Noncommutative Geometry Lecture 5: Diffeomorphism Invariant Geometry

Raphaël Ponge

Seoul National University

October 27, 2011

Diffeomorphism Invariant Geometry

Setup

- M^n is an oriented manifold.
- $\Gamma = \text{Diff}^+(M)$ is the group of all orientation-preserving diffeomorphisms of M.

Goal

Reformulate the index formula of Atiyah-Singer in diffeomorphism invariant geometry. To this end we shall

- **①** Construct a spectral triple (A, \mathcal{H}, D) encoding the differential geometry of the action of Γ on M.
- 2 Derive an index formula for this spectral triple.

The Crossed-Product Algebra

The candidate for the algebra ${\cal A}$ of the spectral triple is the crossed-product algebra,

$$C_c^\infty(M)
times \Gamma := igg\{ ext{finite sums} \sum_{arphi \in \Gamma} f_arphi U_arphi; \ f_arphi \in C_c^\infty(M) igg\},$$

where f_{φ} and U_{φ} are represented as operators such that

$$U_{\varphi}^* = U_{\varphi}^{-1} = U_{\varphi^{-1}}, \qquad U_{\varphi}f = (f \circ \varphi^{-1})U_{\varphi}.$$

- *M* does carry any diffeomorphism invariant differentiable structure, except the manifold structure itself. In particular, it does not carry a diffeomorphismin invariant metric.
- We cannot represent the elements $\Gamma = \operatorname{Diff}^+(M)$ as unitary operators on the space of sections of a vector bundle of differential forms over M.
- We get a Γ -invariant metric by trading M for its metric bundle.

The Metric Bundle

Definition

The *metric bundle* $P \xrightarrow{\pi} M$ is the bundle of positive-definite 2-tensors $p_{ij} dx^i \otimes dx^j$.

Remark

If $\{x^j\}$ are coordinates of $x \in M$, then a point $p \in P_x$ has coordinates $\{x^j\}$ and (p_{ij}) with $p = p_{ij}x^i \otimes dx^j$. Using such coordinates, the action of Γ on P is given by

$$\varphi^*(x,p) = \left(\varphi(x), \left(\varphi'(x)^{-1}\right)^t \left(p_{ij}\right) \left(\varphi'(x)^{-1}\right)^t\right)$$

Remark

If $F^+(M)$ is the positive frame bundle of M, then

$$P = F^+(M)/SO(n)$$
.

T-Invariant Bundles

Definition

The *vertical bundle* of the fibration $\pi: P \to M$ is

$$V := \ker d\pi \subset TP$$
.

Definition

 π^*TM is the lift of TM to a vector bundle over P, so that

$$(\pi^* TM)_{(x,p)} = T_x M \qquad \forall (x,p) \in P.$$

Proposition

Both V and π^*TM are Γ -invariant vector bundles.

Remark

We always have $TP \simeq (\pi^*TM) \oplus V$, but there is no Γ -invariant identification.

T-Invariant Metrics

Proposition (Connes-Moscovici)

1 π^*TM carries the Γ -invariant metric,

$$g_H(x,p) := p_{ij} dx^i \otimes dx^j$$
.

2 V carries the Γ-invariant metric,

$$g_V(x,p) = g_V(p) := \operatorname{Tr}\left[\left(p^{-1}dp\right) \otimes \left(p^{-1}dp\right)\right].$$

- **③** $g := g_H \oplus g_V$ is a Γ -invariant metric on $(\pi^*TM) \oplus V$.
- P carries the Γ-invariant volume form,

$$\operatorname{vol}_g(x,p) = \sqrt{\det p} \, dx^1 \wedge \cdots \wedge dx^n \wedge \operatorname{vol}_{g_V}(p).$$

Remark

 $g_V(p)$ is a $GL_n(\mathbb{R})$ -invariant metric on $P_n := \{ p \in M_n(\mathbb{R}); \ p > 0 \}$.

