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HAD I the heavens’ embroidered cloths,
Enwrought with golden and silver light,

The blue and the dim and the dark cloths
Of night and light and the half-light,

I would spread the cloths under your feet:
But I, being poor, have only my dreams;
I have spread my dreams under your feet;

Tread softly because you tread on my dreams.

W.B. Yeats He Wishes For The Cloths Of Heaven
in The Wind Among The Reeds.
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Version française abrégée

Dans cette thèse on s’attache à démontrer divers théorèmes en géométrie
pseudo-hermitienne, et plus généralement pour les variétés de Heisenberg,
comme applications de la construction d’un résidu non-commutatif dans le
cadre du calcul hypoelliptique sur les variétés de Heisenberg.

La thèse est organisée comme suit. Dans le premier chapitre on fait une
revue complète sur le calcul pseudo-différentiel sur les variétés de Heisenberg,
qu’on appellera pour simplifier ΨVDO-calcul, tel qu’il est présenté dans [BG]
et [BGS].

Dans le second chapitre on développe un ΨVDO-calcul avec paramètre
permettant une construction pseudo-différentielle de la résolvante d’un sous-
laplacien elliptique (théorème 2.17).

Au chapitre 3 on définit et étudie les familles holomorphes de ΨVDO
qu’on utilise pour construire les puissances complexes d’un sous-laplacien
elliptique (théorèmes 3.6, 3.10 et 3.11).

Dans le chapitre 4 on construit un prolongement analytique de la trace
pour les ΨVDO d’ordre complexe non entier et on montre qu’aux ΨVDO
d’ordre entier on a une trace résiduelle qui l’analogue complet du résidu non
commutatif (théorème 4.4 et proposition 4.6). On montre ensuite que ce
résidu non commutatif permet d’étendre la trace de Dixmier à toute l’algèbre
des ΨVDO d’ordre entier (théorème 4.7) et que c’est essentiellement l’unique
trace sur cette algèbre modulo les opérateurs régularisants (théorème 4.8).

Dans le dernier chapitre on donne des applications géométriques du
résidu non commutatif et de la trace régularisée. D’abord on définit la fonc-
tion zêta d’un sous-laplacien elliptique dans le ΨVDO-calcul et on relie ses
résidus et valeurs régulières aux coefficients du développement de la chaleur
(théorèmes 5.2 et 5.4). On obtient ensuite des formules variationelles pour
les fonctions zêta qu’on utilise pour produire des invariants conformes d’une
variété pseudo-hermitienne (théorème 5.8). Après on étudie la géométrie
non-commutative des variétés de Heisenberg. En particulier on définit l’aire
d’une variété pseudo-hermitienne et on montre qu’en dimension 3 cette aire
est donnée par une formule locale invoquant la courbure scalaire de Tanaka-
Webster (théorème 5.13).

Enfin dans la dernière section on donne des formules locales pour cal-
culer l’indice d’une racine carrée d’un sous-laplacien elliptique. D’abord on
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montre qu’en dimension paire l’indice est toujours égal à zéro et qu’en dimen-
sion impaire il est donné par l’intégrale de la densité qui apparait comme le
terme constant dans l’asymptotique du noyau de la chaleur du sous-laplacien
(théorème 5.14). Ensuite, en utilisant la cohomologie cyclique et la formule
d’indice locale de Connes-Moscovici [CM2], on montre qu’il existe un courant
de Rham, calculable par des formules locales explicites, dont l’accouplement
avec le caractère de Chern donne l’indice à coefficients dans la K0-théorie
de la variété (théorème 5.15).

Chapitre 1 : calcul hypoelliptique sur les variétés
de Heisenberg

Dans ce chapitre on fait une revue du ΨVDO-calcul, aussi appelé ΨVDO-
calcul, tel qu’il est présenté dans [BG] et [BGS].

Variétés de Heisenberg

Une variété de Heisenberg (M,V) est une variété M avec un fibré en
hyperplans V ⊂ TM . Un difféomorphisme φ : (M,V)→ (M ′,V ′) entre deux
variétés de Heisenberg est dit Heisenberg quand φ∗V = V ′.

Le modèle local d’une variété de Heisenberg de dimension (d + 1) est
un ouvert U de Rd+1 avec un fibré en hyperplans V ⊂ TU et est un V-
repère X0, X1, . . . , Xd de TU , i.e. X0, X1, . . . , Xd est un repère de TU et
X1, . . . , Xd engendrent V. On définit alors une carte Heisenberg (locale)
pour une variété de Heisenberg comme un difféomorphisme Heisenberg (lo-
cal) vers un tel ouvert.

On a les exemples suivants de variétés de Heisenberg : groupe de Heisen-
berg, feuilletages (de codimension 1), feuilletacts (confeuilletages) [ET], variétés
de contact, CR, pseudo-hermitiennes.

La raison pour laquelle on utilise la terminologie variété de Heisenberg
provient de ce qu’on a en chaque point de la variété un groupe tangent de
la forme H2n+1 × Rd−2n. Par exemple dans le cas d’une variété de contact
M2n+1 on obtient le groupe de Heisenberg H2n+1 en chaque point, tandis
qu’à l’opposé pour un feuilletage de codimension 1 on obtient toujours le
groupe abélien Rd+1.

Sous-laplaciens et idées derrière le ΨVDO-calcul

Soit (Md+1,V) une variété de Heisenberg. On appelle sous-laplacien un
opérateur différentiel sur M qui localement est de la forme

(1) ∆ = −
d∑
j=1

X2
j − iλ(x)X0 +

d∑
j=1

µj(x)Xj + ν(x),

10



où λ, µ1, . . . , µd, ν sont des fonctions lisses et X0, X1, . . . , Xd est un V-repère
local de TM .

Ce type d’opérateur ne peut être elliptique. Néanmoins il peut être
hypoelliptique et dans ce cas le ΨVDO-calcul permet de construire une
paramétrix. L’idéé est d’abord de considérer

(2) ∆2 = −
d∑
j=1

X2
j − iλ(x)X0,

comme ayant ordre 2 dans le ΨVDO-calcul grâce aux dilatations

(3) λ.ξ = (λ2ξ0, λξ1, . . . , λξd), λ > 0,

puis de figer les coefficients de ∆2 en le modélisant en chaque point y par un
opérateur différentiel ∆y

2 invariant à gauche sur le groupe tangent en y. Sous
une certaine condition sur la fonction λ on montre que ∆y

2 est inversible et
que l’inverse fournit le symbole principal d’une paramétrix pour ∆.

Donnons, dans le cas d’une variété pseudo-hermitienne (Mn, θ), quelques
exemples de sous-laplaciens :

1) le laplacien de Kohn �b qui agit sur les formes CR complexes (voir [Ko]);

2) le sous-laplacien pseudo-hermtien ∆b = 2<�b introduit par Lee [Le];

3) le sous-laplacien conforme �θ = ∆b + n
n+2Rn, où Rn est la courbure

scalaire de la connexion de Tanaka-Webster ( [JL1]).

Le ΨVDO-calcul

À partir de maintenant U est un ouvert de Rd+1 avec un fibré en hyper-
plans V ⊂ TU et un V-repère X0, X1, . . . , Xd de TU . Pour x ∈ U on note
par εx l’unique changement de coordonnées affine qui envoie x sur l’origine
et tel que pour tout j le champs de vecteurs Xj cöıncide avec ∂

∂xj
en l’origine.

On appelle ces nouvelle coordonnées les x-coordonnées. On pose aussi

(4) σ(x, ξ) = (σ0(x, ξ), σ1(x, ξ), . . . , σd(x, ξ)),

où σj(x, ξ) est le symbole de 1
iXj . On dit alors que σ le symbole (réel) du

repère X0, X1, . . . , Xd.
Les symboles dans le ΨVDO-calcul sont associés aux dilatations (3) et à

la pseudo-norme homogène

(5) ‖ξ‖ = (|ξ0|2 + |ξ1|4 + . . .+ |ξd|4)
1
4 , ξ ∈ Rd+1.

Définition 1.1 Sm(U × Rd+1), m ∈ C, est l’espace des fonctions f ∈
C∞(U × Rd+1\0) qui sont homogènes de degré m en la dernière variable,
i.e.

(6) f(x, λ.ξ) = λmf(x, ξ), λ > 0.
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Définition 1.2 Sk||(U×Rd+1), k ∈ R, est l’espace des fonctions f ∈ C∞(U×
Rd+1) satisfaisant aux estimées suivantes

(7) |∂αx ∂
β
ξ f(ξ)| ≤ Cαβ(x)(1 + ‖ξ‖)k−〈α〉,

où Cαβ(x) est localement bornée sur U et où on a posé 〈α〉 = α0 + |α| =
2α0 + α1 + . . .+ αd.

Définition 1.3 Sm(U × Rd+1), m ∈ C, est l’espace des fonctions f ∈
C∞(U × Rd+1) avec un développement asymptotique

(8) f(x, ξ) ∼
∑
j≥0

fm−j(x, ξ), fk ∈ Sk(U × Rd+1),

au sens où pour tout entier N on a

(9) |∂αx ∂
β
ξ (f −

∑
j<N

fm−j)(x, ξ)| ≤ CαβN (x)‖ξ‖<m−〈α〉−N , ‖ξ‖ ≥ 1.

avec CαβNJ(x) localement bornée sur U .

Définition 1.4 Un ΨVDO opérateur d’ordre m, m ∈ C, est un opérateur
continu de C∞c (U) vers C∞(U) de la forme

(10) P = f(x, σ(x,D)) +R,

avec f ∈ Sm(U×Rd+1), appelé le symbole de P , et R opérateur régularisant.
L’espace des ΨVDO d’ordre m est noté Ψm

V (U).

Proposition 1.5 ([BG]) Soit m ∈ C. Alors:

1) L’espace Ψm
V (U) ne dépend pas du choix du V-repère X0, X1, . . . , Xd.

2) Chaque P ∈ Ψm
V (U) a un noyau lisse en dehors de la diagonale et

s’étend en un opérateur continu de E ′(U) vers D′(U). Cet opérateur
est régularisant si, et seulement si, le symbole de P est dans S−∞(U×
Rd+1).

3) Posons k = <m si <m ≥ 0 et k = 1
2<m sinon. Alors on a

(11) Ψm
V (U) ⊂ Ψk

1
2
, 1
2

(U)

où Ψk
1
2
, 1
2

(U) est l’espace des opérateurs pseudo-différentiels de type

(1
2 ,

1
2) (voir [Ho1]).

Combinant cette dernière inclusion avec le théorème de Calderón-Vaillancourt ([CV], [Hw])
on obtient la régularité Sobolev pour les ΨVDO.
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Proposition 1.6 Soit P ∈ Ψm
V (U) et posons k = <m si <m ≥ 0 et k =

1
2<m sinon. Alors pour tout réel s l’opérateur P s’étend en une application
linéaire continue

(12) P : Hs
comp(U) −→ Hs−k

loc (U).

Comme Ψ∗V(U) est contenu dans Ψ 1
2
, 1
2
(U) le développement asympto-

tique classique

(13) q1#q2(x, ξ)
∑ 1

α!
Dξq1(x, ξ)∂xq2(x, ξ),

pour le symbole du produit de deux opérateurs pseudo-différentiels n’a plus
de sens. Cependant on peut montrer que le produit de deux ΨVDO est
encore un ΨVDO et donner alors un développement asymptotique pour le
symbole du produit. Mais au lieu d’invoquer le produit ponctuel des sym-
boles la formule s’exprime en terme d’une convolution en variable de Fourier
par rapport au groupe tangent en chaque point.

Pour y ∈ U on note Xy
j le vecteur invariant à gauche sur le y-groupe qui

cöıncide avec ∂
∂xj

en l’origine. On note alors σy(x, ξ) le symbole du repère

Xy
0 , X

y
1 , . . . , X

y
d .

Lemme 1.7 ([BG]) Soit y ∈ U . Alors:

1) Pour tout f ∈ Sk||(Rd+1) l’opérateur f(σy(x,D)) envoie S(Rd+1)
vers lui-même.

2) Pour f1 ∈ Sk1|| (Rd+1) et f2 ∈ Sk2|| (Rd+1) on a

(14) f1(σy(x,D)) ◦ f2(σy(x,D)) = (f1 ∗y f2)(σy(x,D)),

où y → ∗y est une famille lisse applications bilinéaire continues de
Sk1|| (Rd+1)× Sk2|| (Rd+1) vers Sk1+k2

|| (Rd+1).

Lemme 1.8 Pour tous m1,m2 ∈ C la convolution ∗ pour les symboles dans
S∗||(U × Rd+1) induit une application bilinéaire

(15) ∗ : Sm1(U × Rd+1)× Sm2(U × Rd+1) −→ Sm1+m2(U × Rd+1).

Si f(x, ξ) est un symbole on pose

(16) fβγα (x, ξ) = ξγ∂αx ∂
β
ξ f(x, ξ) and f δ(x, ξ) = Dδ

ξf(x, ξ).

Ensuite on note σ(x)(z, ξ) = (εx)∗σ(z, ξ) le symbole du V-repère dans les
x-coordonnées et on pose

(17) hαβγδ(x) =
1

δ!
∂δzhαβγ(x, 0), hαβγ(x, z) =

1

α!β!
(ε
′−1
x (z))αeβγ(x, z),

où les fonctions eβγ sont définies par l’égalité

(18) (σ(x)(z, ξ)− σx(z, ξ))β =
∑
|γ|=|β|

eβγ(x, z)σx(z, ξ)γ .
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Proposition 1.9 ([BG]) Soit P1 ∈ Ψm1
V (U) de symbole f1 ∼

∑
f1,m1−j et

P2 ∈ Ψm2
V (U) de symbole f2 ∼

∑
f2,m2−j et supposons que Q1 ou Q2 soit

proprement supporté. Alors P1P2 est un ΨVDO d’ordre m1 +m2 de symbole
f ∼

∑
fm1+m2−j avec

(19) fm1+m2−j(x, ξ) =
∑

hαβγδ(x)f δ1,m1−k ∗ f
βγ
2,m2−l,α(x, ξ),

où la somme est prise sur les indices tels que

(20) |γ| = |β|, |β|+ |α| ≤ 〈δ〉+ 〈β〉 − 〈γ〉 = j − k − l.

En particulier le symbole principal de P1P2 est f1,m1 ∗ f2,m2 la convolution
des symboles principaux de P1 et P2.

On peut caractériser les ΨVDO par leurs noyaux de la façon suivante. Si
K(x) est une distribution tempérée sur Rd+1λ > 0 on note K(λ.x), λ > 0,
la distribution tempérée définie par

(21) 〈K(λ.x), u(x)〉 = λ−(d+2)〈K(x), u(λ−1.x)〉, u ∈ S(Rd+1).

Alors K est dite homogène de degré m, m ∈ C, si

(22) K(λ.x) = λmK(x) pour tout λ > 0.

Lemme 1.10 ([BG]) Soit f ∈ C∞(Rd+1\0) homogène de degré m.

1) Si m n’est pas un entier ≤ −(d+2), alors f s’étend de façon unique
en une distribution tempérée homogène sur Rd+1.

2) Si m est un entier ≤ −(d + 2), les seules obstructions à une telle
extension sont données la (les) non annulation(s) de

(23) cα(f) =
1

α!

∫
‖ξ‖=1

ξαf(ξ)iEdξ, 〈α〉 = −(m+ d+ 2),

où E est le générateur du flot φs(ξ) = (e2sξ0, e
sξ′).

Cela amène à considérer les espaces suivants de distributions.

Définition 1.11 Km(U × Rd+1), m ∈ C, est l’espace des distributions
K(x, y) ∈ C∞(U)⊗̂S ′(Rd+1) qui sont lisses sur U × (Rd+1\0) et telles que
pour tout λ > 0 on ait

(24) K(x, λ.y) = λmK(x, y), si m 6∈ N,

(25) K(x, λ.y) = λmK(x, y) + λm log λ
∑
〈α〉=m

cα(x)yα, si m ∈ N.

14



Définition 1.12 Km(U ×Rd+1), m ∈ C, est l’espace des distributions K ∈
D′(U × Rd+1) admettant un développement asymptotique

(26) K(x, y) ∼
∑
j≥0

Km+j(x, y), Kl ∈ Kl(U × Rd+1),

au sens où pour tout entier N si J est assez grand on ait

(27) K −
∑
j≤J

Km+j ∈ CN (U × Rd+1)

Proposition 1.13 Soit K ∈ Km(U × Rd+1). Alors:

1) La distribution K appartient à C∞(U)⊗̂D′(Rd+1) et est C∞ sur U×
(Rd+1\0).

2) Près de y = 0, si m est un entier ≥ 0 on a
(28)
K(x, y) =

∑
0≤j≤−<m am+j(x, y)− cK(x) log ‖y‖+ O(1), si m ∈ N,

K(x, y) =
∑

0≤j≤−<m am+j(x, y) + O(1), si m 6∈ N.

3) Près de y = 0, si m est un entier ≥ 0 on a

(29) K(x, y) =
∑

0≤j≤−<m
am+j(x, y)− cK(x) log ‖y‖+ O(1),

et si m n’est pas un entier ≥ 0 on a

(30) K(x, y) =
∑

0≤j≤−<m
am+j(x, y) + O(1).

Dans les deux cas ak(x, y) est une fonction lisse sur U × (Rd+1 \0)
homogène de degré k en la variable y.

Proposition 1.14 ([BG]) Soit P un opérateur continu de C∞c (U) vers
C∞(U). Alors P est un ΨVDO d’ordre m si, et seulement si, son noyau est
de la forme

(31) kP (x, y) = |ε′x|K(x,−εx(y)) +R(x, y),

avec K ∈ Km̂(U × Rd+1), m̂ = −(m+ d+ 2), et R ∈ C∞(U × U).

Corollaire 1.15 Soit P un ΨVDO d’ordre m entier. Alors près de la di-
agonale son noyau kP (x, y) a un comportement de la forme

(32) kP (x, y) =
∑

−(m+d+2)≤j≤0

aj(x, εx(y))− cP (x) log ‖εx(y)‖+ O(1),

15



avec aj(x, z) homogène de degré j en la variable z et cP (x) donné par

(33) cP (x) =
|ε′x|

(2π)(d+2)

∫
‖ξ‖=1

f−(d+2)(x, ξ)iEdξ,

où f−(d+2) est le symbole (homogène) de degré −(d+ 2) de P .

Proposition 1.16 ([BG]) Soit φ : U → Ũ un difféomorphisme Heisen-
berg, où Ũ est un autre ouvert de Rd+1 avec un fibré en hyperplans Ṽ ⊂ TŨ
et un Ṽ-repère de TŨ .Alors pour tout P̃ ∈ Φm

Ṽ (Ũ) l’opérateur P = φ∗P̃ est
un ΨVDO d’ordre m sur U et on a

(34) cP (x) = |φ′(x)|cP̃ (φ(x)), x ∈ U,

où cP (x) et cP̃ (x̃) sont les coefficients des divergences logarithmiques des

noyaux de P et P̃ données par le corollaire 1.15.

Définition 1.17 Soit P ∈ Ψm
V (U) de symbole principal fm ∈ Sm(U×Rd+1).

