be a multi-index. Then
Q f(ei,...,ej) =0 whenever i, = iy for some p # q.
@ If all the i, are distincts, then there is a unique permutation
o € Sk such that ip1) < ... <iy(k)-

© We then have
fei,....€)= sgn(a)f(eia(l), s ei,,(k))-

Consequence

If f € A(V), then its completely determined by its values on
k-uples of the form,
(eis---,€i) withl<ihp<ih<:---<ip<n. b o




Basis of k-Covectors

Lemma (Lemma 3.28)

Let | = (i1,...,ik) and J = (j1, ..., jk) be strictly ascending
multi-indices, i.e., h < ...<ix and j1 < ... < jx. Then

/ Y 1 for/:J,
a(eJ)_(SJ_{ 0 forl # J.

Proposition (Proposition 3.29)

The k-covectors o!, | = (iy < ... < i), form a basis of A,(V).

Corollary (Corollary 3.30 + Corollary 3.31)

Q@ /If0 <k <n, thendimA,(V) = (Z)
@ If k> n, then A (V) = {0}.
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