Γ-Invariant Metrics

Proposition

The metrics g_H and g_V gives rise to

1 A Γ-invariant Hermitian metric h on

$$\Lambda(P) := (\pi^* \Lambda_{\mathbb{C}}^* T^* M) \otimes \Lambda_{\mathbb{C}}^* V.$$

2 A Γ -invariant Hodge operator $\star : \Lambda(P) \to \Lambda(P)$ such that

$$\star \alpha \wedge \beta = h(\alpha, \beta) \operatorname{vol}_{g}(x, p) \quad \forall \alpha, \beta \in \Lambda(P).$$

3 A Γ -invariant orthogonal \mathbb{Z}_2 -grading,

$$\Lambda(P) = \Lambda^{+}(P) \oplus \Lambda^{-}(P), \qquad \Lambda^{\pm}(P) := \{ \alpha \in \Lambda(P); \ \star \alpha = \pm \alpha \}$$

The Hilbert Space $L^2(P, \Lambda(P))$

Definition

The Hilbert space $L^2(P, \Lambda(P))$ is the completion of $C_c^{\infty}(P, \Lambda(P))$ with respect to the inner product,

$$\langle u, v \rangle := \int_P h(u(x, p), v(x, p)) \operatorname{vol}_g(x, p), \qquad u, v \in C_c^{\infty}(P, \Lambda(P)).$$

Remark

We have the orthogonal \mathbb{Z}_2 -grading,

$$L^{2}\left(P,\Lambda(P)\right)=L^{2}\left(P,\Lambda^{+}(P)\right)\oplus L^{2}\left(P,\Lambda^{-}(P)\right).$$

This \mathbb{Z}_2 -grading is Γ -invariant.

Geometric Realization of $C_c^{\infty}(P) \rtimes \Gamma$

Remark

• We have a natural representation $\varphi \to U_{\varphi}$ of Γ in $L^2(P, \Lambda(P))$ defined by

$$U_{\varphi}u := \varphi^*u \qquad \forall u \in L^2(P, \Lambda(P)).$$

• As the inner product of $L^2(P, \Lambda(P))$ is Γ -invariant, this is a *unitary* representation. That is,

$$U_{\varphi^{-1}} = U_{\varphi}^{-1} = U_{\varphi}^* \qquad \forall \varphi \in \Gamma.$$

• Let $\varphi \in \Gamma$ and $f \in C_c^{\infty}(P)$. Then, for all $u \in L^2(P, \Lambda(P))$,

$$U_{\varphi}(\mathbf{f}u) = \varphi^*(\mathbf{f}u) = \varphi^*\mathbf{f}\varphi^*u = \mathbf{f}\circ\varphi^{-1}U_{\varphi}u.$$

That is,

$$U_{\varphi}f=f\circ\varphi^{-1}U_{\varphi}.$$

Geometric Realization of $C_c^{\infty}(P) \rtimes \Gamma$

Definition

$$C_c^\infty(P)
times \Gamma := igg\{ ext{finite sums} \sum_{arphi \in \Gamma} f_arphi U_arphi; \ f_arphi \in C_c^\infty(M) igg\},$$

where U_{φ} is defined as in the previous slide.

- The crossed-product algebra $C_c^{\infty}(P) \rtimes \Gamma$ is thus realized as an algebra of bounded operators on $L^2(P, \Lambda(P))$.
- **2** The action of $C_c^{\infty}(P) \rtimes \Gamma$ on $L^2(P, \Lambda(P))$ preserves the \mathbb{Z}_2 -grading,

$$L^{2}(P,\Lambda(P)) = L^{2}(P,\Lambda^{+}(P)) \oplus L^{2}(P,\Lambda^{-}(P)).$$

The Operator D

Aim

Construct an operator $D: C_c^\infty(P,\Lambda(P)) \to C_c^\infty(P,\Lambda(P))$ such that

- **1** D maps sections of $\Lambda^{\pm}(P)$ to sections of $\Lambda^{\mp}(P)$.
- ② $[D, fU_{\varphi}]$ is bounded for all $f \in C_c^{\infty}(P)$ and $\varphi \in \Gamma$.
- **1** If D has compact resolvent for all $f \in C_c^{\infty}(P)$.