On dit que P est elliptique dans le ΨVDO-calcul s’il existe g−m ∈ S−m(U ×
Rd+1) tel que

(35) fm ∗ g−m = 1 = g−m ∗ fm.

Proposition 1.18 Soit P ∈ Ψm
V (U). Alors:

1) Le ΨVDO-opérateur P est elliptique si, et seulement si, il existe
Q ∈ Ψ−mV (U) tel que

(36) PQ = 1 = QP mod Ψ−∞(U).

2) Si P est elliptique dans le ΨVDO-calcul c’est un opérateur hypoel-
liptique, i.e. pour toute u ∈ E ′(U) on a

(37) Pu lisse près de x0 =⇒ u lisse près de x0.

Proposition 1.19 ([BG]) Soit ∆ un sous-laplacien sur U , i.e.

(38) ∆ = −
d∑
j=1

X2
j − iλ(x)X0 +

d∑
j=1

µj(x)Xj + ν(x),

où λ, µ1, . . . , µd, ν sont des fonctions lisses Alors pour chaque y ∈ U il existe
un sous-ensemble Λy ⊂ R de telle sorte que les assertions suivantes soient
équivalentes :

(i) Pour tout y ∈ U le coefficient λ(y) n’appartient pas à Λy.

(ii) Pour tout y ∈ U l’opérateur y-invariant ∆y
2 est inversible.
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(iii) ∆ est elliptique dans le ΨVDO-calcul.

De plus, si une de ces conditions est satisfaite alors le symbole principal
d’une paramétrix est donné par

(39) f−2(y, ξ) = fy−2(ξ),

où fy−2(ξ) est de l’inverse de ∆y
2.

Soit maintenant (M,V) une variété de Heisenberg et E un fibré vectoriel
au-dessus de M . La proposition 1.18 permet de définir les ΨVDO sur M
agissant sur les sections de E . Tous les résultats précédents dans le cas d’un
ouvert continuent d’être vrais dans le cas d’une variété.

De plus la proposition 1.18 montre aussi que le coefficient cP (x) d’un
ΨVDO d’ordre entier P peut-être globalement défini comme une densité sur
m à valeurs dans END E .

Enfin dans le cas d’un ΨVDO elliptique sur une variété de Heisenberg
compacte on peut construire une paramétrix modulo des opérateurs de rangs
finis, de sorte qu’un tel opérateur a un noyau de dimension finie formé de
sections lisses et est un opérateur Fredholm.

Proposition 1.20 ([BG]) Soit (M2n+1, θ) une variété pseudo-hermitienne
compacte et soit V = ker θ. Alors les opérateurs suivants sont elliptiques
dans le ΨVDO-calcul:

(i) le laplacien de Kohn �b agissant sur les (p, q)-formes avec 0 < q <
n;

(ii) le sous-laplacien pseudo-hermitien ∆b;

(iii) le sous-laplacien conforme �θ.

Noyau de la chaleur d’un sous-laplacien elliptique

Proposition 1.21 ([BGS]) Soit (Md+1,V) une variété de Heisenberg mu-
nie d’une densité > 0 et soit ∆ un sous-laplacien positif sur M .

1) L’opérateur e−t∆ est régularisant pour t > 0.

2) Soit kt(x, y), t > 0, le noyau de e−t∆. Pour t→ 0+ on a

(40) kt(x, x) ∼ t−
d+2
2

∑
j≥0

aj(x)tj ,

où les aj(x) sont des densités lisses sur M avec a0(x) > 0.

3) Pour t→ 0+ on a

(41) Trace(e−t∆) ∼ t−
d+2
2

∑
j≥0

tj
∫
M
aj(x).
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4) Soit λk(∆) la k-ème valeur propre de ∆ comptée avec multiplicité.
Alors pour k grand on a

(42) λk(∆) ∼ (Ak)
d+2
2 , A = Γ(1 +

d+ 2

2
)−1

∫
M
a0(x).

Dans le cas d’une variété pseudo-hermitienne on obtient :

Proposition 1.22 ([BGS]) Soit (M2n+1, θ) une variété pseudo-hermitienne
compacte. Alors la proposition 1.21 est satisfaite par les opérateurs suiv-
ants :

(i) le laplacien de Kohn �b sur les (p, q)-formes, 0 < q < n,

(ii) le sous-laplacien pseudo-hermitien ∆b,

(iii) le sous-laplacien conforme �θ.

De plus pour chacun de ces opérateurs le coefficient aj(x) dans le développement
asymptotique (40) est de la forme

(43) aj(x) = Aj(x)(dθ)n ∧ θ, j ≤ 0,

où Aj(x) est un polynôme universel en les jets des composantes de la cour-
bure et de la torsion de la connexion de Tanaka-Webster. Pour j = 0 et
j = 1 on a

(44) A0 = αn, A1 = βnRn,

où αn, βn sont des constantes universelles et Rn est la courbure scalaire de
la connexion de Tanaka-Webster.

Chapitre 2 : ΨVDO à paramètre et résolvante d’un
sous-laplacien elliptique

Dans ce chapitre on développe un calcul idoine de ΨVDO à paramètre
qui permet de construire une résolvante asymptotique pour un sous-laplacien
elliptique sur une variété de Heisenberg compacte.

Dans tout ce chapitre Λ ⊂ C\0 est un pseudo-cône ouvert (cf. définition
ci-dessous).

ΨVDO-calcul à paramètre

Définition 2.1 On dit que Λ ⊂ C\0 est un pseudo-cône si pour tout t ∈
(0, 1) on a tΛ ⊂ Λ et s’il existe Θ conique et D borné tels que Λ = Θ ∪D.

Si Λ et Λ′ sont deux pseudo-cones on écrit Λ′ ⊂⊂ Λ pour signifier qu’à
l’origine près la fermeture de Λ′ est contenue dans l’intérieur de Λ.
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L’espace des paramètres est l’espace de Fréchet suivant :

Définition 2.2 Holp(Λ), p ∈ Z, est l’espace des fonctions holomorphes h :
Λ→ C telles que pour tout pseudo-cône Λ′ ⊂⊂ Λ on ait

(45) |h(λ)| ≤ CΛ′(1 + |λ|)p, λ ∈ Λ′.

Sa topologie est définie au moyen des semi-normes données par des plus
petites constantes dans ces estimées.

Définition 2.3 Si E espace vectoriel topologique localement convexe Holp(Λ, E),
p ∈ Z, est l’espace des Holp(Λ)-familles à valeurs dans E, c.a.d. des appli-
cations holomorphes h : Λ → E telles que, pour toute semi-norme continue
p sur E et tout pseudo-cône Λ′ ⊂⊂ Λ, on ait

(46) |p(h(λ))| ≤ CpΛ′(1 + |λ|)p, λ ∈ Λ′.

Si E = Sk||(U × Rd+1) (resp. E = S−∞(U × Rd+1)) on utilise la notation

Sp,k|| (U × Rd+1,Λ) (resp. Sp,−∞(U × Rd+1,Λ)).

Définition 2.4 Spm(U×Rd+1,Λ), m, p ∈ Z, consiste en les Holp(Λ)-familles
f(λ) de fonctions lisses sur U × Rd+1 telles que

(47) f(t2λ)(x, t.ξ)− tmf(λ)(x, ξ) ∈ Sp,−∞(U × Rd+1,Λ), 0 < t < 1.

Lemme 2.5 Soit m, p ∈ Z et soit p− = max(0,−p). Alors

(48) Spm(U × Rd+1,Λ) ⊂ Sp,m+p−
|| (U × Rd+1,Λ).

Définition 2.6 Sp,m(U × Rd+1,Λ), m, p ∈ Z, est l’espace des Holp(Λ)-
familles f(λ) de fonctions lisses sur U×Rd+1 avec un développement asymp-
totique

(49) f(λ) ∼
∑
j≥0

f(λ),m−j , f(λ),k ∈ S
p
k(U × Rd+1,Λ),

au sens où, pour tout entier N , si J est assez grand on a

(50) f −
∑
j≤J

f(λ),m−j ∈ S
p,−N
|| (U × Rd+1,Λ).

Définition 2.7 1) Ψp,−∞
V (U,Λ), p ∈ Z, est l’espace des familles d’opérateurs

de C∞c (U) vers C∞(U) données par des Holp(Λ)-familles de noyaux
lisses.
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2) Ψp,m
V (U,Λ), m, p ∈ Z, est l’espace des familles P(λ) à valeurs dans

L(C∞c (U), C∞(U)) de la forme

(51) P(λ) = f(λ)(x, σ(x,D)) +R(λ),

avec f(λ) ∈ Sp,m(U × Rd+1,Λ), appelé le symbole de P(λ), et R(λ) ∈
Ψp,−∞
V (U,Λ).

Proposition 2.8 Soit m, p ∈ Z. On pose k = m + p− si m + p− ≥ 0 ou
bien k = 1

2(m+ p−) sinon.

a) La classe Ψp,m
V (U,Λ) ne dépend pas du choix du V-repère X0, X1, . . . , Xd.

b) Chaque P(λ) ∈ Ψp,m
V (U,Λ) s’étend en une Holp(Λ)-famille d’opérateurs

continus de E ′(U) vers D′(U).

c) Le noyau de tout P(λ) ∈ Ψp,m
V (U,Λ) est en dehors de la diagonale

par une Holp(Λ)-famille de fonctions lisses.

d) Pour tout s ∈ R, chaque P(λ) ∈ Ψp,m
V (U,Λ) définit une Holp(Λ)-

famille d’opérateurs continus de Hs
comp(U) vers Hs−k

loc (U).

Un opérateur à paramètre P(λ) : E ′(U) → D′(U) est dit uniformèment pro-
prement supporté s’il est proprement supporté uniformèment par rapport à
λ.

Proposition 2.9 Soit P(λ) ∈ Ψp,m
V (U,Λ). Alors:

1) On peut écrire P(λ) sous la forme P(λ) = Q(λ) + R(λ) avec Q(λ) ∈
Ψp,m
V (U,Λ), uniformèment proprement supporté, et R(λ) dans Ψp,−∞

V (U,Λ).

2) Si P(λ) est uniformèment proprement supporté, il définit des Holp(Λ)-
famille d’endomorphismes continus de C∞c (U), C∞(U), E ′(U) et D′(U)
respectivement.

Par continuité la convolution ∗ pour les symboles induit une application
bilinéaire
(52)

Sp1,k1|| (U × Rd+1,Λ)× Sp2,k2|| (U × Rd+1,Λ) −→ Sp1+p2,k1+k2
|| (U × Rd+1,Λ),

qui ensuite définit une convolution sur Sp∗(U × Rd+1,Λ),

(53) ∗ : Sp1m1
(U × Rd+1)× Sp2m2

(U × Rd+1) −→ Sp1+p2
m1+m2

(U × Rd+1).
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Proposition 2.10 Soit Pi(λ) ∈ Ψpi,mi
V (U,Λ), i = 1, 2, de symbole fi(λ) ∼∑

fi(λ),m1−j tels que P1(λ) ou P2(λ) soit uniformèment proprement sup-

porté. Alors P1(λ)P2(λ) est dans Ψp1+p2,m1+m2

V (U,Λ) et a pour symbole f(λ) ∼∑
f(λ),m1+m2−j, avec

(54) f(λ),m1+m2−j =
∑

hαβγδ(x)f δ1(λ),m1−k ∗ f
βγ
2(λ),m2−l,α(x, ξ),

où la somme est prise sur les indices tels que |β|+|α| ≤ 〈δ〉+〈β〉−〈γ〉 = j−k−l
et |γ| = |β|.

Proposition 2.11 Soit φ : U → Ũ un difféomorphisme Heisenberg, où Ũ
est un autre ouvert de Rd+1 muni d’un sous-fibré en hyperplans Ṽ ⊂ T Ũ et
d’un Ṽ-repère. Alors pour tout P̃(λ) dans Ψp,m

Ṽ (Ũ ,Λ) la famille d’opérateurs

P(λ) = φ∗P̃(λ) appartient à Ψp,m
V (U,Λ).

On peut ainsi définir les ΨVDO à paramètre sur n’importe quelle variété
de Heisenberg et agissant sur les sections d’un fibré vectoriel. Toutes les
propriétés précédemment décrites restent vraies mutatis standis pour les
variétés.

Résolvante asymptotique pour un sous-laplacien elliptique

Pour tout R ≥ 0 on pose :

(55) ΛR = {λ ∈ C\0; <λ < 0 or |λ| < R}.

Proposition 2.12 Soit ∆ un sous-laplacien elliptique sur U de la forme

(56) ∆ = −
d∑
j=1

X2
j − iν(x)X0 +

d∑
j=1

µj(x)Xj + η(x),

où ν, µ1,. . . , µd, η sont des fonctions lisses. Soit p2(x, ξ) =
∑d

j=1 ξ
2
j +

iν(x)ξ0 le symbole principal de ∆. Alors pour tout R > 0 il existe f(λ) ∈
S−1
−2(U × Rd+1,ΛR) tel que

(57) (p2− λ) ∗ f(λ) = 1 = f(λ) ∗ (p2− λ) mod S−∞,−∞(U ×Rd+1,ΛR).

Proposition 2.13 Soit (M,V) une variété de Heisenberg et ∆ un sous-
laplacien elliptique sur M . Alors, pour tout R > 0, il existe Q(λ) ∈ Ψ−1,−2

V (M,ΛR)
tel que

(58) (∆− λ)Q(λ) = 1 = Q(λ)(∆− λ) mod Ψ−1,−∞
V (M,ΛR).

Définition 2.14 Un rayon L ⊂ C est un rayon de croissance minimale
pour ∆ si ∆− λ est inversible pour tout λ ∈ L et la norme de la résolvante
‖(∆− λ)−1‖ est un O(1/|λ|) sur L.
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Pour r > 0 et Θ secteur angulaire ouvert on pose

(59) Θr = {λ ∈ Θ; |λ| > r}.

Proposition 2.15 Soit Θ un secteur angulaire ouvert ⊂⊂ Λ0. Alors il ex-
iste r > 0 tel que le spectre de ∆ soit contenu dans C \Θr et qu’on ait

(60) ‖(∆− λ)−1‖ ≤ CΘr|λ|−1, λ ∈ Θr.

Corollaire 2.16 Tout sous-laplacien elliptique auto-adjoint sur une variété
de Heisenberg compacte est borné inférieurement et vérifie donc les conclu-
sions de la proposition 1.21.

Théorème 2.17 Soit (M,V) une variété de Heisenberg compacte et soit ∆
un sous-laplacien elliptique sur M . Alors il existe R > 0 et un pseudo-cône
ouvert Λ contenant D(0, R) \ 0 et contenu dans

(61) ΛR = {λ ∈ C\0; <λ < 0 or |λ| < R},

de telle sorte que

(i) Pour tout λ ∈ Λ l’opérateur ∆− λ soit inversible sur L2(M).

(ii) La famille (∆− λ)−1, λ ∈ Λ, appartienne à Ψ−1,−2
V (M,Λ).

(iii) Pour tout pseudo-cône Λ′ ⊂⊂ Λ on ait

(62) ‖(∆− λ)−1‖ ≤ CΛ′(1 + |λ|)−1, λ ∈ Λ′.

En particulier chaque rayon contenu dans Λ est un rayon de croissance
minimale pour ∆.

Chapitre 3 : famille holomorphes de ΨVDO et puis-
sances complexes d’un sous-laplacien elliptique

Le but de ce chapitre est de définir les familles holomorphes de ΨVDO
et de construire les puissances complexes d’un sous-laplacien elliptique sur
une variété de Heisenberg compacte.

Familles holomorphes de ΨVDO

Ici Ω est un domaine ouvert de C.

Définition 3.1 Une famille (fz) ⊂ S∗(U × Rd+1) indexée par Ω est holo-
morphe si les conditions sont satisfaites :
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(i) l’ordre mz du symbole fz dépend holomorphiquement de z ;

(ii) pour (x, ξ) ∈ U×Rd+1 fixé, la fonction z → fz(x, ξ) est holomorphe
sur Ω ;

(iii) les bornes du développement asymptotique

(63) fz(x, ξ) ∼
∑
j≥0

fz,mz−j(x, ξ), fz,l ∈ Sl(U × Rd+1),

sont localement uniformes par rapport à z.

L’espace des familles holomorphes de symboles est noté Hol(Ω, S∗(U×Rd+1).

Définition 3.2 Une famille (Pz) ⊂ Ψ∗V(U) est holomorphe quand Pz est de
la forme

(64) Pz = fz(x, σ(x,D)) +Rz,

avec (fz) famille holomorphe de symboles et (Rz) famille holomorphe d’opérateurs
régularisants. L’espace des familles holomorphes de ΨVDO est noté Hol(Ω,Ψ∗V(U)).

Proposition 3.3 Soit (Pz) une famille holomorphe de ΨVDO indexée par
Ω. Alors :

1) La famille (Pz) donne des familles holomorphes à valeurs dans L(C∞c (U), C∞(U))
et L(E ′(U)),D′(U)).

2) Le noyau de Pz est donné en dehors de la diagonale par une famille
holomorphe fonctions lisses.

3) On peut écrire Pz sous la forme Pz = Qz + Rz avec (Qz) famille
holomorphe de ΨVDO uniformèment proprement supportés et (Rz)
famille holomorphe d’opérateurs régularisants.

4) Si la famille (Pz) de ΨVDO est uniformèment proprement supportée,
elle induit des familles holomorphes d’endomorphismes continus de
C∞c (U), C∞(U), E ′(U) and D′(U) respectivement.

Proposition 3.4 Soit (P1,z) et (P2,z) deux familles holomorphes de ΨVDO,
l’une d’entre elle étant uniformèment proprement supportée. Alors la famille
Pz = P1,zP2,z est une famille holomorphe de ΨVDO.

Proposition 3.5 Soit φ : U → Ũ un difféomorphisme Heisenberg, où Ũ est
un autre ouvert de Rd+1 muni d’un sous-fibré en hyperplans Ṽ ⊂ TŨ et d’un
Ṽ-repère Alors pour famille P̃z dans Hol(Ω,Ψ∗Ṽ(Ũ)) la famille Pz = φ∗P̃z

appartient à Hol(Ω,Ψ∗Ṽ(Ũ)).

On peut ainsi définir les familles holomorphes de ΨVDO sur n’importe quelle
variété de Heisenberg et agissant sur les sections d’un fibré vectoriel. Toutes
les propriétés précédentes sont encore vraies pour les variétés.
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Puissances complexes d’un sous-laplacien elliptique

Soit ∆ un sous-laplacien elliptique sur une variété de Heisenberg (Md+1,V).
Supposons d’abord qu’on ait ∆ ≥ c > 0 par rapport à un produit scalaire
définit par une densité non-négative sur M . On peut alors définir les puis-
sances complexes de ∆ par calcul fonctionnel comme un groupe à 1 -paramètre
d’opérateurs non-bornés sur L2(M). En utilisant la formule de Mellin et la
construction pseudo-différentiel du noyau de la chaleur donnée dans [BGS]
on montre :

Théorème 3.6 La famille (∆s)s∈C des puissances complexes de ∆ est une
famille holomorphe de ΨVDO sur M .

