Noncommutative Geometry Lecture 1: Quantized Calculus

Raphaël Ponge

Seoul National University

October 24, 2011

Quantum Mechanics vs. General Relativity

Fundamental Problem

- Unify general relativity and quantum mechanics.
- Find a a common mathematical framework for general relativity and quantum mechanics.

NCG Approach

Translate the tools of Riemannian geometry into the Hilbert space formalism of quantum mechanics.

Diffeomorphism Invariant Geometry

Setup

- M smooth manifold.
- Γ is a group of diffeomorphisms acting on M.

Remark

- **1** If Γ acts freely and properly, then M/Γ is a smooth manifold.
- 2 In general, M/Γ need not be Hausdorff!!!

Crossed-Product Algebra $C_c^{\infty}(M) \rtimes \Gamma$

Observation

The algebra $C_c^{\infty}(M/\Gamma)$ always makes sense when realized as the crossed-product algebra,

$$C_c^\infty(M)
times \Gamma := igg\{ ext{finite sums} \sum_{arphi \in \Gamma} f_arphi U_arphi; \ f_arphi \in C_c^\infty(M) igg\},$$

where the f_{arphi} and U_{arphi} are represented as operators such that

$$U_{\varphi}^* = U_{\varphi}^{-1} = U_{\varphi^{-1}}, \qquad U_{\varphi}f = (f \circ \varphi^{-1})U_{\varphi}.$$

Theorem (Green)

If Γ acts freely and properly, then $C_c^{\infty}(M/\Gamma) \simeq C_c^{\infty}(M) \rtimes \Gamma$.

The Noncommutative Torus

Example

Given $\theta \in \mathbb{R}$, let \mathbb{Z} act on S^1 by

$$k.z := e^{2ik\pi\theta}z \qquad \forall z \in S^1 \ \forall k \in \mathbb{Z}.$$

Remark

If $\theta \notin \mathbb{Q}$, then the orbits of the action are dense in S^1 .

The crossed-product algebra $\mathcal{A}_{\theta}:=C^{\infty}(S^1)\rtimes_{\theta}\mathbb{Z}$ is generated by two operators U and V such that

$$U^* = U^{-1}, \qquad V^* = V^{-1}, \qquad VU = e^{2i\pi\theta}UV.$$

Remark

The algebra \mathcal{A}_{θ} is called the *noncommutative torus*.

Gel'fand Transform

Theorem (Gel'fand-Naimark)

Any C^* -algebra can be realized as a closed self-adjoint subalgebra of some $\mathcal{L}(\mathcal{H})$.

Theorem (Gel'fand-Naimark)

There is a one-to-one correspondence,

Quantized Calculus

Classical Calculus	Quantized Calculus
Complex Variable	Operator on ${\cal H}$
Real Variable	Selfadjoint Operator on ${\cal H}$
Infinitesimal Variable	Compact Operator
Infinitesimal of Order α	Compact Operator T such that $\mu_n(T) = O(n^{-lpha})$
Differential $df=\sum rac{\partial f}{\partial x^{\mu}}dx^{\mu}$	Quantized Differential $da = [F, a]$
Integral $\int f$	Dixmier Trace f - T

The Atiyah-Singer Index Theorem

Definition

The Fredholm index of $\not \! D_E$ is

$$\operatorname{ind} {\not \! D}_E := \operatorname{dim} \ker \left[({\not \! D}_E)_{ | {\not \! S}^+ \otimes E} \right] - \operatorname{dim} \ker \left[({\not \! D}_E)_{ | {\not \! S}^- \otimes E} \right].$$

Theorem (Atiyah-Singer)

$$\operatorname{ind} \mathcal{D}_E = (2i\pi)^{-\frac{n}{2}} \int_M \hat{A}(R^M) \wedge \operatorname{Ch}(F^E),$$

where:

- $\hat{A}(R^M) := \det^{\frac{1}{2}} \left[\frac{R^M/2}{\sinh(R^M/2)} \right]$ is called the \hat{A} -class of the curvature R^M of M.
- $Ch(F^E) := Tr \left[e^{-F^E} \right]$ is called the Chern form of the curvature F^E of ∇^E .