Remark

If we seek for an operator D as a $\psi {\rm DO}$, then the 2nd condition is tatamount to

- ① D has order 1.
- **2** The 1st order part of D is Γ -invariant.

The Operator D

Overview of the Construction

• The operator D will be defined by an equation,

$$D|D|=Q.$$

That is, $D = Q|Q|^{-\frac{1}{2}}$.

ullet The operator Q will be a differential operator of the form,

$$Q = Q_H + Q_V$$

where

- Q_H is 1st order horizontal signature operator.
- Q_V is a 2nd order vertical signature operator.
- As we shall see, the operator D is not a ψDO , but it lies in a pseudo-differential calculus of a different type.

The Vertical Operator Q_V

Definition

The longitidunal differential $d_V: C^{\infty}(P, \Lambda^{\bullet}V^*) \to C^{\infty}(P, \Lambda^{\bullet}V^*)$ is defined as follows:

- If $f \in C^{\infty}(P)$, then $d_V f := (df)_{|V}$.
- If $\alpha \in C^{\infty}(P, V^*)$, then, for all $X, Y \in C^{\infty}(P, V)$,

$$d_V\alpha(X,Y):=X(\alpha(Y))-Y(\alpha(X))-\alpha([X,Y]).$$

• If $\alpha \in C^{\infty}(P, \Lambda^k V^*)$ and $\beta \in C^{\infty}(P, \Lambda^{\bullet} V^*)$, then

$$d_{V}(\alpha \wedge \beta) = (d_{V}\alpha) \wedge \beta + (-1)^{k}\alpha \wedge d_{V}\beta.$$

The Vertical Operator Q_V

Definition

The operator $Q_V: C^{\infty}(M, C^{\infty}(P, \Lambda^{\bullet}V^*) \to C^{\infty}(P, \Lambda^{\bullet}V^*)$ is

$$Q_V := d_V d_V^* - d_V^* d_V.$$

Remark

The operator Q_V is a Γ -invariant 2nd order differential operator. It can be thought of as a 2nd order vertical signature operator.

The Horizontal Operator Q_H

Fact

The fibration $\pi: P \to M$ gives rise to a vector-bundle morphism,

$$\pi^*: \pi^* \Lambda^{\bullet} T^* M \longrightarrow \Lambda^{\bullet} T^* P.$$

Extra Datum

H is a horizontal connection, i.e., a subbundle $H \subset TP$ such that

$$TP = V \oplus H$$
.

Remark

As $d\pi_{|H}: H \to \pi^*TM$ is a vector-bundle isomorphism, we get vector-bundle morphisms,

$$j_H: \pi^* TM \xrightarrow{(d\pi_{|H})^{-1}} H \hookrightarrow TP,$$

$$j_H^t: \Lambda^{\bullet} T^* P \longrightarrow \pi^* \Lambda^{\bullet} T^* M.$$

The Horizontal Operator Q_H

Definition

The *H*-differential $d_H: C^{\infty}(P, \pi^*\Lambda^{\bullet}T^*M) \to C^{\infty}(P, \pi^*\Lambda^{\bullet}T^*M)$ is defined by

$$d_H \alpha := j_H^t (d(\pi^* \alpha)) \qquad \forall \alpha \in C^{\infty}(P, \pi^* \Lambda^{\bullet} T^* M).$$

Definition

The operator $Q_H: C^{\infty}(P, \pi^*\Lambda^{\bullet}T^*M) \to C^{\infty}(P, \pi^*\Lambda^{\bullet}T^*M)$ is

$$Q_H:=d_H+d_H^*.$$

- \bullet Q_H is a 1st order differential operator.
- ② If H' is another horizontal connection, then $Q_{H'} = Q_H + R_V$, where R_V is 1st order vertical differential operator.

The Operator Q

Definition

The operator $Q: C^{\infty}(P, \Lambda(P)) \to C^{\infty}(\Lambda(P))$ is

$$Q := Q_H \otimes 1 + 1 \otimes Q_V$$
.