Ne supposons plus ∆ non-négatif. Il vérifie de toutes façons les conclu-
sions du théorème 2.17. Soit R > 0 et Λ un pseudo-cône tels que dans le
théorème 2.17. En particulier chaque rayon contenu dans Λ est un rayon de
croissance minimale. Pour simplifier supposons que l’axe réel négatif soit un
tel rayon et considérons une courbe Γ ⊂ Λ commenant à l’infini, passant le
long du rayon λ < 0 jusqu’à un petit disque centré en l’origine et de rayon
ρ < R, tournant alors autour de cercle dans le sens indirect puis retournant
à l’infini le long du rayon λ < 0. Pour <s < 0 on pose :

(65) ∆s =
1

2iπ

∫
Γ
λs(∆− λ)−1dλ.

Lemme 3.7 La famille (∆s) ci-dessus est une famille holomorphe de ΨVDO
t.q. ord∆s = 2s.

Lemme 3.8 ([Se]) Supposons ∆ inversible. Alors la famille (∆s) a les
propriétés suivantes :

1) Elle contient les puissances entières négatives de ∆, c.a.d.

(66) ∆−k = ∆−k k entier > 0.

2) C’est un semi-groupe, i.e.

(67) ∆s∆t = ∆s+t <s < 0, <t < 0.

Définition 3.9 Supposons ∆ inversible. Alors ∆s, s ∈ C, est définit par

(68) ∆s = ∆k∆s−k,

où k est entier > <s dont la valeur est indifférente.

On obtient ainsi :
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Théorème 3.10 Supposons ∆ inversible. Alors la famille (∆s) des puis-
sances complexes de ∆ est un groupe à 1-paramètre de ΨVDO tel que ∆0 = 1
et ∆1 = ∆.

Supposons maintenant ∆ auto-adjoint mais non inversible. Alors la pro-
priété de semi-groupe (67) reste vraie. L’égalité (66) aussi à condition qu’on
remplace les inverses par les inverses partiels. On peut alors encore définir
les puissances complexes de ∆ et dans ce cas on obtient :

Théorème 3.11 Supposons ∆ auto-adjoint. Alors la famille (∆s) des puis-
sances complexes de ∆ est un groupe à 1-paramètre de ΨVDO tel que ∆1 = ∆
et ∆0 = 1−Π0, où Π0 est le projecteur orthogonal sur ker ∆.

Chapitre 4 : Résidu non commutatif pour les variétés
de Heisenberg

Dans ce chapitre on construit un prolongement analytique de la trace
sur les ΨVDO d’ordre complexe non entier, comme dans [KV] et [CM2], et
on montre qu’on obtient alors sur les ΨVDO d’ordre non entier une trace
résiduelle qui est un résidu non-commutatif pour le ΨVDO-calcul. On mon-
tre ensuite que ce nouveau résidu non-commutatif permet d’étendre la trace
de Dixmier à toute l’algèbre des ΨVDO d’ordres entiers et que, si la variété
est connexe, il induit l’unique trace à coefficient multiplicatif près sur cette
algèbre quotientée par les opérateurs régularisants.

Régularisation de la trace et résidu non-commutatif

Soit (Md+1,V) une variété de Heisenberg compacte et E un fibré vec-
toriel au-dessus de M . On va montrer que la fonctionnelle Trace qui est a
priori définie pour les ΨVDO qui sont dans

(69) Ψint
V (M, E) = {P ∈ Ψ∗V(M, E);<ordP < −(d+ 2)},

a un prolongement analytique sur

(70) Ψ
C\Z
V = {P ∈ Ψ∗V(M, E); ordP ∈ C\Z}.

Le point de départ est de réinterpréter le lemme 1.10 en termes de familles
holomorphes.

Lemme 4.1 Pour f ∈ SC\Z(Rd+1) on note τf son unique extension ho-

mogène comme distribution sur Rd+1 donnée par le lemme 1.10. Alors :

1) L’application f → τf est holomorphe de SC\Z(Rd+1) vers S ′(Rd+1).
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2) Soit (fz) une famille holomorphe de symboles telle que ordfz = z.
Alors pout toute u ∈ S(Rd+1) la fonction z → 〈τfz , u〉 a au plus des
singularités de type pôle simple près de Z dont les résidus sont donnés
par

(71) resz=k〈τfz , u〉 =
∑

<α>=−(k+d+2)

1

α!
cα(fk)u

(α)(0), k ∈ Z,

où les cα(fk) sont les obstructions à une extension homogène de fk
données par le lemme 1.10.

Soit L la fonctionnelle sur Sint(Rd+1) definie par

(72) L(f) =

∫
f(ξ)dξ, f ∈ Sint(Rd+1).

Lemme 4.2 1) La fonctionnelle L ci-dessus a un unique prolongement
holomorphe L̃ sur SC\Z(Rd+1). La valeur de L̃ en le symbole f ∼∑
fm−j d’ordre non entier est donnée par

(73) L̃(f) =

∫
(f(ξ)−

∑
j≤N

τm−j(ξ))dξ, N ≥ <m+ d+ 2,

où τm−j est l’unique extension homogène de fm−j.

2) Soit (fz) une famille holomorphe à valeurs dans S∗(Rd+1) telle que
ordfz = z. Alors L̃(fz) a au plus des pôle simples près de Z de résidus
(74)

resz=k L̃(fz) = −c0(fk,−(d+2)) = −
∫
‖ξ‖=1

fk,−(d+2)(ξ)iEdξ, k ∈ Z.

De la démonstration de lemme on en obtient directement la version C∞

suivante.

Lemme 4.3 Soit U un ouvert de Rd+1.

1) L’application f → L̃(f(x, .)) est holomorphe de SC\Z(U ×Rd+1) vers
C∞(U).

2) Soit (fz) une famille holomorphe à valeurs dans S∗(U ×Rd+1) telle
que ordfz = z. Alors L̃(fz(x, .)) est méromorphe pour la topologie C∞.

Théorème 4.4 1) La fonctionnelle Trace on Ψint
V (M, E) a un unique

prolongement holomorphe sur Ψ
C\Z
V (M, E) défini par

(75) TRP =

∫
M

trE tP (x), P ∈ Ψ
C\Z
V (M, E),

où tP (x) est une densité sur M à valeurs dans END E invariante par
difféomorphismes Heisenberg.
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2) Soit P1 et P2 dans Ψ
C\Z
V (M, E) tels que ordP1 + ordP2 6∈ Z. Alors

(76) TRP1P2 = TRP2P1.

3) Soit P ∈ ΨZ
V(M, E) et soit (Pz) une famille holomorphe de ΨVDO

telle que P0 = P et ordPz = z + ordP . Alors TRPz a au plus un pôle
simple en z = 0 et on a

(77) resz=0 TRPz = −
∫
M

trE cP (x),

où cP (x) est la densité sur M qui apparâıt comme le coefficient de la
singularité logarithmique du noyau de P près de la diagonale.

On définit alors le résidu non-commutatif pour les variétés de Heisenberg
comme suit.

Définition 4.5 Le résidu non-commutatif sur ΨZ
V(M, E) est la fonctionnelle

linéaire

(78) ResP =

∫
M
cP (x), P ∈ ΨZ

V(M, E).

Proposition 4.6 1) Soit P ∈ ΨZ
V(M, E) et (Pz) une famille holomor-

phe à valeurs dans Ψ∗V(M, E) alors P0 = P et ordPz = z + ordP .
Alors

(79) ResP = − resz=0 TRPz.

En particulier, si ∆ est sous-laplacien elliptique sur M on a

(80) ResP = resz=0 TRP∆−z/2, P ∈ ΨZ
V(M, E).

2) La fonctionnelle Res est une trace sur ΨZ
V(M, E) s’annulant sur les

ΨVDO d’ordre entier < −(d+ 2).

3) Soit φ : (M,V)→ (M̃, Ṽ) un difféomorphisme Heisenberg. Alors

(81) Resφ∗P = ResP, P ∈ ΨZ
V(M, E).

Trace de Dixmier des ΨVDO

Soit (Md+1,V) une variété de Heisenberg compacte et E un fibré vecto-
riel au-dessus de M .

Théorème 4.7 1) Soit P ∈ Ψm
V (M, E) avec −k = <m < 0. Alors

(82) µn(P ) = O(n−
k
d+2 ) quand n→∞.

2) Tout P ∈ ΨZ
V(M, E) d’ordre −(d+ 2) est mesurable pour la trace de

Dixmier au sens de [Co1] et on a

(83) −
∫
P =

1

d+ 2
ResP.
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Traces et sommes de commutateurs sur l’algèbre des ΨVDO

On suppose dans cette section que M est connexe. Alors :

Théorème 4.8 Toute trace sur ΨZ
V(M, E)/Ψ−∞(M, E) est proportionnelle

au résidu non-commutatif.

Corollaire 4.9 Soit P ∈ ΨZ
V(M, E). Alors P est une somme de commuta-

teurs si, et seulement si, il est de la forme P = Q + R avec Q ∈ ΨZ
V(M, E)

et R ∈ Ψ−∞(M, E) tels que ResQ = TraceR = 0.

Chapitre 5 : géométrie spectrale des variétés de
Heisenberg et pseudo-hermitienne

Dans ce chapitre on donne des applications géométriques du résidu non
commutatif et de la trace régularisée. D’abord on définit la fonction zêta
d’un sous-laplacien elliptique dans le ΨVDO-calcul et on relie ses résidus et
valeurs régulières aux coefficients du développement de la chaleur. On ob-
tient ensuite des formules variationelles pour les fonctions zêta qu’on utilise
pour produire des invariants conformes d’une variété pseudo-hermitienne.
Après on étudie la géométrie non-commutative des variétés de Heisenberg
et en particulier on définit l’aire d’une variété pseudo-hermitienne de di-
mension 3. Enfin on donne des formules locales pour calculer l’indice d’une
racine carrée d’un sous-laplacien elliptique. D’abord on montre qu’en di-
mension paire l’indice est toujours égala à zéro et qu’en dimension impaire
il est donné par l’intégrale de la densité qui apparâıt comme le terme con-
stant dans l’asymptotique du noyau de la chaleur du sous-laplacien. Ensuite,
en utilisant la cohomologie cyclique et la formule d’indice locale de Connes-
Moscovici [CM2], on montre qu’il existe un courant de Rham, calculable par
des formules locales explicites et dont l’accouplement avec le caractère de
Chern donne l’indice à coefficients dans la K-théorie.

Fonction zêta d’un sous-laplacien elliptique

Soit (Md+1,V) une variété de Heisenberg compacte et soit ∆ un sous-
laplacien elliptique sur M . On suppose ici qu’il est soit inversible, soit
auto-adjoint. On peut alors construire ses puissances complexes et définir
la fonction zêta de ∆ en posant :

(84) ζ(s) = TR ∆−s, s ∈ C.

Proposition 5.1 Soit Σ = {1
2k ; k = 1, . . . , d + 2} ∪ (−1

2 + Z−). Alors la
fonction ζ(s) est holomorphe sur C \Σ et a au plus des pôles simples sur Σ
dont les résidus sont donnés par

(85) ress=s′ ζ(s) = 2 Res ∆−s
′

= 2

∫
M
c∆−s′ (x), s′ ∈ Σ.
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On suppose désormais que ∆ est auto-adjoint. On peut alors relier les
résidus et les valeurs régulières de sa fonction zêta aux coefficients de son
développement de la chaleur pour t petit

(86) kt(x, x) ∼ t−
d+2
2

∑
j≥0

tjaj(∆)(x),

où les aj(∆)(x) sont des densités lisses sur M .

Théorème 5.2 On suppose dimM = d+1 impaire, d+1 = 2n+1. Alors :

1) Pour k = 1, . . . , n+ 1 on a

(87) ress=k ζ(s) =
1

2
Res ∆−k =

1

(k − 1)!

∫
M
an+1−k(∆)(x).

2) En s = 0 la valeur régulière est

(88) ζ(0) =

∫
M
an+1(∆)(x)− dim ker ∆.

3) Pour tout entier non-négatif −k on a

(89) ζ(−k) = (−1)k−1(k − 1)!

∫
M
an+1+k(∆)(x).

Remarque 5.3 Les calculs sont purement locaux et en fait on a

(90) c∆−k(x) =
1

(k − 1)!
an−k(∆)(x), k = 0, . . . , n,

(91) t∆k(x) = (−1)k−1(k − 1)!an+1+k(∆)(x), k ∈ N∗.

Dans le cas pair on obtient :

Théorème 5.4 Supposons dimM = d+ 1 paire, d+ 1 = 2n. Alors :

1) Pour k = −n,−n+ 1, . . . on a

(92) ress= 1
2
−k = Res ∆−

1
2

+k =
1

Γ(1
2 − k)

∫
M
an+k(x).

2) La valeur régulière en s = 0 est donnée par

(93) ζ(0) = −dim ker ∆.

3) Les valeurs régulières aux entiers strictement positifs sont toutes
nulles.
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Formules variationnelles et invariance par homotopie

Dans cette section montre des formules variationelles pour la fonction
zêta d’un sous-laplacien elliptique. Pour cela on introduit la notion de famille
C1 de ΨVDO indexée par un intervalle ouvert I de R.

Définition 5.5 Une famille (fε) à valeurs dans Sm(Rd+1), m ∈ C, est C1

si

(i) Pour ξ fixé, fε(ξ) est une fonction C1 de ε.

(ii) Les symboles homogènes fε,m−j, j ≥ 0, de fε sont C1 avec ε.

(iii) Les bornes du développement asymptotique fε ∼
∑
fε,m−j sont

uniformes pour la topologie C1.

On peut aussi définir des familles C1 de symboles sur U × Rd+1, c.a.d
des des C1(I)⊗̂C∞(U)-familles de symboles sur Rd+1. Cela permet alors de
définir les familles C1 de ΨVDO.

Si Ω ⊂ C est un ouvert et Λ ⊂ C\0 un pseudo-cône on définit similaire-
ment les C1(I)⊗̂Hol(Ω)-familles et les C1(I)⊗̂Holp(Λ)-familles de ΨVDO.

Proposition 5.6 Soit (M,V) une variété de Heisenberg compacte et soit
(Pε,s) une C1⊗̂Hol-famille de ΨVDO sur M .

1) Si ordPε,s 6∈ Z alors TRP (ε, s) est holomorphe pour la topologie C1

et on a

(94) ∂ε TRPε,s = TR ∂εPε,s.

2) Supposons que ordPε,s = z près d’un entier m. Alors TRPε,s a un
pôle simple pour la topologie C1 près de z = m et (94) donne une
égalité de fonctions près de z = m.

Proposition 5.7 Soit (Md+1,V) une variété de Heisenberg compacte et soit
(∆ε) une famille C1 de sous-laplaciens elliptiques sur M . On fait les hy-
pothèses suivantes :

(i) ∆ε est soit inversible, soit auto-adjoint;

(ii) il existe un pseudo-cône Λ ⊂ C \ 0 ouvert et connexe tel que Λ ∩
sp ∆ε = ∅ pour tout ε.

On définit alors les puissances complexes de ∆ε au moyen d’un contour
contenu dans Λ. Alors la fonction TR ∆−sε est méromorphe pour la topologie
C1 et on a

(95) ∂ε TR ∆−sε = −sTR ∂ε(∆ε)∆
−s−1
ε .

En particulier,

(96) ∂ε Res ∆−kε = −kRes ∂ε(∆ε)∆
−k−1
ε , k = 0,

1

2
, . . . ,

d+ 2

2
.
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Invariants conforme de sous-laplaciens

Théorème 5.8 Soit (M2n+1, θ) une variété pseudo-hermitienne compacte
et soit f ∈ C∞(M). Alors :

1) On a an(�e2fθ)(x) = e2f(x)an(�θ)(x), i.e. an(�e2fθ)(x) est un in-
variant conforme local de poids −2.

2) On a l’égalité suivante de fonctions méromorphes

(97) δf TR�−sθ = 2sTR f �θ .

Par conséquent ζ�θ(0) est un invariant conforme.

3) Pour tout entier k,

(98) δf

∫
M
ak(�θ)(x) = 2(n+ 1− k)

∫
M
f(x)ak(�θ)(x).

Ainsi An+1 =
∫
M an+1(�e2fθ)(x) est un invariant conforme.

Remarque 5.9 La dernière assertion répond positivement à une conjecture
de Branson-Ørsted [BØ2].

Géométrie non commutative des variété pseudo-hermitiennes

Soit (M2n+1, θ) une variété pseudo-hermitienne compacte. Alors la
proposition 1.22 et le théorème 5.2 permettent d’exprimer les résidus non-
commutatifs des sous-laplaciens géométriques comme des intégrales de polynômes
universels en les jets des composantes de la courbure et de la torsion de la
connexion de Tanaka-Webster connection. Ainsi :

Proposition 5.10 Soit ∆b le sous-laplacien pseudo-hermitien sur (M, θ).
Alors

(99) Res ∆
−(n+1)
b = αn

∫
M

(dθ)n ∧ θ, Res ∆−nb = βn

∫
M
Rn(dθ)n ∧ θ,

où αn et βn sont des constantes universelles et Rn est la courbure scalaire
de Tanaka-Webster.

Par la remarque 5.3 on a en fait

(100) c
∆
−(n+1)
b

(x) = αn(dθ)n ∧ θ(x), c∆−nb
(x) = βnRn(dθ)n ∧ θ(x).

D’où :

Corollaire 5.11 Pour tout f ∈ C∞(M) on a

(101) −
∫
f∆
−(n+1)
b = αn

∫
M
f(dθ)n ∧ θ.
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Ainsi extrapolant à partir de [Co4] on peut interpréter ds = α
−1

2n+2
n ∆

1
2
b

comme un élément de longueur et définir l’aire de (M, θ) comme suit.

Définition 5.12 L’aire de (M, θ) est

(102) AreaθM = Res ds2 = α
−1
n+1
n Res ∆−1

b

Théorème 5.13 Pour toute variété pseudo-hermitienne (M, θ) de dimen-
sion 3 on a

(103) AreaθM = frac18
√

2

∫
M
R1dθ ∧ θ.

Par exemple pour la sphère S3 ⊂ C2 avec la forme de contact θ = i
2(z1dz̄1 +

z2dz̄2) on a aireθ = π2

2
√

2
.

Formules d’indices locales

Soit D un ΨVDO auto-adjoint d’ordre 1 sur une variété de Heisenberg
compacte (Md+1,V) et agissant sur les sections d’un fibré vectoriel S au-
dessus de M . On suppose que D2 est un sous-laplacien elliptique et que D
anti-commute avec une Z2-graduation γ sur S. Par rapport à cette gradua-
tion on peut décomposer S en une somme directe

(104) S = S+ ⊗ S−,

et écrire D sous la forme

(105) D =

(
0 D−

D+ 0

)
, D± : S± → S∓.

L’indice de D est par définition

(106) indD = indD+ = dim kerD+ − dim kerD−,

Comme D2 est un sous-laplacien elliptique il admet un développement de la
chaleur

(107) kt(x, x) ∼ t−
d+2
2

∑
j≥0

tjaj(D
2)(x),

où les aj(D
2)(x) sont des densités lisses M à valeurs dans ENDS.

