Noncommutative Geometry Lecture 3: Cyclic Cohomology

Raphaël Ponge

Seoul National University

October 25, 2011

Hochschild Cohomology

Setup

 \mathcal{A} is a unital algebra over \mathbb{C} .

Definition (Hochschild Complex)

1 The space of *n*-cochains, $n \ge 0$, is

$$C^n(\mathcal{A}) := \left\{ (n+1) \text{-linear forms } \varphi : \mathcal{A}^{n+1} \to \mathbb{C} \right\}, \quad n \ge 0.$$

② The coboundary $b: C^n(A) \to C^{n+1}(A)$ is given by

$$(b\varphi)(a^{0},\cdots,a^{n+1}) = \sum_{0 \leq j \leq n} (-1)^{j} \varphi(a^{0},\cdots,a^{j}a^{j+1},\cdots,a^{n+1}) + (-1)^{n+1} \varphi(a^{n+1}a^{0},\cdots,a^{n}).$$

Hochschild Cohomology

Lemma

We have $b^2 = 0$.

Definition

The cohomology of the complex $(C^{\bullet}(A), b)$ is called the Hoschschild cohomology of A and is denoted $HH^{\bullet}(A)$.

Hochschild Cohomology

Example

Let C be a k-dimensional current on a compact manifold M. Define a k-cochain on $\mathcal{A} = C^{\infty}(M)$ by

$$\varphi_{\mathcal{C}}(f^0, f^1, \cdots, f^k) = \frac{1}{k!} \langle \mathcal{C}, f^0 df^1 \wedge \cdots \wedge df^k \rangle.$$

Then $b\varphi_C = 0$. In fact, we have

Theorem (Hochschild-Kostant-Rosenberg, Connes)

There is an isomorphism,

$$HH^k(M) \simeq \mathcal{D}'_k(M).$$

Cyclic Cohomology (Connes, Tsygan)

Definition (Cyclic Cochains)

A cochain $\varphi \in C^n(A)$, $n \ge 0$, is *cyclic* when

$$\varphi(a^1,\cdots,a^n,a^0)=(-1)^n\varphi(a^0,\cdots,a^n)\quad \forall a^j\in\mathcal{A}.$$

We denote by $C_{\lambda}^{n}(A)$ the space of cyclic *n*-cochains.

Example

Let C be a k-dimensional current on a compact manifold M. We saw it defines a Hochschild cocycle, Then

C closed (i.e.,
$$d^t C = 0$$
) $\Longrightarrow \varphi_C$ cyclic.

Cyclic Cohomology

Lemma

$$\varphi$$
 cyclic \Longrightarrow $b\varphi$ cyclic.

Definition

The cohomology of the sub-complex $(C^{\bullet}_{\lambda}(A), b)$ is called the *cyclic cohomology* of A and is denoted $HC^{\bullet}(A)$.

Periodic Cyclic Cohomology (Connes, Tsygan)

Definition

Define $B: C^n(\mathcal{A}) \to C^{n-1}(\mathcal{A})$ by

$$B = AB_0$$
,

where $B_0: C^n(\mathcal{A}) \to C^{n-1}(\mathcal{A})$ and $A: C^{n-1}(\mathcal{A}) \to C^{n-1}(\mathcal{A})$ are given by

$$B_0\varphi(a^0,\cdots,a^{n-1})=\varphi(1,a^0,\cdots,a^{n-1})-(-1)^n\varphi(a^0,\cdots,a^{n-1},1),$$

$$A\psi(a^0,\cdots,a^{n-1})=\sum_{j=0}^{n-1}(-1)^{j(n-1)}\psi(a^j,\cdots,a^{n-1},a^0,\cdots,a^{j-1}).$$

Remark

- If φ is a cyclic cochain, then $B_0\varphi=0$, and hence $B\varphi=0$.
- **2** An *n*-cochain φ is cyclic if and only if $A\varphi = \frac{1}{n+1}\varphi$.

Example

Let C be a k-dimensional current on a compact manifold M. It defines a Hochschild cocycle,

$$\varphi_{\mathcal{C}}(f^0, f^1, \cdots, f^k) = \frac{1}{k!} \langle \mathcal{C}, f^0 df^1 \wedge \cdots \wedge df^k \rangle.$$

We then have

$$B\varphi_C = \varphi_{d^tC}$$
.

Lemma

We have

$$B^2 = 0$$
 and $bB + Bb = 0$.