- Q is a 2nd order differential operator mapping sections of $\Lambda^{\pm}(P)$ to $\Lambda^{\mp}(P)$.
- **2** Q is not elliptic, so it is not invertible in the classical ψ DO-calculus. However, it is hypoelliptic, and as such it is invertible in the ψ DO'-calculus.
- **3** If $\varphi \in \Gamma$, then $U_{\varphi}QU_{\varphi}^* = Q + R_V$, where R_V is a first order *vertical* differential operator, and hence has lower order 1 in the ψ DO'-calculus. Therefore, the 2nd order part of Q in the ψ DO'-sense is Γ -invariant.

The Operator D

Definition

The operator $D: C_c^{\infty}(P, \Lambda(P)) \to C_c^{\infty}(P, \Lambda(P))$ is defined by the equation,

$$D|D|=Q.$$

- **1** The operator D is a selfadjoint $\psi DO'$ of order 1.
- **2** *D* maps sections of $\Lambda^{\pm}(P)$ to $\Lambda^{\mp}(P)$.
- **③** If $\varphi \in \Gamma$, then $U_{\varphi}DU_{\varphi}^* D$ has order 0 in the ψ DO'-calculus. Thus, the 1st order part of D (in the ψ DO'-sense) is Γ -invariant.

The Spectral Triple in Diff-Invariant Geometry

Theorem (Connes-Moscovici '95)

• The following is a spectral triple,

$$(C_c^{\infty}(P) \rtimes \Gamma, L^2(P, \Lambda(P)), D)$$
,

with
$$L^2(P, \Lambda(P)) = L^2(P, \Lambda^+(P)) \oplus L^2(P, \Lambda^-(P))$$
.

- 2 This spectral is q-summable with $q = 2n + \frac{1}{2}n(n+1)$, regular and has a discrete and simple dimension spectrum.
- The CM cocycle makes sense and computes the index map,

$$\operatorname{ind}_D[\mathcal{E}] = \langle \varphi_{CM}, \mathcal{E} \rangle \qquad \forall \mathcal{E} \in K_0(C_c^{\infty}(P) \rtimes \Gamma).$$

Remark

The direct calculation of the CM cocycle involves way too many terms to deal with, e.g., in the simplest case $M=S^1$ it amounts to 100 pages of computation.

Hopf Cyclic Cohomology

Proposition (Connes-Moscovici '98)

• There are a universal Hopf algebra \mathcal{H}_n , depending only on the dimension n, and a characteristic map,

$$\theta: HC^*(\mathcal{H}_n, SO(n)) \longrightarrow HC^*(C_c^{\infty}(P) \rtimes \Gamma),$$

where $HC^*(\mathcal{H}_n, SO(n))$ is the <u>relative</u> Hopf cyclic cohomology of \mathcal{H}_n .

② The relative Hopf cyclic cohomology $HC^*(\mathcal{H}_n, SO(n))$ is isomorphic to the Gel'fand-Fuks cohomology,

$$H(W^* SO(n)) = Span\{Pontryagin \& Secondary Classes\}.$$

It follows that we get a characteristic map,

$$\hat{\theta}: H(W^* SO(n)) \stackrel{\sim}{\to} HC^*(\mathcal{H}_n) \stackrel{\theta}{\to} HC^*(C_c^{\infty}(P) \rtimes \Gamma).$$

The Index Theorem in Diffeomorphism-Invariant Geometry

Proposition (Connes-Moscovici '98)

The class of the CM cocycle is contained in the range of the characteristic map.

Theorem (Connes-Moscovici '98)

There is a universal class $L_n \in H(W^* SO(n))$ such that, for any oriented manifold M^n and any group Γ of orientation-preserving diffeomorphisms of M, we have

$$\operatorname{ind}_D[\mathcal{E}] = \langle \hat{\theta}(L_n), \mathcal{E} \rangle \qquad \forall \mathcal{E} \in K_0(C_c^{\infty}(P) \rtimes \Gamma).$$