Théorème 5.14 1) Si d+ 1 est pair, on a indD = 0.

2) Si d+ 1 = 2n+ 1 est impair, alors

(108) indD =

∫
M

StrS a0(D2)(x).
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Maintenant soit E un fibré hermitien au-dessus de M et∇ une connection
hermitienne sur E , i.e.

(109) 〈∇ξ, η〉 − 〈ξ,∇η〉 = d〈ξ, η〉, ξ, η ∈ C∞(M, E).

On forme le twist de D by ∇ comme suit. Par [Co1, prop. VI.1.4] on définit
un morphisme de C∞(M)-modules π : C∞(M,ΛT ∗M) → C∞(M,EndS)
en posant

(110) π(f0df1 . . . dfn) = f0[D, f1] . . . [D, fn], f j ∈ C∞(M).

Il en résulte ainsi un morphisme de C∞(M)-modules π : C∞(M,S⊗ΛT ∗M)→
C∞(M,EndS). L’opérateur D∇,E est alors l’opérateur différentiel agissant
sur C∞(M,S ⊗ E) donné par

(111) D∇,E = D ⊗ 1 + π∇,

où π∇ est défini au moyen de la composition

(112) C∞(M,S ⊗ E)
1⊗∇−→ C∞(M,S ⊗ T ∗M ⊗ E)

π⊗1−→ C∞(M,S ⊗ E).

Théorème 5.15 1) Il existe une classe d’homologie paire Ch∗D ∈
Hev(M) telle que pour tout fibré hermitien E au-dessus de M avec
un connexion ∇ on ait

(113) indD∇,E = 〈Ch∗D,Ch∗ E〉.

2) On définit explicitement un courant de Rham pair C = (C2n) représentant
Ch∗D comme suit. Pour n 6= 0 on définit C2n par

〈C2n, f
0df1 ∧ . . . ∧ df2n〉

= (2n)!
∑
α

cα Res γf0[D, f1]α1 . . . [D, f2n]α2n |D|−2(|α|+n),(114)

où c−1
α = (−1)|α|2α!(α1 + 1) · · · (α1 + · · ·+α2n+ 2n) et le symbole T (k)

dénote le k-ème commutateur itéré avec D2; tandis que for n = 0 on
pose

(115) 〈C0, f〉 =

∫
M
f(x) StrS a0(D2)(x),
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Introduction

In this thesis dissertation we prove various geometric results for pseu-
dohermitian manifolds, and more generally for Heisenberg manifolds, all
coming around with a non-commutative residue within the Heisenberg cal-
culus of [BG] and [Tay]. These include non-commutative geometry, zeta
functions, conformal invariants and local index formulae.

Before presenting the articulation of the dissertation, we shall give a
short overview of non-commutative residue for classical pseudodifferential
operators (ΨDO’s). The non-commutative residue ([Wo1], [Kass], [Wo2]) is
a trace on the algebra of ΨDO’s on a compact manifold M . If P is a ΨDO
on M its non-commuatative residue is defined by

(116) ResP = 2 resz=0 TraceP∆−z,

where ∆ is a Laplacian on M .

In dimension 1 it was found by Manin [Ma] and Adler [Ad] in the context
of complete integrable systems. In arbitrary dimension it was discovered by
Wodzicki [Wo1] using extensively Seeley’s work [Se], while Guillemin [Gu1]
studied independently the restriction of Res on ΨDO’s with order≤ −dimM .
Indeed Wodzicki gave in [Wo2] a complete account on the subject using the
formalism of symplectic cones in the spirit of [Gu1].

In fact it follows from [KV] and [CM2] that we can construct the non-
commutative residue using only homogeneous distributions and basic prop-
erties of ΨDO’s (e.g. [Ho3, section 3.2] and [Ho4, sec. 18.1]).

Let M be a compact manifold of dimension n. If P is a ΨDO with
<ordP < −n, the restriction of the kernel of P on the diagonal is a smooth
density kP (x, x) on M , so that P is traceable and we have

(117) TraceP =

∫
M
kP (x, x).

In [KV] and [CM2] it is shown that the map P → kP (x, x) with values in
the space of smooth densities on M can be extended to a map P → tP (x)
on ΨDO’s with non-integral complex order and this map is anlytic in some
sense. Then an integration over M provides us with a continuation of the
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trace,

(118) TRP =

∫
M
tP (x), ordP 6∈ Z,

which is also analytic.

The density tP (x) is defined by means of homogeneous extensions as
distributions of the symbols of P . Such extensions exist if the degree of
homogeneity is not an integer. For integral degrees there are obstructions
to such extensions, which in turn imply that the kernel of a ΨDO operator
P with integral order k has a logarithmic divergency near the diagonal,

(119) kP (x, y) =

0∑
−(n+k)

aj(x, x− y)− cP (x) log |x− y|+ O(1),

with aj(x, z) homogeneous of degree j in the second variable and cP (x) is
given by

(120) cP (x) = (2π)−n
∫
Sn−1

f−n(x, ξ)dn−1ξ,

where f−n(x, ξ) is the symbol of degree −n of P . Indeed (119) implies that
cP (x) can be globally defined as a density on M .

Moreover one can show ([KV], [CM2]) that given a ΨDO operator P
with order k ∈ Z and a holomorphic family (Pz) of ΨDO’s near z = 0 such
that P0 = P and ordPz = z + k then the function TRPz has at most a
simple pole singularity at z = 0 with residue

(121) resz=0 TRPz = −
∫
M
cP (x).

Taking Pz = P∆
z
2 we find

(122) ResP =

∫
M
cP (x).

This last equality shows that Res is local and combining with (121) we
deduce that the noncommutative is a trace on the integral ΨDO algebra.
In fact one can show ([Wo1], [BrGe], [FGLS]) that if M is connected it is
the only trace up to constant multiples on the ΨDO algebra quotiented by
smoothing operators.

Moreover the non-commutative residue has important applications on
mathematics and mathematical physics and play a central role in non-
commutative geometry (see [Co1], [CM2], [Ger], [Kast], [KrKh], [KaW]).
One the deepest concerns cyclic cohomology and local index formula ([Co1],
[CM2]) and we shall briefly present it now.
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Consider a non-commutative space represented by a spectral triple (A,H, D),
where A is an involutive algebra represented in the Hilbert space H and D
is a selfadjoint operator on H almost commuting with A, in the sense that
[D, a] is a bounded operator on H for any a ∈ A. Then ([At], [Kas]) showed
that the datum of D defined an index map

(123) indD : K∗(A) −→ Z,

where K∗(A) is the K-theory of the algebra A. This index map can be
computed by the Chern character Ch∗(D) in cyclic cohomology,

(124) indD([E ]) = 〈Ch∗(D), [E ]〉,

where 〈., .〉 denotes the pairing of cyclic cohomology with K-theory.

If the spectral triple has a simple and discrete dimension spectrum
Connes and Moscovici [CM2] derived a local formula for the cyclic cocy-
cle Ch∗(D) as a finite universal linear combination of terms of the form

(125) Res a0[D, a1](k1) · · · [D, an](kn)|D|−n−2|k|, aj ∈ A,

where for an operator T onH the symbol T (k) denotes the k’th iterated com-
mutator with D2 and Res is an algebraic analogue of the non-commutative
residue on the ΨDO algebra generated by A and D. In the case a compact
spin Riemannian manifold M and 6∂ the Dirac operator acting on L2-spinors,
this reduces to the local Atiyah-Singer index theorem ([AS]).

However the computation for the transversally elliptic signature opera-
tor in [CM2, sec. I.2] is a rather formidable task, even for codimension 1
foliations. This led Connes and Moscovici [CM3] to invent in cyclic cohomol-
ogy for Hopf algebras. Then they showed that the index took place within
the cyclic cohomology of universal Hopf algebras which can be related to
Gel’fand-Fuchs cohomology. Note that the Hopf algebras involved are very
similar to those introduced by D. Kreimer and A. Connes in the context of
quantum fields theories ([CK1], [CK2]).

The dissertation is organized as follows. In the first chapter we give a
thorough overview of Heisenberg calculus, also called ΨVDO calculus, as
presented in [BG] and [BGS]. For sake of clarity and completeness most of
the proofs are given.

In the second chapter we develop a ΨVDO calculus with parameter in
order to study the resolvent of an elliptic sublaplacian in the Heisenberg
calculus. Here the methods Seeley [Se] and Shubin [Sh] cannot be extended
to ΨVDO operators. So we use a new one built with almost homogeneous
symbols with parameter. We construct then an algebra of ΨVDO with
parameter in which the resolvent of an elliptic sublaplacian takes place as
a parametrix (theorem 2.33). As immediate application we obtain that a
selfadjoint elliptic sublaplacian is necessarily bounded from below.
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In chapter 3 we introduce holomorphic families of ΨVDO’s and we con-
struct the complex powers of an elliptic sublaplacian. First in the case of a
positive operator by means of the pseudodifferential construction of the heat
kernel (theorem 3.17). Afterwards using the parametric ΨVDO calculus of
chapter 2 when the operator is invertible or selfadjoint, but not necessarily
positive (theorems 3.21 and 3.22).

In the fourth chapter we construct an analytic continuation of the trace
on ΨVDO’s with non-integral complex order as in [KV] and [CM2] we show
that gives rise to a residual trace on ΨVDO with integral order which is
an analogue of the non-commutative residue for ΨVDO operators (theo-
rem 4.5 and proposition 4.9). Then we prove that this new non-commutative
residue extends the Dixmier trace on the ΨVDO algebra (theorem 4.11)
and is the unique trace up to a constant multiple on this algebra quo-
tiented by the smoothing operators (theorem 4.15). As corollary we obtain
a complete characterization of sums of commutators in the ΨVDO alge-
bra(corollary 4.16).

In last chapter we give geometric applications of the non-commutative
residue and the regularized trace. In the first section we define the zeta
function of an elliptic sublaplacian and, in the selfadjoint case, we relate its
residues and regular values to the coefficients of the heat kernel asymptotic
(theorems 5.3 and 5.5). In section 5.2 we derive variational formulae for
zeta functions with respect to C1 families of sublaplacians. We use them
in section 5.3 to produce conformal invariants associate to sublaplacians
(theorem 5.14) extending then the results of N.K. Stanton [St].

In section 5.4 we look at the non-commutative geometry of pseudoher-
mitian manifolds. In particular we are able to define the area of a compact
three dimensional pseudohermitian manifold and to compute it by an explicit
local formula involving the Tanaka-Webster scalar curvature (theorem 5.20).

In the last section we study the index of a square root of an elliptic
sublaplacian. First we show that in even dimension the index is always zero
and in odd dimension the index is given by the right coefficient of the heat
kernel asymptotics (theorem 5.21).

Next using cyclic cohomology and the above local index formula of
Connes-Moscovici we are able to show the existence of a de Rham’s cur-
rent whose pairing with the Chern character of a vector bundle gives the
index with coefficients in the bundle and to give a local formula for this
current as a universal finite linear combination of non-commutative residues
of the kind of (125) (theorem 5.27).
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Chapter 1

Hypoelliptic calculus on
Heisenberg manifolds

In this chapter we shall give a thorough overview of Heisenberg calculus,
also called ΨVDO calculus, following [BG] and [BGS] (see [Tay] and [EMM]
for other point of views). For sake of clarity and completeness most of the
proofs are given. In particular the heat kernel asymptotic is detailed.

1.1 Heisenberg manifolds

A Heisenberg manifold (M,V) is a manifold M together with a hy-
perplane bundle V ⊂ TM . Since they are different possible definitions for
Heisenberg manifolds (e.g. [Ge3] and [EMM]) we stress the fact that here a
Heisenberg manifold can be given either by an integrable or a non-integrable
subbundle (cf. examples below).

A Heisenberg diffeomorphism φ : (M,V)→ (M ′,V ′) between two Heisen-
berg manifolds is a diffeomorphism from M onto M ′ such that φ∗V = V ′.

The local model for a (d+1)-dimensional Heisenberg manifold is an open
subset U of Rd+1 together with a hyperplane bundle V ⊂ TU and a V-frame
X0, X1, . . . , Xd of TU , i.e. X0, X1, . . . , Xd is a frame of TU and X1, . . . , Xd

generate V. Then we define a Heisenberg chart for a Heisenberg manifold
as a local Heisenberg diffeomorphism to such an open. There always exists
locally a V-frame, but globally this not true in general.

We have the following examples of Heisenberg manifolds:

• Heisenberg group. The 2-nilpotent group H2n+1 is associated to the Lie
algebra generated by Xi, Yi, 1 ≤ i ≤ n, and T with relations [Xi, Yi] =
T and the other brackets equal to 0. The Heisenberg structure is given
by the hyperplane bundle generated by the X1, . . . , Xn and Y1, . . . , Yn.
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• Codimension 1 foliations. The foliation of M is given by an integrable
hyperplane bundle which defines a Heisenberg structure on M .

• Contact manifolds. A contact manifold is a manifold M2n+1 together
with a nowhere vanishing 1-form θ such that dθ is non degenerate
on ker θ. The Heisenberg structure is given by V = ker θ. A generic
example of contact manifold is given by the cosphere bundle S∗M =
T ∗M/R∗+ of a manifold M . More precisely let ω =

∑
dxj ∧ dξj the

canonical symplectic form on T ∗M and R =
∑
ξjdξj the generator of

the flow φs(x, ξ) = (x, esξ) on T ∗M . Then θ = ıRω = −
∑
ξjdxj is a

contact form on S∗M .

• Confoliations [ET]. This is a mixed definition between contact mani-
folds and foliations. A confoliation structure on a manifold M2n+1 is
given by a nowhere vanishing one form θ on M such that (dθ)n∧θ ≥ 0.

• CR manifolds. A CR manifold is an oriented manifold M2n+1 with
a n-dimensional complex subbundle T1,0 of the complexified tangent
space TCM such that T1,0 ∩ ¯T1,0 = {0}. The Heisenberg structure is
then given by V = <T1,0⊕<T̄1,0. The basic example of a CR manifold
is a real hypersurface M in Cn with the CR structure given by the
maximal complex structure of M .

• Pseudohermitian manifolds. A pseudohermitian manifold is a CR
manifold M2n+1 together with a contact form θ vanishing on V =
<T1,0⊕<T̄1,0 such that the Levi form of θ, i.e. the Hermitian form on
T1,0 given by

(1.1) Lθ(V,W ) = −dθ(Z, W̄ ),

is positive definite. In this case there is a canonical connection asso-
ciated to the pair (M, θ) called the Tanaka-Webster connection (see
[Ta] and [We]).

The reason why the terminology of Heisenberg manifolds is used comes
from the fact that we can at each point of a Heisenberg manifold attach a
group isomorphic to a product H2n+1 × Rd−2n (with the convention H1 =
{0}). The group structure is invariant by Heisenberg diffeomorphisms and
comes with a family of dilations compatible with the group structure. So the
structure involved is the structure of a Carnot group in the sense of [GrLP]
and is just one step beyond vectorial spaces. For instance, in the case
contact manifold M2n+1 we obtain the Heisenberg group H2n+1 at each
point, whereas for a codimension 1 foliation on a manifold Md+1 we always
get the abelian group Rd+1.

Let us describe the tangent in the case of an open subset U of Rd+1 to-
gether with a hyperplane bundle V ⊂ TU and with a V-frame X0, X1, . . . , Xd
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of TU . Let y ∈ U and let x → εy(x) the unique affine change which put y
on the origin and such that the vector fields Xj coincides with ∂

∂xj
at x = 0

for j = 0, 1, . . . , d. We call these new coordinates y-coordinates. In these
coordinates the vector fields Xj have the form

(1.2) Xj =
∂

∂xj
+

d∑
j=0

γjk(x)
∂

∂xk
, γjk(0) = 0.

Consider also the anisotropic dilations on Rd+1 defined by

(1.3) λ.x = λ.(x0, x1, . . . , xd) = (λ2x0, λx1, . . . , λxd), λ > 0.

We refer to these dilations as the Heisenberg dilations. For these dilations
the vector fields ∂

∂x0
is homogeneous of degree −2, and ∂

∂xj
, 1 ≤ j ≤ d, is

homogenous of degree −1.
The vector fields

(1.4) Xy
0 =

∂

∂x0
,

(1.5) Xj =
∂

∂xj
+

d∑
j=0

cjkxk
∂

∂x0
, 1 ≤ j ≤ d,

where cjk = cjk(y) = ∂
∂xk

γjk(0), are the homogeneous approximations of the
vector fields Xj ’s. Indeed if we expand by means of Taylor expansions the
coefficients of the vector fields Xj ’s we get

(1.6) X0 ∼ Xy
0 +X−1

0 +X0
0 + . . . ,

(1.7) Xj ∼ Xy
j +X0

j + . . . , 1 ≤ j ≤ d,

with Xk
j homogenous of degree k with respect to the Heisenberg dilations.

The vector fields Xy
0 , . . . , X

y
d generate a 2-step nilpotent Lie algebra.

They are then left-invariant vector fields over a 2-step nilpotent Lie group
with underlying space Rd+1 and product given by

(1.8) (x.z)0 = x0 + y0 +
1

2

d∑
j,k=1

cjkxjzk,

(1.9) (x.z)j = xj + yj , 1 ≤ j ≤ d.

This group is called the y-group.
It is actually possible to construct the y-group in terms of Gromov-

Hausdorff limits of metric spaces, so that the y-group is tangent to the
manifold at y (see [Gr] and [Be]). We can also see it as the boundary of a
tangent groupoid as in [Co1] using the Heisenberg dilations (1.3) for blowing
up the diagonal of M ×M .
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1.2 Sublaplacians and ideas of the ΨVDO calculus

Let (Md+1,V) be a Heisenberg manifold. A sublaplacian on M is a
differential operator which can locally be written as

(1.10) ∆ = −
d∑
j=1

X2
j − iλ(x)X0 +

d∑
j=1

µj(x)Xj + ν(x),

where λ, µ1, . . . , µd, ν are smooth functions and X0, X1, . . . , Xd is a local
V-frame of TM .

We can also define sublaplacians acting on the sections of a vector bundle
E over M as follows: they are differential operators acting on the sections
of E which are locally of the form

(1.11) ∆ = −
d∑
j=1

X2
j ⊗ idE −iλ(x)X0 +

d∑
j=1

µj(x)Xj + ν(x),

where X0, X1, . . . , Xd is a local V-frame of TM , λ is a smooth function
with diagonal matrices values and µ1, . . . , µd, ν are smooth functions with
matrices values.

This kind of operator cannot be elliptic. Nevertheless it can be hypoellip-
tic and in this case the ΨVDO calculus allows us to construct a parametrix.
The basic idea is first, using the dilations (1.3), to consider

(1.12) ∆2 = −
d∑
j=1

X2
j − iλ(x)X0,

as having order 2. Then developping a suitable symbolic calculus we need
only to find a parametrix for ∆2. Second, we freeze the coefficients of ∆2 by
modelizing it at each point y of U by the y-invariant differential operator

(1.13) ∆y
2 = −

d∑
j=1

(Xy
j )2 − iλXy

0 , λ = λ(y).

Under some condition on the function λ the operator ∆y
2 is invertible for

any y and the inverses give the principal symbol of a parametrix for ∆ (cf.
section 1.8).