Definition (Even/Odd Cochains)

Define

$$C^{\text{even}}(\mathcal{A}) := \bigoplus_{k \geq 0} C^{2k}(\mathcal{A})$$

$$= \left\{ \varphi = (\varphi_0, \varphi_2, \cdots); \ \varphi_{2k} \in C^{2k}(\mathcal{A}), \ \varphi_{2k} = 0 \text{ for large } k \right\},$$

and

$$\begin{split} C^{\text{odd}}(\mathcal{A}) &:= \bigoplus_{k \geq 0} C^{2k+1}(\mathcal{A}) \\ &= \left\{ \varphi = (\varphi_1, \varphi_3, \cdots); \; \varphi_{2k+1} \in C^{2k+1}(\mathcal{A}), \; \varphi_{2k+1} = 0 \; \text{for large} \; k \right\}. \end{split}$$

Proposition

We have a 2-periodic complex,

$$C^{\operatorname{even}}(\mathcal{A}) \stackrel{b+B}{\hookrightarrow} C^{\operatorname{odd}}(\mathcal{A}).$$

Definition

The cohomology of $(C^{\text{even/odd}}(\mathcal{A}), b+B)$ is called the *periodic cyclic cohomology* of \mathcal{A} and is denoted $HC^{\text{even/odd}}(\mathcal{A})$.

Example

Let $C = C_0 + C_2 + \cdots$ be an even current on a compact manifold M. Then C defines an even cochain,

$$\varphi_{C} = (\varphi_{C_0}, \varphi_{C_2}, \cdots),$$

$$\varphi_{C_{2k}}(f^0, f^1, \cdots, f^{2k}) = \frac{1}{(2k)!} \langle C_{2k}, f^0 df^1 \wedge \cdots \wedge df^{2k} \rangle.$$

Then

$$(b+B)\varphi_{\mathcal{C}}=B\varphi_{\mathcal{C}}=\varphi_{d^{\dagger}\mathcal{C}}.$$

C closed $\implies \varphi_C$ even cyclic cocycle.

Theorem (Connes)

The map $C \to \varphi_C$ gives rise to isomorphisms,

$$H_{\mathsf{even}/\mathsf{odd}}(M) \simeq HC^{\mathsf{even}/\mathsf{odd}}\left(C^{\infty}(M)\right).$$

Remark

Assume M is oriented, Riemannian and has even dimension. Then the \hat{A} -form $\hat{A}(R^M)$ defines an even cyclic cocycle by

$$\varphi_{\hat{A}(R^M)} = \varphi_{\hat{A}(R^M)^\vee},$$

i.e., $\varphi_{\hat{A}(R^M)} = (\varphi_0, \varphi_2, \cdots)$, with

$$\varphi_{2k}(f^0,f^1,\cdots,f^{2k})=\frac{1}{(2k)!}\int_M f^0df^1\wedge\cdots\wedge df^{2k}\wedge \hat{A}(R^M).$$

Likewise the Pfaffian Pf(R^M), the L-form $L(R^M)$ and the Todd form Td(R^M) define even cyclic cocycles.

Morita Equivalence

Definition

Let $\varphi \in C^n(\mathcal{A})$. The *n*-cochain $\varphi \#$ Tr on $M_q(\mathcal{A}) = \mathcal{A} \otimes M_q(\mathbb{C})$ is defined by

$$\varphi \# \operatorname{Tr}(a^0 \otimes \mu^0, \cdots, a^n \otimes \mu^n) := \varphi(a^0, \cdots, a^n) \operatorname{Tr} \left[\mu^0 \mu^1 \cdots \mu^n \right]$$

for all $a^j \in \mathcal{A}$ and $\mu^j \in M_q(\mathbb{C})$.

Lemma

We have

$$b(\varphi \# \operatorname{Tr}) = (b\varphi) \# \operatorname{Tr}.$$

Theorem (Connes)

The map $\varphi \to \varphi \#$ Tr gives rise to isomorphisms,

$$HC^{\bullet}(A) \simeq HC^{\bullet}(M_q(A))$$
.

Morita Equivalence

Example

Let C be a k-dimensional current on a compact manifold M. For the cochain,

$$\varphi_{\mathcal{C}}(f^0, f^1, \cdots, f^k) = \frac{1}{k!} \langle \mathcal{C}, f^0 df^1 \wedge \cdots \wedge df^k \rangle,$$

we have

$$\varphi_C \# \operatorname{Tr}(a^0, a^1, \cdots, a^k) = \frac{1}{k!} \langle C, \operatorname{Tr} \left[a^0 da^1 \wedge \cdots \wedge da^k \right] \rangle$$

for all a^j in $M_q\left(C^\infty(M)\right)=C^\infty\left(M,M_q(\mathbb{C})\right)$.