Moreover using a partition of unity and elementary algebra one can
construct a sublaplacian on any Heisenberg manifold and we can do this in
such way the operator is selfadjoint and admits a parametrix (i.e. is elliptic
in the Heisenberg calculus).

Let us now give some examples of sublaplacians on a a pseudohermi-
tian manifold (M2n+1, θ). The CR structure is defined by a complex n-
dimensional subbundle of TCM such that

(1.14) T1,0 ∩ T0,1 = {0}, T0,1 = T̄1,0.
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The Levi form is the positive definite Hermitian form on T1,0 defined by

(1.15) Lθ(Z,W ) = −idθ(Z, W̄ ).

There is an unique vector fields X on M such that

(1.16) θ(X) = 1, ιXdθ = 0.

The contact form θ determines a Hermitian metric on M by

(1.17) X ⊥ T1,0 and |X| = 1;

(1.18) T1,0 ⊥ T0,1 and complex conjugation is an isometry;

(1.19) 〈Z,W 〉 = Lθ(Z,W ) for Z,W ∈ T1,0.

This Hermitian metric defines by duality a Hermitian metric on forms and
together with the volume form (dθ)n ∧ θ endows the forms with an inner
product.

The Kohn complex [Ko] is realized as follows. The bundle of covectors
(1, 0) is

(1.20) Λ1,0 = {annihilator of T1,0 ⊕ CX} ⊂ T ∗CM.

Similarly,

(1.21) Λ0,1 = {annihilator of T0,1 ⊕ CX} ⊂ T ∗CM.

The bundle of covectors (p, q) is

(1.22) Λp,q = (Λ1,0)p ∧ (Λ0,1)q ⊂ Λp+qT ∗CM.

A (p, q)-form is a section of Λp,q and the space of (p, q)-forms is denoted
Ep,q. Set

(1.23) ∂̄b,q : Ep,q −→ Ep,q+1, ∂̄b,q = πp,q+1 ◦ d,

where d is the exterior derivative and πp,q+1 is the orthogonal projection
onto Ep,q+1. Then

(1.24) ∂̄b : Ep =
⊕
Ep,q −→ Ep,

is a chain complex. The Kohn Laplacian on (p, q)-forms is then

(1.25) �b,q = ∂̄∗b,q∂̄b,q + ∂̄b,q+1∂̄
∗
b,q+1,

and one can show it is a sublaplacian acting on complex forms (see [BG]).
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We can similarly defines a real sublaplacian. Let H∗ be the orthogonal
complement of θ in T ∗M so that H∗ is the dual of the maximal complex
tangent space H(M) and let π be the orthogonal projection onto H∗. Set

(1.26) db = π ◦ d : C∞(M)→ H∗.

The pseudohermitian sublaplacian [Le] is defined as

(1.27) ∆b = d∗bdb.

In [Le] it is shown that ∆b = 2<�b, where �b is the Kohn Laplacian on
functions. So ∆b is also a sublaplacian.

However, the operator ∆b does not transform conformally under con-
formal changes of the contact form θ. So, in order to study the Yamabe
problem on CR manifolds, Jerison and Lee [JL1] introduced the operator

(1.28) �θ = ∆b +
n

n+ 2
Rn,

where Rn is the scalar curvature of the Tanaka-Webster connection. Then

(1.29) �e2fθ = e−(n+2)f �θ e
nf , f ∈ C∞(M),

so we shall call �θ the conformal (pseudohermitian) sublaplacian.

1.3 Classes of Heisenberg symbols

From now on U is an open subset of Rd+1 together with a hyperplane
bundle V ⊂ TU and a V-frame X0, X1, . . . , Xd of TU . For x ∈ U we denote
by εx the affine map onto the x-coordinates. This the unique affine change
of coordinates which put x at the origin and such that the vector fields Xj

coincides with ∂
∂xj

at x. Also we set

(1.30) σ(x, ξ) = (σ0(x, ξ), σ1(x, ξ), . . . , σd(x, ξ)),

where σj(x, ξ) is the symbol of 1
iXj . We refer to σ as the (real) symbol of

the frame X0, X1, . . . , Xd.

In this section we define the convenient symbols for Heisenberg man-
ifolds. At a local level they are associate to the anisotropic Heisenberg
dilations

(1.31) λ.ξ = (λ2ξ0, λξ1, . . . , λξd), λ > 0,

and to the homogeneous pseudo-norm defined by

(1.32) ‖ξ‖ = (|ξ0|2 + |ξ1|4 + . . .+ |ξd|4)
1
4 , ξ ∈ Rd+1.
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Definition 1.1 Sm(Rd+1), m ∈ C, is the space of functions f ∈ C∞(Rd+1\
0) which are homogeneous of degree m with respect to the Heisenberg dila-
tions, that is

(1.33) f(λ.ξ) = λmf(ξ), λ > 0.

The homogeneity implies that f satisfies to the estimates

(1.34) |∂αξ f(ξ)| ≤ Cα‖ξ‖<m−〈α〉, ξ 6= 0,

where we have let 〈α〉 = α0 + |α| = 2α0 +α1 + . . .+αd. Therefore a smoothed
version of f belongs to the following class of symbols

Definition 1.2 Sk||(Rd+1), k ∈ R, is the Fréchet space of functions f ∈
C∞(Rd+1) satisfying to the estimates

(1.35) |∂αξ f(ξ)| ≤ Cα(1 + ‖ξ‖)k−〈α〉.

Its topology is defined by means of the semi-norms given by the lower bounds
in the estimates (1.35).

Definition 1.3 Sm(Rd+1), m ∈ C, is the space of functions f ∈ C∞(Rd+1)
with an asymptotic expansion

(1.36) f(ξ) ∼
∑
j≥0

fm−j(ξ), fk ∈ Sk(Rd+1),

in the sense that for any integer N we have

(1.37) |∂αξ (f −
∑
j<N

fm−j)(x, ξ)| ≤ CαN‖ξ‖<m−〈β〉−N , ‖ξ‖ ≥ 1.

We can define smooth families versions of the previous classes of symbols as
follows.

Definition 1.4 Sm(U × Rd+1), m ∈ C, is the space of functions f ∈
C∞(U × Rd+1\0) which are homogeneous of degree m in the last variable,
i.e.

(1.38) f(x, λ.ξ) = λmf(x, ξ), λ > 0.

Definition 1.5 Sk||(U×Rd+1), k ∈ R, is the space of functions f ∈ C∞(U×
Rd+1) satisfying to the estimates

(1.39) |∂αx ∂
β
ξ f(ξ)| ≤ Cαβ(x)(1 + ‖ξ‖)k−〈β〉,

with Cαβ(x) locally bounded on U .
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Definition 1.6 Sm(U × Rd+1), m ∈ C, is the space of functions f ∈
C∞(U × Rd+1) with an asymptotic expansion

(1.40) f(x, ξ) ∼
∑
j≥0

fm−j(x, ξ), fk ∈ Sk(U × Rd+1),

in the sense that for any integer N we have

(1.41) |∂αx ∂
β
ξ (f −

∑
j<N

fm−j)(x, ξ)| ≤ CαβN (x)‖ξ‖<m−〈α〉−N , ‖ξ‖ ≥ 1.

where CαβNJ(x) is a locally bounded function on U .

Remark 1.7 As a(1 + |ξ|)
1
2 ≤ 1 + ‖ξ‖ ≤ b(1 + |ξ|) it follows from [Ho1,

theorem 2.9] that the asymptotic expansion (1.40) is equivalent to the re-
quirement of the following two conditions:

(i) For any multi-orders α and β there exists a real µαβ such that

(1.42) |∂αx ∂
β
ξ f(x, ξ)| ≤ Cαβ(x)(1 + |ξ|)µαβ ,

with Cαβ(x) locally bounded.

(ii) For any integer N if J is large enough we have

(1.43) |f(x, ξ)−
∑
j≤J

fm−j(x, ξ)| ≤ CNJ(x)|ξ|−N , ‖ξ‖ ≥ 1,

with CNJ(x) locally bounded.

In particular the asymptotic expansion for Heisenberg symbols is the same
as usual.

Proposition 1.8 ([BG]) Let m ∈ C and suppose given for j = 0, 1, . . .
some symbol fm−j in Sm−j(U×Rd+1). Then there exists f ∈ Sm(U×Rd+1)
such that f ∼

∑
fm−j. Moreover f is unique modulo S−∞(U × Rd+1) =

∩Sk||(U × Rd+1).

Let us now define almost-homogeneous symbols.

Definition 1.9 Smah(U × Rd+1), m ∈ C, is the space of functions f ∈
C∞(U × Rd+1) almost homogeneous of degree m in the last variable, i.e.

(1.44) f(x, λ.ξ)− λmf(x, ξ) ∈ S−∞(U × Rd+1), λ > 0.

The interest of the definition relies on the proposition:

Proposition 1.10 ([BG]) Let f ∈ C∞(U ×Rd+1). Then the following are
equivalent:
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(i) f belongs to Smah(U × Rd+1).

(ii) f lies in Sm(U × Rd+1) and has only one term in its asymptotic
expansion, i.e. f ∼ fm with fm ∈ Sm(U × Rd+1).

Proof. If f belongs to Sm(U×Rd+1) and has only one term in its asymptotic
expansion then f is almost homogeneous of degree m.

Conversely, suppose that f is in Smah(U × Rd+1). Then we have

(1.45) |f(x, t.ξ)− tmf(x, ξ)| ≤ CtN (x)(1 + ‖ξ‖)−N ,

with CtN (x) locally bounded. If we replace ξ by s.ξ, s > 0, and if N is large
enough we get

(1.46) |smf(x, st.ξ)− tmf(x, s.ξ)| ≤ CtN (x)sm−1‖ξ‖−N , ξ 6= 0.

Define now the sequence (gk)k≥0 ⊂ C∞(U × (Rd+1\0)) by

(1.47) gk(x, ξ) = (2k)−mf(x, 2k.ξ), ξ 6= 0.

Then by (1.46) we have

(1.48) |gk+1(x, ξ)− gk(x, ξ)| ≤ C2N (x)2−k‖ξ‖−N , ξ 6= 0.

As there are estimates similar to (1.45) for the derivatives of f(x, t.ξ) −
tmf(x, ξ), the series

∑
k≥0(gk+1 − gk) is convergent in C∞(U × (Rd+1\0)).

This implies that the sequence (gk) converges in C∞(U × (Rd+1\0)) to some
g ∈ C∞(U × (Rd+1\0)) such that for any N we have

(1.49) |g(x, ξ)− f(x, ξ)| ≤ C2N (x)‖ξ‖−N , ξ 6= 0.

If we take s = 2k in (1.46) and let k → ∞ with t fixed we get the
required homogeneity of g. Moreover with k = 0 the estimate (1.49) and
similar estimates for the derivatives show that f lies in Sm(U × Rd+1) and
f ∼ g. �

1.4 The ΨVDO operators on an open subset of Rd+1

The ΨVDO calculus is the pseudodifferential calculus associated to the
quantization of S∗(U × Rd+1) given by the map

(1.50) f −→ f(x, σ(x,D)).

Here f(x, σ(x,D)) denotes the continuous operator from C∞c (U) into C∞(U)
defined by
(1.51)

f(x, σ(x,D))u(x) = (2π)−(d+1)

∫
eix.ξf(x, σ(x, ξ))û(ξ)dξ, u ∈ C∞c (U).

More precisely:
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Definition 1.11 A ΨVDO operator of order m, m ∈ C, is a continuous
operator from C∞c (U) into C∞(U) of the form

(1.52) P = f(x, σ(x,D)) +R,

with f ∈ Sm(U ×Rd+1), called the symbol of P , and R smoothing operator.
The space of ΨVDO’s of order m is denoted Ψm

V (U).

Proposition 1.12 ([BG]) Let m ∈ C. Then:

1) The space Ψm
V (U) does not depend on the choice of the V-frame

X0, X1, . . . , Xd.

2) Any P ∈ Ψm
V (U) has a kernel smooth outside the diagonal and ex-

tends to a continuous linear mapping from E ′(U) into D′(U). It is
a smoothing operator if, and only if, its symbol belongs to S−∞(U ×
Rd+1).

3) Set k = <m if <m ≥ 0 and k = 1
2<m otherwise. We have

(1.53) Ψm
V (U) ⊂ Ψk

1
2
, 1
2

(U)

where Ψk
1
2
, 1
2

(U) is the space of pseudodifferential operators of type (1
2 ,

1
2)

(see [Ho1]).

Combining the last inclusion with the Calderón-Vaillancourt theorem ([CV], [Hw])
we obtain the Sobolev regularity of ΨVDO operators.

Proposition 1.13 Let P ∈ Ψm
V (U) and set k = <m if <m ≥ 0 and k =

1
2<m otherwise. Then for any real s the operator P extends to a continuous
linear mapping

(1.54) P : Hs
comp(U) −→ Hs−k

loc (U).

Recall that an operator P given by a kernel kP (x, y) ∈ D′(U × U) is said
properly supported if both projections πx, πy : supp kP (x, y)→ U are proper
maps.

Proposition 1.14 Let m ∈ C. Then:

1) Each ΨVDO operator P can be written as P = Q+R with Q properly
supported ΨVDO and R smoothing operator.

2) If P is a properly supported ΨVDO operator, then it induces a con-
tinuous endomorphism of C∞c (U) and extends to continuous endomor-
phisms of C∞(U), E ′(U) and D′(U) respectively.
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1.5 Composition of ΨVDO operators

Let us look as the composition of ΨVDO operators. As Ψ∗V(U) is con-
tained in Ψ 1

2
, 1
2
(U) the classical asymptotic expansion

(1.55) q1#q2(x, ξ)
∑ 1

α!
Dξq1(x, ξ)∂xq2(x, ξ),

for the symbol of the product of two pseudodifferential operators does not
make sense. However, it is possible to show that the composition of two
ΨVDO’s can be a ΨVDO and then to derive an asymptotic formula for the
symbol of the product. But instead of involving the pointwise product of
symbols it is given in terms of Fourier convolution of homogeneous symbols
with respect to the tangent group structure at each point.

Let us first define precisely the convolution for symbols. To this end for
any y ∈ U we denote by Xy

j the left-invariant vector fields with respect to

the y-group which coincides with ∂
∂xj

at the origin. Then we let σy(x, ξ) be

the symbol of the frame Xy
0 , X

y
1 , . . . , X

y
d .

Lemma 1.15 ([BG]) Let y ∈ U . Then:

1) For any f ∈ Sk||(Rd+1) the operator f(σy(x,D)) maps S(Rd+1) to
itself.

2) For f1 ∈ Sk1|| (Rd+1) and f2 ∈ Sk2|| (Rd+1) we have

(1.56) f1(σy(x,D)) ◦ f2(σy(x,D)) = (f1 ∗y f2)(σy(x,D)),

where y → ∗y is a smooth family of continuous bilinear maps from
Sk1|| (Rd+1)× Sk2|| (Rd+1) into Sk1+k2

|| (Rd+1).

Remark 1.16 If Xy
j = ∂

∂xj
, j = 0, 1, . . . , d, then σy(x, ξ) = ξ and we have

(1.57) f1(σy(x,D)) ◦ f2(σy(x,D)) = f1(D) ◦ f2(D) = (f1f2)(D).

So in this case the convolution ∗y reduces to the pointwise product of sym-
bols.

Remark 1.17 In general the convolution symbol f1 ∗y f2 is given by

(1.58) f1 ∗y f2(x, ξ) = (2π)−(d+1)

∫∫
e−i〈z,η〉f1(ξ + η)f2(σy(z, ξ))dzdη,

where the integral is taken in the sense of oscillating integrals. Indeed there
exists a differential operator L = L(ξ, z, η,Dz, Dη), independent of y, such
that

(1.59) Lt(e−i〈z,η〉) = e−i〈z,η〉,
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and for N large enough the integral

(1.60) (2π)−(d+1)

∫∫
e−i〈z,η〉LN (f1(ξ + η)f2(σy(z, ξ)))dzdη,

is absolutely convergent.

As y → ∗y is a smooth family we get a continuous bilinear map

(1.61) ∗ : Sk1|| (U × Rd+1)× Sk2|| (U × Rd+1) −→ Sk1+k2
|| (U × Rd+1),

by setting

(1.62) f1 ∗ f2(y, ξ) = (f1(y, .) ∗y f2(y, .))(ξ), fj ∈ S
kj
|| (U × Rd+1).

This applies in particular if f1 and f2 are almost homogeneous symbols
of degree m1 and m2. But for any t > 0 we have

f1 ∗ f2(x, t.ξ)− tm1+m2f1 ∗ f2(x, ξ) =

(f1(x, t.ξ)− tm1f1(x, ξ)) ∗ f2(x, t.ξ) + tm1f1(x, ξ) ∗ (f2(x, t.ξ)− tm2f2(x, ξ)).(1.63)

So using the fact that S−∞(U × Rd+1) is a two-side ideal for ∗ we see
that f1 ∗ f2 is almost-homogeneous of degree m1 + m2 and its principal
symbol depends only on the principal symbol of f1 and f2. Then identifying
Sm(U ×Rd+1) with the quotient Smah(U ×Rd+1)/S−∞(U ×Rd+1) we obtain
a bilinear map

(1.64) ∗ : Sm1(U × Rd+1)× Sm2(U × Rd+1) −→ Sm1+m2(U × Rd+1).

This gives the needed convolution for homogeneous symbols.

We can now state the composition formula for ΨVDO operators using
the notations which follow. If f(x, ξ) is a symbol let

(1.65) fβγα (x, ξ) = ξγ∂αx ∂
β
ξ f(x, ξ) and f δ(x, ξ) = Dδ

ξf(x, ξ).

Next denote by σ(x)(z, ξ) = (εx)∗σ(z, ξ) the V-frame symbol in the x-
coordinates and set
(1.66)

hαβγδ(x) =
1

δ!
∂δzhαβγ(x, 0), hαβγ(x, z) =

1

α!β!
(ε
′−1
x (z))αeβγ(x, z),

where the functions eβγ are defined by the equality

(1.67) (σ(x)(z, ξ)− σx(z, ξ))β =
∑
|γ|=|β|

eβγ(x, z)σx(z, ξ)γ .
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Proposition 1.18 ([BG]) Let P1 ∈ Ψm1
V (U) with symbol f1 ∼

∑
f1,m1−j

and P2 ∈ Ψm2
V (U) with symbol f2 ∼

∑
f2,m2−j and suppose either Q1 or Q2

properly supported. Then P1P2 is a ΨVDO of order m1 +m2 and has symbol
f ∼

∑
fm1+m2−j with

(1.68) fm1+m2−j(x, ξ) =
∑

hαβγδ(x)f δ1,m1−k ∗ f
βγ
2,m2−l,α(x, ξ),

where the summation is taken over the indices such that

(1.69) |γ| = |β|, |β|+ |α| ≤ 〈δ〉+ 〈β〉 − 〈γ〉 = j − k − l.

In particular, the principal symbol of P1P2 is f1,m1 ∗ f2,m2(x, ξ) is the con-
volution of the principal symbols of P1 and P2.

By proposition 1.14 the composition P1P2 is well defined as a continuous
mapping from C∞c (U) into C∞(U) and up to a smoothing operator we have

(1.70) P1P2 =
∑

ϕif1(x, σ(x,D))ψif2(x, σ(x,D)),

where (ϕi) and (ψi) are families of smooth compactly supported functions
on U such that (ϕi) is a locally finite partition of unity and ψi = 1 near
suppϕi. So the proposition follows from the lemma:

Lemma 1.19 ([BG]) Let ψ ∈ C∞c (U) and let f1 ∈ Sk1|| (U × Rd+1) and

f2 ∈ Sk2|| (U × Rd+1). Then

(1.71) f1(x, σ(x,D))ψf2(x, σ(x,D)) = f1#ψf2(x, σ(x,D)),

with f1#ψf2 in Sm1+m2
|| (U × Rd+1) such that

(1.72) f1#ψf2(x, ξ) ∼
∑

hαβγδ(x)ψ(x)f δ1 ∗ (ψf)βγ2,α(x, ξ),

where the summation is taken over the indices such that |γ| = |β| and |β|+
|α| = 〈δ〉+ 〈β〉 − 〈γ〉.

Remark 1.20 In the expansion (1.72) the symbol f δ1 ∗ (ψf)βγ2,α has order
k1 +k2−〈δ〉−〈β〉+ 〈γ〉. So there are only finitely many terms of a given order
and this asymptotic expansion does make sense.

Remark 1.21 Suppose V is the trivial hyperplane bundle generated by ∂
∂x1

,

. . . , ∂
∂xd

. Then the convolution ∗ is the pointwise product for functions and

we have εx(y) = y − x and σ(x)(z, ξ) = σx(z, ξ) = ξ. This implies that
hα00α = 1

α! and hαβγδ = 0 if (β, γ, δ) 6= (0, 0, α). Thus
(1.73)

f1#ψf2(x, ξ) ∼
∑ 1

α!
fα1 ∗ (ψf2,α)00(x, ξ) ∼

∑ 1

α!
∂αξ f1(x, ξ)Dα

x (ψf2)(x, ξ),

which gives back the asymptotic expansion for the symbol of the product of
two standard pseudo-differential operators.
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Remark 1.22 The symbol f1#ψf2 is given by the oscillating integral
(1.74)

f1#ψf2(x, ξ) = (2π)−(d+1)

∫∫
e−i〈z,η〉f1(x, ξ+η)ψ(z)f2(ε−1

x (z), σ(x)(z, ξ))dz−dη.

This integral can be regularized as the integral (1.58) and by taking suitable
Taylor expansions inside one can obtain the asymptotic expansion (1.72).
In fact, for N integer let Σ(N) the summation over the indices such that
|γ| = |β| and |β|+ |α| = 〈δ〉+ 〈β〉 − 〈γ〉 < N . Then it follows from the closed
graph theorem that the bilinear map

(1.75) (f1, f2) −→ f1#ψf2 −
(N)∑

hαβγδ(x)ψ(x)f δ1 ∗ (ψf)βγ2,α(x, ξ),

is continuous from Sk1|| (U×Rd+1)×Sk2|| (U×Rd+1) into Sk1+k2−N
|| (U×Rd+1).

1.6 Kernels of ΨVDO operators

Let K(x) ∈ S ′(Rd+1). For λ > 0 we denote by K(λ.x) the distribution
defined by

(1.76) 〈K(λ.x), u(x)〉 = λ−(d+2)〈K(x), u(λ−1.x)〉, u ∈ S(Rd+1).

Then K is said to be homogeneous of degree m, m ∈ C, if

(1.77) K(λ.x) = λmK(x) for any λ > 0.

The starting point here is the problem of the extension of a homogeneous
symbol on Rd+1\0 into a homogeneous distribution on Rd+1.

Lemma 1.23 ([BG]) Let f ∈ C∞(Rd+1\0) homogeneous of degree m.

1) If m is not an integer ≤ −(d+2), then f has an unique homogeneous
extension as a tempered distribution on Rd+1.

2) If m is an integer ≤ −(d + 2), the only obstructions to such an
extension are given by the non vanishing of

(1.78) cα(f) =
1

α!

∫
‖ξ‖=1

ξαf(ξ)iEdξ, 〈α〉 = −(m+ d+ 2),

where E is the generator of the flow φs(ξ) = (e2sξ0, e
sξ′).

Proof. If <m > −(d+ 2) then f is integrable near the origin and defines a
tempered distribution which is its unique homogeneous extension.
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If <m ≤ −(d+ 2) an extension of f as a tempered distribution on Rd+1

is provided by
(1.79)

〈τ(ξ), u(ξ)〉 =

∫
(u(ξ)− ψ(‖ξ‖)

∑
〈α〉≤k

ξα

α!
u(α)(0))f(ξ)dξ, u ∈ S(Rd+1),

with k ≥ −(<m+ d+ 2) and ψ ∈ C∞c (R+) such that ψ = 1 near 0. One can
check that

(1.80) τ(λ.ξ)− λmτ(ξ) = λm
∑
〈α〉≤k

ρα(λ)
1

α!

∫
‖ξ‖=1

ξαf(ξ)iEdξ, λ > 0,

with ρα(λ) =
∫∞

0 µ〈α〉+m+d+2(ψ(µ) − ψ(λµ))dµµ . Let λ = es and write ψ in
the form

(1.81) ψ(µ) = h(logµ)

with h ∈ C∞(R) such that h = 1 near −∞ and h = 0 near +∞. Then

(1.82)
d

ds
ρα(es) = −e−as

∫ +∞

−∞
eath′(t)dt, a = 〈α〉+m+ d+ 2.

As ρα(1) = 0 it follows that τ is homogeneous of degree m if, and only if,
we have

(1.83)

∫
eash′(s)ds = 0 for a = m+ d+ 2, . . . ,m+ d+ 2 + k.

Suppose now that m 6∈ Z. Then (1.83) is satisfied by

(1.84) h′(s) =
m+d+2+k∏
a=m+d+2

(
1

a

d

dt
+ 1)g(s),

with g ∈ C∞c (Rd+1) such that
∫
g(t)dt = 1. So τ defined by (1.79) with

ψ(µ) =
∫∞

logµ h
′(s)ds is a homogeneous extension of f . Moreover, if τ1 ∈

S ′(Rd+1) is another homogeneous extension of f then τ − τ1 is supported at
0 and we have τ = τ1+

∑
aαδ

(α), aα ∈ C. As both τ and τ1 are homogeneous,
it follows

(1.85)
∑

(λ−(d+2−〈α〉) − λm)aαδ
(α) = 0.

Thus aα = 0 for any α and τ1 = τ .
It remains to treat the case m integer ≤ −(d + 2). In this case we can

set k = −(m+ d+ 2) and take h of the form

(1.86) h′(s) =
1∏

a=m+d+2

(
1

a

d

dt
+ 1)g(s),
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with g ∈ C∞c (Rd+1) such that
∫
g(t)dt = 1. Then ρα(λ) = 0 for 〈α〉 <

−(m+ d+ 2). For 〈α〉 = −(m = d+ 2) we have

(1.87)
d

ds
ρα(es) = −

∫
h′(s)ds = 1.

Thus ρα(λ) = log λ and we have

(1.88) τ(λ.ξ)− λmτ(ξ) = λm log λ
∑

〈α〉=−(m+d+2)

cα(f)δ(α)(ξ), λ > 0.

Hence τ is homogeneous if cα(f) = 0 for 〈α〉 = −(m = d+ 2).
Conversely, suppose there exists τ1 ∈ S ′(Rd+1) homogeneous of degree

m agreeing with f on Rd+1 \0. Then τ − τ1 is supported at 0 and τ =
τ1 +

∑
aαδ

(α), aα ∈ C. Thus
(1.89)

τ(λ.ξ)−λmτ(ξ) =
∑

(λ−(d+2−〈α〉)−λm)aαδ
(α) = λm log λ

∑
〈α〉=−(m+d+2)

cα(f)δ(α)(ξ),

which implies that cα(f) = 0 for 〈α〉 = −(m+ d+ 2). �

Remark 1.24 If we take the inverse Fourier transform of the distribution
τ constructed above we obtain a tempered distribution smooth away from
zero. If m is not an integer ≤ −(m + d + 2) it is homogeneous of degree
m̂ = −(m+ d+ 2). If m is an integer ≤ −(m+ d+ 2) we have

(1.90) ˇ(τ)(λ.x) = λm̂τ̌(x)− (2π)−(d+2)λm̂ log λ
∑
〈α〉=m̂

cα(f)xα, λ > 0.

This leads to define the following spaces of distributions:

Definition 1.25 Km(U×Rd+1), m ∈ C, is the space of distributions K(x, y) ∈
C∞(U)⊗̂S ′(Rd+1) which are smooth on U × (Rd+1\0) and such that for any
λ > 0 we have

(1.91) K(x, λ.y) = λmK(x, y), if m 6∈ N,

(1.92) K(x, λ.y) = λmK(x, y) + λm log λ
∑
〈α〉=m

cα(x)yα, if m ∈ N.

Remark 1.26 If m is not a positive integer the restriction of K to U ×
(Rd+1\0) is smooth and homogeneous of degree m. If m is a positive integer
the equality (1.92) for λ = ‖y‖−1, y 6= 0, gives

(1.93) K(x, y) = ‖y‖mK(x, ‖y‖−1.y)−
∑

cα(x)yα log ‖y‖, y 6= 0.
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Definition 1.27 Km(U × Rd+1), m ∈ C, is the space of distributions K ∈
D′(U × Rd+1) with an asymptotic expansion

(1.94) K(x, y) ∼
∑
j≥0

Km+j(x, y), Kl ∈ Kl(U × Rd+1),

in the sense that for integer N if J is sufficiently large we have

(1.95) K −
∑
j≤J

Km+j ∈ CN (U × Rd+1).

Combining the definition with remark 1.26 we obtain:

Proposition 1.28 Let K ∈ Km(U × Rd+1). Then:

1) The distribution K lies in C∞(U)⊗̂D′(Rd+1) and it is smooth on
U × (Rd+1\0).

2) Near y = 0 we have
(1.96)

K(x, y) =
∑

0≤j≤−<m
am+j(x, y)− cK(x) log ‖y‖+ O(1), if m ∈ N,

(1.97) K(x, y) =
∑

0≤j≤−<m
am+j(x, y) + O(1), if m 6∈ N.

In both cases ak(x, y) is a smooth function on U × (Rd+1\0) homoge-
neous of degree k in the variable y.

Proposition 1.29 ([BG]) Let P be a continuous operator from C∞c (U)
into C∞(U). Then P is a ΨVDO of order m if, and only if, its kernel is of
the form

(1.98) kP (x, y) = |ε′x|K(x,−εx(y)) +R(x, y)

with K ∈ Km̂(U × Rd+1), m̂ = −(m+ d+ 2), and R ∈ C∞(U × U).

Proof. Let f ∈ S∗(U × Rd+1). By definition the kernel of the operator
f(x, σ(x,D)) is

(1.99) k(x, y) = (2π)−(d+1)

∫
ei〈x−y,ξ〉f(x, σ(x, ξ))dξ.

As σ(x, ξ) = (ε
′t
x )−1ξ we have

(1.100)∫
ei〈x,ξ〉f(x, σ(x, ξ))dξ = |ε′x|

∫
ei〈ε

′
x(x−y),ξ〉f(x, ξ)dξ = (2π)−(d+1)f̌ξ→y(x,−εx(y)).
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Therefore the proof reduces to show that a distribution K on U ×Rd+1 lies
in Km̂(U × Rd+1) if, and only if, it is of the form

(1.101) K(x, y) = f̌ξ→y(x, y) +R(x, y),

with f ∈ Sm(U × Rd+1) and R ∈ C∞(U × Rd+1).
However if f ∈ Sm(U ×Rd+1) then by lemma 1.23 we can extend it into

a distribution τ ∈ C∞(U)⊗̂S ′(Rd+1) such that τ̌ξ→y lies in Km̂(U × Rd+1).

Conversely if the distribution K lies in Km̂(U × Rd+1) then τ = K̂y→ξ is
smooth outside on U × Rd+1 and satisfies

(1.102) τ(x, λ.ξ) = λmτ(x, ξ) + λm log λ
∑
〈α〉=m̂

cαδ
(α), λ > 0.

Hence the restriction of τ to U × (Rd+1\0) lies in Sm(U × Rd+1).
As by remark 1.7 the Fourier transform induces an equivalence be-

tween the asymptotic expansion for symbols and the asymptotic expansion
for kernels, it follows that the form (1.101) characterizes the elements of
Km(U × Rd+1) among the distributions on U × Rd+1. �

Corollary 1.30 Let P be a ΨVDO of integral order m. Then near the
diagonal its kernel kP (x, y) has the following behavior

(1.103) kP (x, y) =
∑

−(m+d+2)≤j≤0

aj(x, εx(y))− cP (x) log ‖εx(y)‖+ O(1),

with aj(x, z) homogeneous of degree j in the variable z and cP (x) given by

(1.104) cP (x) =
|ε′x|

(2π)(d+2)

∫
‖ξ‖=1

f−(d+2)(x, ξ)iEdξ,

where f−(d+2) is the homogeneous symbol of degree −(d+ 2) of P .

We can also define almost homogeneous distributions in the following
way.

Definition 1.31 Kmah(U × Rd+1), m ∈ C, is the space of distributions K ∈
C∞(U)⊗̂D′(Rd+1) which are smooth on U × (Rd+1\0) and almost homoge-
neous in the second variable, i.e.

(1.105) K(x, t.y)− tmK(x, y) ∈ C∞(U × Rd+1), t > 0.

Lemma 1.32 Let m ∈ C. Then we have

(1.106) Kmah(U × Rd+1) = Km(U × Rd+1) + C∞(U × Rd+1).
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Proof. As Km(U × Rd+1) ⊂ Kah(U × Rd+1) we need only to prove the
inclusion

(1.107) Kmah(U × Rd+1) ⊂ Km(U × Rd+1) + C∞(U × Rd+1).

Let K ∈ Kah(U × Rd+1) and ϕ ∈ C∞c (Rd+1) such that ϕ = 1 near zero.
Then the distribution ϕ(y)K(x, y) lies in C∞(U)⊗̂E ′(Rd+1) and we define a
smooth function on U × Rd+1 by setting

(1.108) f(x, ξ) = (ϕK)∧y→ξ(x, ξ).

Moreover if we set m̂ = −(m + d + 2) then for any t > 0 the symbol
td+2(f(x, t.ξ)− tm̂f(x, ξ)) lies in S−∞(U ×Rd+1) for it is the Fourier trans-
form in the second variable of

ϕ(t.y)K(x, t.y)− tmϕ(y)K(x, y)

= ϕ(t.y)(K(x, t.y)− tmK(x, y)) + (ϕ(t.y)− ϕ(y))K(x, y).(1.109)

Thus f is almost homogeneous of degree m̂ and by lemma 1.10 there exists
g ∈ Sh,m̂(U × Rd+1) such that f − g has rapid decay at infinity. Then by
lemma 1.23 we can extend g into a distribution τ ∈ C∞(U)⊗̂S ′(Rd+1) such
that τ̌ξ→y belongs to Km(U × Rd+1). As f̌ξ→y − τ̌ξ→y is smooth we can
conclude that K coincides with an element of Km(U×Rd+1) up to a smooth
function. �

1.7 Invariance by Heisenberg diffeomorphisms

Proposition 1.33 ([BG]) Let φ : U → Ũ be a Heisenberg diffeomorphism,
where Ũ is another open subset of Rd+1 equipped with a hyperplane bundle
Ṽ ⊂ TŨ and a Ṽ-frame of TŨ . Then for any P̃ ∈ Φm

Ṽ (Ũ) the pullback

operator P = φ∗P̃ is a ΨVDO of order m on U . Moreover,

(1.110) cP (x) = |φ′(x)|cP̃ (φ(x)), x ∈ U,

where cP (x) and cP̃ (x̃) are the coefficients of the logarithmic divergencies of

the kernels of P and P̃ given by corollary 1.30.

The proof requires the following analysis of the action of smooth functions
on K∗(U × Rd+1).

Lemma 1.34 ([BG]) Let K ∈ Km(U × Rd+1) and f ∈ C∞(U × Rd+1).
Then:

1) The distribution f(x, y)K(x, y) lies in Km(U × Rd+1).
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2) If for some integer k we have f(x, y) = O(‖y‖k) near y = 0, then
fK is in Km+k(U × Rd+1).

Proof. By Taylor formula there exist smooth functions gα such that
(1.111)

f(x, y)K(x, y) =
∑
〈α〉<N

yα

α!
∂αy f

(α)(x, 0)K(x, y) +
∑
〈α〉=N

yα

α!
gα(x, y)K(x, y).

The distribution yα

α! ∂
α
y f

(α)(x, 0)K(x, y) lies in Km+〈α〉(U × Rd+1) and the
remainder term

(1.112) RN (x, y) =
∑ 1

α!
yαgαK(x, y),

is smooth outside U × 0.

However by proposition 1.28 there exists a real µ such that for any multi-
order β we have

(1.113) |∂βxK(x, y)| = O(‖y‖−µ) near y = 0.

It follows that RN (x, y) is smoother and smoother as N →∞. Thus

(1.114) f(x, y)K(x, y) ∼
∑ yα

α!
∂αy f

(α)(x, 0)K(x, y),

which implies that fK lies in Km(U × Rd+1).

Finally if near y = 0 we have f(x, y) = O(‖y‖k) or some integer k, then
∂αy f(x, 0) = 0 for 〈α〉 < k and fK is actually in Km+k(U × Rd+1). �

Proof of proposition 1.33. By proposition 1.29 the kernel of P̃ is of the
form

(1.115) kP̃ (x̃, ỹ) = |ε̃′x̃|K̃(x̃, ε̃x̃(ỹ)) + R̃(x̃, ỹ),

with K̃ ∈ Km̂(Ũ ×Rd+1) and R̃ ∈ C∞(Ũ × Ũ). Here ε̃x̃ is the x̃-coordinates
map with respect to the Ṽ-frame of TŨ . So P has kernel

(1.116) kP (x, y) = |φ′(y)|kP̃ (φ(x), φ(y)) = |ε′x|K(x, εx(y))|+R(x, y),

with R ∈ C∞(U × U) and K given by

(1.117) K(x, y) = |φ′x(y)|K̃(φ(x), φx(y)), φx = ε̃φ(x) ◦ φ ◦ ε−1
x .

Note that φx is the diffeomorphism φ expressed in the x-coordinates and
x̃-coordinates for x̃ = φ(x).
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However as φ′(x) maps Vx into Vφ(x) the tangent map φ′x(0) should map

span{ ∂
∂x1

, . . . , ∂
∂x1
} into itself. Thus φ′x(0) is necessarily of form

(1.118) φ′x(0) =


a00 0 · · · 0
a10
... A||
ad0

 ,

with a00 6= 0 and A|| ∈ GLd(R). It follows that we can write φx as

(1.119) φx(y) = φ̂x(y) + θx(y),

where φ̂x and θx depends smoothly on x, φ̂x is polynomial and homogeneous
in y in the sense that

(1.120) φ̂′x(0)(λ.y) = λ.φ′x(0)y, λ > 0,

and θx is such that near y = 0 we have
(1.121)
θx(y) = (O(|y0|2+ |y0||y′|+|y′|3),O(|y0|2+y′|2)) = (O(‖y‖3),O(‖y‖2)).