Pairing with K-Theory $(A = C^{\infty}(M))$

Setup

- *M* is a compact manifold.
- $E = \operatorname{ran} e, \ e = e^2 \in M_a(C^{\infty}(M)).$
- F^E is the curvature of the Grassmanian connection ∇^E of E.

Lemma

- $F^E = e(de)^2 = e(de)^2 e$.
- $Ch(F^E) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \operatorname{Tr} \left[e(de)^k \right].$

Pairing with K-Theory $(A = C^{\infty}(M))$

Proposition

Let $C = C_0 + C_2 + \cdots$ be a closed even current on M with associated even cocycle $\varphi_C = (\varphi_{C_0}, \varphi_{C_2}, \cdots)$. Then

$$\langle C, E \rangle = \sum (-1)^k \frac{(2k)!}{k!} \left(\varphi_{C_{2k}} \# \operatorname{Tr} \right) (e, e, \dots e),$$

$$= \varphi_{C_0}(e) + \sum_{k \ge 1} (-1)^k \frac{(2k)!}{k!} \left(\varphi_{C_{2k}} \# \operatorname{Tr} \right) \left(e - \frac{1}{2}, e, \dots e \right).$$

Pairing with K-Theory (General Case)

Setup

 \mathcal{A} is a unital algebra over \mathbb{C} .

Definition

A cochain $\varphi \in C^n(A)$, $n \ge 1$, is *normalized* when

$$\varphi(a^0, a^1, \dots, a^n) = 0$$
 whenever $a^j = 1$ for some $j \ge 1$.

Lemma

Any class in $HC^{\text{even}}(A)$ contains a normalized representative.

Pairing with K-Theory

Example

Let C be a k-dimensional current on a compact manifold M with associated cochain,

$$\varphi_{\mathcal{C}}(f^0, f^1, \dots, f^k) = \frac{1}{k!} \langle \mathcal{C}, f^0 df^1 \wedge \dots \wedge df^k \rangle.$$

Then φ_C is a normalized cochain.

Pairing with K-Theory

Definition

Let $\varphi=(\varphi_0,\varphi_2,\cdots)$ be an even cyclic cocycle and let $\mathcal{E}=e\mathcal{A}^q$, $e=e^2\in M_q(\mathcal{A})$, a finitely generated projective module. The pairing of φ and \mathcal{E} is

$$\langle \varphi, \mathcal{E} \rangle := \varphi_0(e) + \sum_{k \geq 1} (-1)^k \frac{(2k)!}{k!} (\varphi_{2k} \# \operatorname{Tr}) \left(e - \frac{1}{2}, e, \cdots e \right).$$

Theorem (Connes)

The above pairing descends to a bilinear pairing,

$$\langle \cdot, \cdot \rangle : HC^{\text{even}}(\mathcal{A}) \times K_0(\mathcal{A}) \longrightarrow \mathbb{C}.$$

Pairing with K-Theory

Example

Let $C=C_0+C_2+\cdots$ be a closed even current on a compact manifold M and let $E=\operatorname{ran} e,\ e=e^2\in M_q\left(C^\infty(M)\right)$, so that $\mathcal{E}=C^\infty(M,E)\simeq C^\infty(M)^q$. Then

$$\langle \varphi_{\mathcal{C}}, \mathcal{E} \rangle = \langle \mathcal{C}, \mathcal{E} \rangle.$$

The Atiyah-Singer Index Theorem

Example

Assume M is spin, oriented, Riemannian and has even dimension.

1 For $C = \hat{A}(R^M)^{\vee}$ and the Dirac operator,

$$\langle \varphi_{\hat{A}(R^M)}, \mathcal{E} \rangle = \langle \hat{A}(R^M)^{\vee}, E \rangle \quad \text{and} \quad \operatorname{ind}_{\mathcal{D}}[\mathcal{E}] = \operatorname{ind}_{\mathcal{D}}[E].$$

By the K-theoretic version of the Atiyah-Singer Index Theorem explained in Lecture 2,

$$\operatorname{ind}_{\mathcal{D}}[E] = (2i\pi)^{-\frac{n}{2}} \langle \hat{A}(R^M)^{\vee}, E \rangle.$$

Therefore, the Atiyah-Singer Index Theorem can be further restated as

Theorem

$$\operatorname{ind}_{\mathcal{D}}[\mathcal{E}] = (2i\pi)^{-\frac{n}{2}} \langle \varphi_{\hat{A}(R^M)}, \mathcal{E} \rangle \quad \forall \mathcal{E} \in \mathcal{K}_0(C^\infty(M)).$$