Then pick a smooth family (χx)x∈U ⊂ C∞c (Rd+1) such that

(1.122) suppχx ⊂ U, ‖χx(εx(y))θx(y)‖ < ‖φ̂x(y)‖.

As φ̂x + χx(εx(y))θx(y) vanishes nowhere and coincides with φx near y = 0,
we have

(1.123) K(x, y) = |ψ′x(y)|K̃(φ(x), φ̂x + χx(εx(y))θx(y)) mod C∞.

So we may suppose that φx and θx are defined on the whole Rd+1 and we
have ‖θx(y)‖ < ‖φ̂x‖. Then by proposition 1.29 it is enough to check that
K lies in Km̂(U × Rd+1).

Now the Taylor expansion for K(x, y) gives

(1.124) K(x, y) =
∑
〈α〉<N

|ψ′x(y)|θx(y)α

α!
∂αy K̃(φ(x), φ̂x) +RN (x, y),

with the remainder term given by

(1.125) RN (x, y) =
∑
〈α〉=N

|ψ′x(y)|θx(y)α

α!

∫ 1

0
∂αy K̃(φ(x), φ̂x + tθx(y))dt.

As |θx(y)α| = O(‖y‖3α0+2|α′|) = O(‖y‖
3
2
〈α〉) the lemma 1.34 implies that

(1.126) |ψ′x(y)|θx(y)α∂αy K̃(φ(x), φ̂x) ∈ Km̂+
〈α〉
2 (U × Rd+1).
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Moreover RN is smooth on U × (Rd+1 \0) and by proposition 1.28 for N
large enough we have

(1.127) |RN (x, y)| = O(‖y‖
3N
2 ‖y‖<m̂−N ) = O(‖y‖<m̂+ 3N

2 ).

Hence RN is smoother and smoother as N → ∞. We can then conclude
that K lies in Km̂ and P is a ΨVDO on U of order m̂.

Finally working out the Taylor expansions (1.111) and (1.124) we obtain
(1.128)

K(x, y) = |φ′x(0)|K̃(φ(x), φ̂x(y))+
∑

yjK
(j)(x, y), K(j) ∈ K∗(U×Rd+1).

As yjK
(j)(x, y) cannot have a logarithmic divergency, the logarithmic diver-

gency of K is

(1.129) −|φ′x(0)|cK̃(φ(x)) log ‖φ̂x‖ = −|φ′x(0)|cK̃(φ(x)) log ‖y‖+ 0(1).

Hence cP (x) = |φ(x)|cP̃ (φ(x)) and the proof is complete. �

1.8 Ellipticity and parametrices

Definition 1.35 Let P ∈ Ψm
V (U) with principal symbol fm ∈ Sm(U×Rd+1).

Then P is said to be elliptic in the Heisenberg calculus if there exists some
g−m ∈ S−m(U × Rd+1) such that

(1.130) fm ∗ g−m = 1 = g−m ∗ fm.

Proposition 1.36 Let P ∈ Ψm
V (U). Then:

1) The ΨVDO operator P is elliptic if, and only if, there exists Q ∈
Ψ−mV (U) such that

(1.131) PQ = 1 = QP mod Ψ−∞(U).

2) If P is elliptic in the Heisenberg calculus then it is a hypoelliptic
operator, i.e. for any u ∈ E ′(U) we have

(1.132) Pu smooth near x0 =⇒ u smooth near x0.

Remark 1.37 Set k = 1
2<m if <m ≥ 0 and k = <m otherwise. If P ∈

Ψm
V (U) is elliptic it follows from proposition 1.13 that for any u ∈ E(U)′ we

have Pu ∈ Hs
loc(U)⇒ u ∈ Hs+k

loc (U).
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Let us now give an ellipticity condition for a sublaplacian ∆ on U in the
form

(1.133) ∆ = −
d∑
j=1

X2
j − iλ(x)X0 +

d∑
j=1

µj(x)Xj + ν(x),

where λ, µ1, . . . , µd and ν are smooth functions. Let y ∈ U . In the y-
coordinates the vector fields Xj take the form

(1.134) Xj =
∂

∂xj
+

1

2

d∑
l=0

βjl(x)
∂

∂xk
, . . . j = 1, . . . , d,

with βjl(0) = 0. Then the y-invariant vector fields are given by

(1.135) Xy
0 =

∂

∂x0
, Xy

j =
∂

∂xj
+

1

2

d∑
k=1

bjkx
k ∂

∂x0
, j = 1, . . . , d,

where bjk = ∂
∂xk

βj0(0).
Consider now the 1-form θ annihilating V such that θ(X0) = 1 and let

L be the 2-form

(1.136) L = −dθ(X,Y ) = θ([X,Y ]) X,Y ∈ V.

Thus for any X, Y in V we have

(1.137) [X,Y ] = L(X,Y )X0 mod V.

In particular at y we have Ly(Xj , Xk) = bjk − bkj .
Let a1(y), . . . , ad(y) be the eigenvalues of the skew-symmetric matrix

with entries cjk = bjk − bkj listed so that aj(y) > 0 and an+j(y) = −aj(y)
for j = 1, . . . n, and a2n+k(y) = 0 for k = 1, . . . , d − 2n. Then the singular
set Λy ⊂ C is defined by

(1.138) Λy = {λ ∈ R ; |λ| ≥
∑

aj(y)} if 2n < d,

(1.139) Λy = {±
∑

(2αj + 1)aj(y) ; α ∈ Nd} if 2n = d.

Note that by (1.137) the definition of Λy does not depend on the choice of
the V-frame.

Proposition 1.38 ([BG]) Let ∆ be the sublaplacian (1.133) and define the
singular sets Λy as above. Then the following conditions are equivalent:

(i) For any y ∈ U the coefficient λ(y) does not lie in the singular set
Λy.
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(ii) For any y ∈ U the left-invariant operator ∆y
2 is invertible.

(iii) ∆ is elliptic in the Heisenberg calculus.

Furthermore if one these conditions holds the principal symbol of a parametrix
for ∆ is

(1.140) f−2(y, ξ) = fy−2(ξ),

where fy−2(ξ) is the symbol of the inverse of ∆y
2.

Remark 1.39 Since the singular sets are contained in R, the above theorem
implies in the Heisenberg calculus setting the Hörmander theorem [Ho2].
The latter asserts that given real vector fields X0, X1, . . . , Xm generating
TM together with their brackets the differential operator ∆ = −

∑m
j=1X

2
j +

X0 is hypoelliptic.

Remark 1.40 In the rest of the dissertation we will used only the weaker
ellipticity condition:

(1.141) |<λ(y)| < 1

2

d∑
j=1

|aj(y)|, y ∈ U,

and for technical reasons we shall refer to it as being precisely the ellipticity
condition for ∆ given by the proposition 1.38.

1.9 The ΨVDO operators on manifolds

Let (M,V) be a Heisenberg manifold and E be a vector bundle over M .
Then proposition 1.33 allows us to define ΨVDO operators on M acting on
the sections of E .

Definition 1.41 Ψm
V (M), m ∈ C, is the space of continuous operators P

from C∞c (M) into C∞(M) such that:

(i) the distribution kernel of P is smooth outside the diagonal of M×M ;

(ii) on any Heisenberg chart P is given by a ΨVDO of order m on an
open subset of Rd+1 equipped with a V-frame.

Definition 1.42 Ψm
V (M, E), m ∈ C, is the space of continuous operators P

from C∞c (M, E) into C∞(M, E) such that:

(i) the distribution kernel of P is smooth outside the diagonal of M×M .

(ii) on any trivializing Heisenberg chart P is given by a matrix of
ΨVDO operators of order m on an open subset of Rd+1 equipped with
a V-frame.
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All the preceding results in the case an open subset of Rd+1 hold for ΨVDO’s
on M . Moreover it follows from proposition 1.33 that the coefficient cP (x)
of the logarithmic divergency of ΨVDO with integral order can be globally
defined as a density.

Proposition 1.43 Let P ∈ Ψm
V (M, E), m ∈ Z. Then:

1) On a trivializing Heisenberg chart the kernel kP (x, y) of P has the
following behavior near the diagonal

(1.142) kP (x, y) =

0∑
−(m+d+2)

aj(x, εx(y))− cP (x) log ‖εx(y)‖+ O(1),

where εx is the x-coordinates map related to the chart, aj(x, z) is ho-
mogeneous of degree j in the variable z and cP (x) is a globally defined
density on M with values in END E.

2) Let φ : (M,V) → (M̃, Ṽ) be a Heisenberg diffeomorphism. Then we
have the equality

(1.143) cφ∗P (x̃) = φ∗(cP )(x̃).

Proposition 1.44 ([BG]) Suppose M is compact. Then:

1) The class Ψ∗V(M, E) is stable under the composition of operators.

2) Any P ∈ Ψm
V (M, E) with <m ≤ 0 extends to a continuous endo-

morphism of L2(M, E). If furthermore <m < 0 this endomorphism is
compact.

3) Any P ∈ Ψm
V (M, E), elliptic with <m ≥ 0, is Fredholm and has its

kernel contained in C∞(M, E).

For our examples of sublaplacians on a pseudohermitian manifold we
obtain:

Proposition 1.45 ([BG]) Let (M2n+1, θ) be a pseudohermitian manifold
and let V = ker θ. The following operators are elliptic in the ΨVDO calculus:

(i) the Kohn Laplacian �b acting on (p, q)-forms with 0 < q < n;

(ii) the pseudohermitian sublaplacian ∆b;

(iii) the conformal sublaplacian �θ.
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1.10 Heat kernel of an elliptic sublaplacian

Let (Md+1,V) be a compact Heisenberg manifold equipped with a
smooth non-negative density and let ∆ be an elliptic sublaplacian on M
bounded from below. We can then define the heat semi-group e−t∆, t > 0.
It is defined on L2(M), strongly differentiable and for t > 0 the operator
e−t∆ maps to the domain of ∆,

(1.144)
d

dt
e−t∆ = −∆e−t∆; e−t∆u −→t→0+ u, u ∈ L2(M).

The point here is that the heat operator e−t∆ provides an inverse for the
differential operator ∂

∂t + ∆ on M × R. Indeed through the isomorphism
C∞c (M × R) ' C∞c (R, C∞(M)) the inverse is given by

(1.145) Qu(t) =

∫ t

−∞
e−(t−s)∆u(s)ds, u ∈ C∞c (R, C∞(M)).

Therefore one could derive an asymptotic expansion for the kernel kt(x, y) of
e−t∆ by constructing a pseudodifferential inverse for ∂

∂t+∆. This is precisely
what is done in [BGS] and what we shall present in this section.

Let C− be the half-plane {im τ < 0} with closure C̄− = {im τ ≤ 0}.
The relevant class of symbols for studying ∆ + ∂t is associate to dilations
on Rd+2 = Rd+1 × R defined by

(1.146) λ.(x, t) = (λ.x, λ2t) = (λ2.x0, λx1, . . . , λxd, λ
2t), λ > 0.

Definition 1.46 Sh,m(U ×Rd+2), m ∈ Z, consists in functions f(x, ξ, τ) ∈
C∞(U × (Rd+2 \ 0)) which extend to a function in C∞(U × (Rd+1× C̄−) \ 0)
in such way as to be holomorphic with respect to τ and to be homogeneous
of degree m in the two last variables, i.e.

(1.147) f(x, λ.x, λ2τ) = λmf(x, ξ, τ), λ > 0.

Definition 1.47 Smh (U × Rd+2), m ∈ Z, is the space of functions f ∈
C∞(U×Rd+2) which admit an asymptotic expansion of symbols f ∼

∑
fm−j

with fk ∈ Sh,k(U × Rd+2).

Definition 1.48 For m ∈ Z, Ψm
V,h(U ×R) is the space of operators P from

C∞c (U × R) into C∞(U × R) of the form

(1.148) P = f(x, σ(x,Dx), Dt) +R,

with f ∈ Smh (U × Rd+2) and R ∈ Ψ−∞(U × R).
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Now, all the preceding results concerning ΨVDO operators continue to
hold in this context: convolution for homogeneous symbols, composition
formula, kernel characterization, invariance by Heisenberg diffeomorphism
and parametrix construction. In particular we can define such operators on
any Heisenberg manifold.

However, there is an important specificity here due to the analyticity
with respect to τ .

Lemma 1.49 ([BGS]) Let f(ξ, τ) ∈ C∞(Rd+2 \ 0) be homogeneous of de-
gree m, m ∈ Z, which extends to an element of C∞(Rd+1 × C̄− \ 0) in such
way as to be holomorphic in the variable τ . Then f can be extended into a
homogeneous distribution g on Rd+2 such that k(x, t) = ǧ(x, t) vanishes for
t < 0.

As the converse follows from Paley-Wiener-Schwartz theorem we obtain a
kernel characterization in terms of the following space of distributions:

Definition 1.50 Kh,m(U ×Rd+2), m ∈ Z, is the space of distributions K ∈
C∞(U)⊗̂S ′(Rd+2) such that

(i) K(x, y, t) is smooth on U × (Rd+2 \ 0) and vanishes for t < 0.

(ii) K(x, λ.y, λ2t) = λmK(x, y, t) for λ > 0.

Definition 1.51 Kmh (U × Rd+2), m ∈ Z, is the space of distributions K ∈
D′(U × Rd+2) with an asymptotic expansion of kernels K ∼

∑
Km−j with

Kl ∈ Kl(U × Rd+2).

Using this calculus one can prove:

Proposition 1.52 ([BGS]) Let (Md+1,V) be a compact Heisenberg man-
ifold equipped with a smooth non-negative density and let ∆ be an elliptic
positive sublaplacian on M .

1) The operator ∆ + ∂
∂t is invertible on C∞c (M × R) and its inverse

belongs to Ψ−2
V,h(U × R).

2) Let k(x, y, s − t) be the kernel of (∆ + ∂
∂t)
−1. Then k(x, y, t) is the

kernel of e−t∆ for t > 0 and k(x, y, t) = 0 for t < 0.

3) The operator e−t∆ is smoothing for t > 0.

Proof. We refer to [BGS] for an explicit construction of a parametrix for
(∆ + ∂

∂t) in Ψ−2
V,h(U × R). We can anyway exhibit an inverse. Consider the

operator on C∞c (M × R) ' C∞c (R, C∞(M)) defined by

(1.149) Qu(t) =

∫ t

−∞
e−(t−s)∆u(s)ds, u ∈ C∞c (R, C∞(M)).
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By (1.144) we have

(1.150) Q(∆ +
∂

∂t
) = (∆ +

∂

∂t
)Q = 1.

Now let Q1 ∈ Ψ−2
V,h(U × R) be a parametrix for ∆ + ∂

∂t , i.e.

(1.151) (∆ +
∂

∂t
)Q1 = 1−R, R ∈ Ψ−∞(M × R).

Then we have

(1.152) Q1 = Q(∆ +
∂

∂t
)Q1 = Q−QR.

As QR is smoothing we see that Q lies in Ψ−2
V,h(U ×R). Let k(x, y, t− s) be

the kernel of Q. Then

(1.153) Qu(x, t) =

∫
M

∫
R
kQ(x, y)u(y, s)ds, u ∈ C∞c (M × R).

Identifying (1.149) and (1.153) we see that k(x, y, t) is the kernel of e−t∆ for
t > 0 and k(x, y, t) = 0 for t < 0. As k(x, y, t) is smooth on M×M×(0,+∞)
it follows that e−t∆ is smoothing for t > 0. �

Proposition 1.53 ([BGS]) Let (Md+1,V) be a compact Heisenberg man-
ifold equipped with a smooth non-negative density and let ∆ be an elliptic
positive sublaplacian on M .

1) For t small the kernel of e−t∆ has an asymptotic on the diagonal

(1.154) kt(x, x) ∼ t−
d+2
2

∑
j≥0

aj(x)tj ,

where the aj(x)’s are smooth densities on M with a0(x) non-negative.

2) For t small we have

(1.155) Trace(e−t∆) ∼ t−
d+2
2

∑
j≥0

tj
∫
M
aj(x).

3) Let λk(∆) be the k’th eigenvalue of ∆ counted with multiplicity.
Then for k large

(1.156) λk(∆) ∼ (Ak)
d+2
2 , A = Γ(1 +

d+ 2

2
)−1

∫
M
a0(x).
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Proof. By proposition 1.52 the operator ∆+ ∂
∂t is invertible on C∞c (M×R)

and its inverse Q = (∆ + ∂
∂t)
−1 lies Ψ−2

V,h(U ×R). Moreover if we denote by

kQ(x, y, s− t) the kernel of (∆ + ∂
∂t)
−1 then kQ(x, y, t) is the kernel of e−t∆

for t > 0 and we have kQ(x, y, t) = 0 for t < 0. Anyway, locally we have

(1.157) kQ(x, y, t) = K(x,−εx(y), t) +R(x, y, t),

with K a Kh−(d+2)(U × Rd+2)-kernel, R smooth and U an open subset of
Rd+1 together with a V-frame. Let K(x, y) ∼

∑
K−(d+2)+j , Kl ∈ Kh,l(U ×

Rd+2), be the asymptotic expansion for K. Then if J is large enough
(1.158)

RJ(x, t) = kQ(x, x, t)− |ε′x|
∑
j≤J

K−(d+2)+j(x, 0, t) ∈ C∞(U)⊗̂CN (R).

As RJ(x, t) = 0 for t < 0 this implies

(1.159) |RJ(x, t)| ≤ CJN tN ,

since we can take the constant uniform by shrinking U if necessary. There-
fore letting

(1.160) a j
2
(x) = |ε′x|K−(d+2)+j(x, 0, 1), j = 0, 1, . . . ,

we obtain

(1.161) kt(x, x) ∼ t−
(d+2)

2

∑
j≥0

t
j
2a j

2
(x).

This asymptotic holds on the whole M since we can globally define the
aj(x)’s as densities on M using the equalities

(1.162) a j
2
(x) = lim

t→0+
t
(d+2)−j

2 (kt(x, x)− t−
(d+2)

2

∑
l<j

t
l
2a l

2
(x)).

Let us now show that a j
2
(x) = 0 if j is odd. We work on U and we let

p2(x, ξ, τ) + iτ be the principal symbol of ∆ + ∂t. This symbol is invariant
under the dilation by −1, i.e.

(1.163) (−1).(ξ0, ξ1, . . . , ξd, τ) = (ξ0,−ξ1, . . . ,−ξd, τ).

As the other symbols p1(x, ξ) and p0(x) don’t depend on τ they are −1-
homogeneous of degrees 1 and 0 respectively. On the other hand the prin-
cipal symbol of (∆ + ∂t)

−1 is the solution of the equations

(1.164) f−2 ∗ (p2 + iτ) = 1 = (p2 + iτ) ∗ f−2.

So f−2 must be homogeneous of degree −2. By construction the symbol
f−2−j of (∆ + ∂t)

−1 with degree −2− j is a homogeneous polynomial, with
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respect to the convolution ∗, in f−2(x, ξ, τ) and the symbols of ∆ + ∂t. So
it has to be −1-homogeneous of degree −2− j = j mod 2. As the jacobian
of the dilation by −1 is equal to 1 we see that Kj−(d+2) = f̌−2−j is also −1-
homogeneous of degree j. Hence Kj−(d+2)(x, 0, 1) = (−1)jKj−(d+2)(x, 0, 1),
which finally implies a j

2
(x) = 0 for j odd.

Therefore for t small we have

(1.165) kt(x, x) ∼ t−
(d+2)

2

∑
j≥0

t
j
2a j

2
(x).

Integrating over M we obtain

(1.166) Trace(e−t∆) ∼ t−
d+2
2

∑
j≥0

tj
∫
M
aj(x).

It remains to prove that a0(x) is non-negative. In [BGS, theorem 5.22]
an explicit formula is given for K−(d+2)(x, y, t). For x fixed K(x, ., .) is given
up to a change of coordinates by the inverse Fourier transform of a symbol
in the form

(1.167) fx−2(ξ, τ) =

∫ ∞
0

eiτs−λξ0sG(ξ, s)ds, λ = λ(x),

where G(ξ, s) is a non-negative function even in the variable s. Using the
parity of G we get t

(1.168) K−(d+2)(x, 0, 1) =
|φ′x|

2
(2π)−(d+1)

∫
e−λξ0G(ξ, 1)dξ > 0,

where φx is the issued change of coordinates. It follows that a0 is a non-
negative density.

Finally, the asymptotic (1.166) together with the Tauberian theorem of
Hardy-Littlewood show that for k large we have

(1.169) λk(∆) ∼ (Ak)
d+2
2 , A = Γ(1 +

d+ 2

2
)−1

∫
M
a0(x),

which completes the proof. �

Remark 1.54 We will show in chapter 2 that any selfadjoint elliptic sub-
laplacian on a compact Heisenberg manifold is bounded from below. So
proposition 1.53 continue to hold in this case.

In the case of a pseudohermitian manifold we obtain:

Proposition 1.55 ([BGS]) Let (M2n+1, θ) be a compact pseudohermitian
manifold. Then proposition 1.53 hold for the following operators:
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(i) the Kohn Laplacian �b acting on (p, q)-forms, 0 < q < n,

(ii) the pseudohermitian sublaplacian ∆b,

(iii) the conformal pseudohermitian sublaplacian �θ.

Moreover for each of these operators the coefficient aj(x) in the asymp-
totic (1.154) takes the form

(1.170) aj(x) = Aj(x)(dθ)n ∧ θ, j ≤ 0,

where Aj(x) is a universal polynomial in the jets of the components of the
curvature and torsion forms of the Tanaka-Webster connection. In the case
j = 0 and j = 1 we have

(1.171) A0 = αn, A1 = βnRn,

where αn, βn are universal constants and Rn is the Tanaka-Webster scalar
curvature.
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Chapter 2

Parametric ΨVDO operators
and resolvent of an elliptic
sublaplacian on a Heisenberg
manifold

In this chapter we develop a suitable calculus for ΨVDO’s with pa-
rameter which enables us to construct an asymptotic resolvent and to show
the existence of rays of minimal growth for an elliptic sublaplacian. The
situation is more complicated than for classical ΨDO operators. Roughly
speaking the composition for homogeneous symbols in the Heisenberg cal-
culus is not microlocal whereas it is just the pointwise product for functions
for standard symbols of ΨDO operators.

To see this in more details let us first briefly recall the construction
by Seeley [Se] of the complex powers of an elliptic operator with a ray of
minimal growth, in the special case of the Laplacian ∆ on a Riemannian
manifold M . The powers ∆s are defined by the integral

(2.1) ∆s =
i

2π

∫
Γ
λs(∆− λ)−1dλ, <s < 0,

where Γ is a curve starting at ∞, passing along the negative real axis to a
small circle about the origin, then clockwise about the circle and back to
∞ along the negative real axis. If we suppose that 0 is not an eigenvalue
for ∆ then the negative real axis is a ray of minimal growth. This means
that for any λ in this axis ∆−λ is invertible on L2(M) and the norm of the
resolvent ‖(∆− λ)−1‖ is O(1/|λ|).

The idea for showing the above complex powers are ΨDO’s is to intro-
duce a suitable class of continuous operators on C∞(M) parametrized by an
open subset Λ of C containing the curve Γ. This class contains the resolvent
(∆ − λ)−1 and possesses a symbolic calculus. The corresponding symbols
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are of the form

(2.2) f(λ)(x, ξ) =
∑
j≥0

f(λ),m−j(x, ξ), f(t2λ),k(x, tξ) = tkf(λ),k(x, ξ, λ).

Whereas f(λ) is a family of smooth functions on C∞(U×Rn) parametrized by
Λ, the homogeneous symbols fk(λ)(x, ξ) cannot be defined on the whole set
U×Rn×Λ. For instance the principal symbol of (∆−λ)−1 is f(λ),−2(x, ξ, λ) =
(|ξ|2 − λ)−1 and is not defined for |λ| = |ξ|2. The solution is then to define
the homogenous symbols on

(2.3) U ×Θ = {(x, ξ, λ) ∈ U × Rn × Λ ; <λ < 0 or |λ| < |ξ|2}.

As the pointwise product of two functions defined on U ×Θ is still defined
on U ×Θ we have a nice calculus for these symbols.

However, in the context of Heisenberg calculus the product of two ho-
mogenous symbols is obtained by means of oscillating integrals of the form
(2.4)

f1(λ)∗f2(λ)(x, ξ) = (2π)−(d+1)

∫∫
e−i〈z,η〉f1(λ)(x, ξ+η)f2(λ)(x, σ

x(z, ξ))dzdη.

Thereby it is not obvious if f1(λ) and f2(λ) are defined on U × Θ then
so is f1(λ) ∗ f2(λ). This difficulty can be avoid if we consider instead al-
most homogenous symbols: they are defined on the whole U × Rn × Λ and
f(t2λ),k(x, tξ)− tkf(λ),k(x, ξ) has rapid decay with respect to ξ.

The symbols and ΨVDO operators with parameter are introduced in
section 2.1 and section 2.2. In section 2.3 the kernels of ΨVDO’s with pa-
rameter are studied. This leads to a characterization which enables us to
prove the invariance by Heisenberg diffeomorphism in section 2.4 and to
define in section 2.5 ΨVDO’s with parameter on any Heisenberg manifold
. The section 2.6 is devoted to the construction of asymptotic resolvent
for elliptic sublaplacians as a parametrix in the parametric ΨVDO-calculus.
This is used in section 2.7 to show the existence of rays of minimal growth
for an elliptic sublaplacian (theorem 2.33). As corollary we obtain that any
Heisenberg-elliptic selfadjoint sublaplacian on a compact Heisenberg mani-
fold is actually bounded from below and thus has a heat kernel asymptotic
as in [BGS] and proposition 1.53.

In all this chapter Λ ⊂ C\0 is an open pseudocone (cf. definition 2.1
below) and U is an open subset of Rd+1 together with a hyperplane bundle
V ⊂ TU and a V-frame X0, X1, . . . , Xd. Then σ(x, ξ) and εx denote the
(real) symbol of the V-frame and the affine change onto the x-coordinates.

2.1 Spaces of symbols with parameter

Definition 2.1 1) A subset Λ of C\0 is a pseudocone if for any t ∈
(0, 1) we have tΛ ⊂ Λ and there exist a conical subset Θ and a bounded
subset D such that Λ = Θ ∪D.
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2) If Λ and Λ′ are two pseudocones in C\0 the notation Λ′ ⊂⊂ Λ means
that up to the origin the closure of Λ′ is contained in the interior of
Λ.

The space of parameters is the following Fréchet space.

Definition 2.2 Holp(Λ), p ∈ Z, is the space of holomorphic functions h :
Λ→ C such that for any pseudocone Λ′ ⊂⊂ Λ we have

(2.5) |h(λ)| ≤ CΛ′(1 + |λ|)p, λ ∈ Λ′.

Its topology is defined by means of the seminorms given by the lower bounds
on the constants in these estimates.

We define Holp(Λ)-families with values in a topological vector space as fol-
lows.

Definition 2.3 If E a locally convex topological vector space Holp(Λ, E),
p ∈ Z, is the space of Holp(Λ)-families with values in E, i.e. holomorphic
maps h : Λ → E such that, for any continuous seminorm q on E and any
pseudocone Λ′ ⊂⊂ Λ, we have

(2.6) |q(h(λ))| ≤ CqΛ′(1 + |λ|)p, λ ∈ Λ′.

If E = Sk||(U × Rd+1) or E = S−∞(U × Rd+1) we use instead the notations

Sp,k|| (U × Rd+1,Λ) and Sp,−∞(U × Rd+1,Λ).

Definition 2.4 Spm(U × Rd+1,Λ), m, p ∈ Z, consists in Holp(Λ)-families
f(λ) of smooth functions on U × Rd+1 such that

(2.7) f(t2λ)(x, t.ξ)− tmf(λ)(x, ξ) ∈ Sp,−∞(U × Rd+1,Λ), 0 < t < 1.

Remark 2.5 Interchanging the role of λ and t2λ we see that f(t2λ)(x, t.ξ)−
tmf(λ)(x, ξ) lies in S−∞(U × Rd+1) whenever t2λ ∈ Λ. In particular if Θ is
any open cone contained in Λ the family f(t2λ)(x, t.ξ) − tmf(λ)(x, ξ) lies in

Sp,−∞(U × Rd+1,Θ) for any t > 0.

Lemma 2.6 Let m, p ∈ Z and set q = 2 max(0,−p). Then we have the
inclusion

(2.8) Spm(U × Rd+1,Λ) ⊂ Sp,m+q
|| (U × Rd+1,Λ).

Proof. We need to prove that for any pseudo-cone Λ′ ⊂⊂ Λ we have

(2.9) |∂αx ∂
β
ξ f(λ)(x, ξ)| ≤ CΛ′αβ(x)(1 + |λ|)p(1 + ‖ξ‖)m+q−〈β〉, λ ∈ Λ′,
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with CΛ′αβ(x) locally bounded on U . Set Λ = Θ ∪D with Θ conic and D
bounded. We shall prove the estimates (2.9) separately for λ ∈ Θ and for
λ ∈ D.

As Θ is conic for any t > 0 we have

(2.10) f(t2λ)(x, t.ξ)− tmf(λ)(x, ξ) ∈ Sp,−∞(U × Rd+1,Θ)

By the arguments in the proof of lemma 1.10 there exists some g(λ)(x, ξ) ∈
Holp(Θ, C∞(Rd+1\0)) such that:

(i) g(λ) is homogeneous of degree m, i.e.

(2.11) g(t2λ)(x, t.ξ) = tmg(λ)(x, ξ), ξ 6= 0, λ ∈ Θ,

(ii) for any cone Θ′ ⊂⊂ Θ and any integer N we have
(2.12)

|∂αx ∂
β
ξ (f(λ)−g(λ))(x, ξ)| ≤ CαβNΘ′(x)(1+|λ|)p‖ξ‖−N , ξ 6= 0, λ ∈ Θ′.

The homogeneity of g(λ) implies that for any cone Θ′ ⊂⊂ Θ we have

|∂αx ∂
β
ξ g(λ)(x, ξ)| = ‖ξ‖m−〈β〉|g(x,‖ξ‖−2λ)(‖ξ‖−1.ξ)|

≤ CαβΘ′(x)‖ξ‖m−〈β〉(1 + ‖ξ‖−2|λ|)p,(2.13)

for ξ 6= 0 and λ ∈ Θ′. Since

(2.14) ‖ξ‖−2(1 + |λ|) ≤ 1 + ‖ξ‖−2|λ| ≤ 1 + |λ|, ‖ξ‖ > 1, λ ∈ Θ,

the estimates (2.9) for λ ∈ Θ follow from (2.12) and (2.13).
Now, let us prove (2.9) for λ ∈ D. Since D is bounded it is enough to

show that we have

(2.15) |∂αx ∂
β
ξ f(λ)(x, ξ)| ≤ Cαβ(x, λ)(1 + ‖ξ‖)m+q−〈β〉, λ ∈ D,

with Cαβ(x, λ) locally bounded on U×D. The definition of Spm(U×Rd+1,Λ)
implies that for any integer N we have
(2.16)
|2−mf(λ)(x, 2.ξ)− f(4−1λ)(x, ξ)| ≤ CΛ′N (x, λ)‖ξ‖−N , ξ 6= 0, λ ∈ D.

If N is taken sufficiently large for ξ 6= 0 and λ ∈ D′ we get

|2−kmf(λ)(x, 2
k.ξ)− f(4−kλ)(x, ξ)|

≤
k−1∑
j=0

|2−jm(2−mf(4j+1−kλ)(x, 2
j+1.ξ, )− f(4j−kλ)(x, 2

−jm.ξ))|(2.17)

≤ CN (x, λ)‖ξ‖−N .
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Let Γ = {ξ ∈ Rd+1; 1 < ‖ξ‖ ≤ 2}. As Γ is compact we obtain

(2.18) |f(λ)(2
k.ξ)| ≤ C(x, λ)2mk, ξ ∈ Γ, λ ∈ D.

Since each ξ ∈ Rd+1 with ‖ξ‖ > 1 is of the form ξ = 2kη with η ∈ Γ and
1
2‖ξ‖ ≤ 2k < ‖ξ‖, we conclude that

(2.19) |f(λ)(ξ)| ≤ C(x, λ)‖ξ‖m, ‖ξ‖ > 1, λ ∈ D.

This gives the estimate (2.9) for λ ∈ D in the case α = β = 0. The estimates
for α 6= 0 and β 6= 0 are obtained similarly. �

It is then possible to make the following definition:

Definition 2.7 Sp,m(U ×Rd+1,Λ), m, p ∈ Z, is the space of Holp(Λ)- fam-
ilies f(λ) of smooth functions on U × Rd+1 with an asymptotic expansion

(2.20) f(λ) ∼
∑
j≥0

f(λ),m−j , f(λ),k ∈ S
p
k(U × Rd+1,Λ),

in the sense that, for any integer N , if J is large enough we have

(2.21) f −
∑
j≤J

f(λ),m−j ∈ S
p,−N
|| (U × Rd+1,Λ).

Note that the asymptotic expansion 2.20 determines f(λ) up to an element

of Sp,−∞(U × Rd+1,Λ). Conversely by [Ho1, theorem 2.7] we have

Proposition 2.8 Suppose given for j = 0, 1, . . . some f(λ),m−j ∈ Sp,m−j(U×
Rd+1,Λ). Then there exists f(λ) in Sp,m(U × Rd+1,Λ) such that f(λ) ∼∑
f(λ),m−j.

2.2 Parametric ΨVDO operators on an open subset
of Rd+1

Definition 2.9 For p ∈ Z we denote by Ψp,−∞
V (U,Λ) the space consisting

in the families of operators given by a Holp(Λ)-family of smooth kernels.

Definition 2.10 For m, p ∈ Z the space Ψp,m
V (U,Λ) consists in families

P(λ) with values in L(C∞c (U), C∞(U)) of the form

(2.22) P(λ) = f(λ)(x, σ(x,D)) +R(λ),

where f(λ) is in Sp,m(U × Rd+1,Λ), called the symbol of P(λ), and R(λ) is a
Holp(Λ)-family of smoothing operators.
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Proposition 2.11 Let m, p ∈ Z and set k = m + q if m + q ≥ 0 and
k = 1

2(m+ q) otherwise.

a) The class Ψp,m
V (U,Λ) does not depend on the choice of the V-frame

X0, X1, . . . , Xd.

b) Each P(λ) ∈ Ψp,m
V (U,Λ) extends to a Holp(Λ)-family of continuous

operators from E ′(U) into D′(U).

c) The kernel of any P(λ) ∈ Ψp,m
V (U,Λ) is given outside the diagonal ∆

of U × U by a Holp(Λ)-family of smooth functions.

d) For any s ∈ R, each P(λ) ∈ Ψp,m
V (U,Λ) defines a Holp(Λ)-family of

continuous operators from Hs
comp(U) into Hs−k

loc (U).

Proof. 1) The proof of the independence with respect to the V-frame follows
along the same lines of the proof in the non parameter case (see [BG, propo-
sition 10.46]). It will be also a consequence of the proof of the invariance by
Heisenberg diffeomorphisms (proposition 2.21).

2) By [BG, proposition 10.22] and the closed graph theorem the map
f(x, ξ) −→ f(x, σ(x,D)) is continuous from Sm+q

|| (U ×Rd+1) into Sk1
2
, 1
2

(U ×
Rd+1). Moreover it follows from [Ho1, theorem 2.2] that the quantization
map q −→ q(x,D) is continuous from Sk1

2
, 1
2

(U ×Rd+1) into L(E ′(U),D′(U)).

Therefore each P(λ) ∈ Ψp,m
V (U,Λ) extends to a Holp(Λ)-family of continuous

operators from E ′(U) into D′(U).

3) The continuity of the above quantization map and the closed graph
theorem implies that the map which assigns to q ∈ Sk1

2
, 1
2

(U × Rd+1) the

restriction of the kernel of q(x,D) on U×U \∆ is continuous from Sk1
2
, 1
2

(U×
Rd+1) into C∞(U×U\∆). It follows that the kernel of any P(λ) ∈ Ψp,m

V (U,Λ)
is given outside the diagonal by a Holp(Λ)-family of smooth functions.

4) Let s ∈ R and P(λ) ∈ Ψp,m
V (U,Λ). By [Hw, theorem 3] the map

q → q(x,D) is continuous from Sk1
2
, 1
2

(U × Rd+1) into L(Hs
comp, H

s−k
loc ). So

the the same arguments as above show that P(λ) defines a Holp(Λ)-family of

continuous operators from Hs
comp(U) into Hs−k

loc (U). �

Definition 2.12 A parametric operator from P(λ) : E ′(U) → D′(U) is said
uniformly properly supported if its kernel is properly supported uniformly
with respect to λ.

Proposition 2.13 Let P(λ) ∈ Ψp,m
V (U,Λ). Then:
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1) We can write P(λ) as P(λ) = Q(λ) + R(λ) with Q(λ) ∈ Ψp,m
V (U,Λ)

uniformly properly supported and R(λ) a Holp(Λ)-family of smoothing
operators.

2) If P(λ) is uniformly properly supported, it defines Holp(Λ)-family of
continuous endomorphisms of respectively C∞c (U), C∞(U), E ′(U) and
D′(U).

Proof. 1) Pick some χ ∈ Cc(U−U) such that χ = 1 near 0 and let k(λ)(x, y)
be the kernel of P(λ). Then the property is satisfied by Q(λ) and R(λ) with
respective kernels χ(x− y)k(λ)(x, y) and (1− χ(x− y))k(λ)(x, y).

2) If P(λ) is uniformly properly supported it is clear that it defines a
Holp(Λ)-family of continuous endomorphisms of C∞c (U) and E ′(U). As the
same is true for the transpose P t(λ) the remainder of the assertion follows by
duality. �

Let us now look at the composition of ΨVDO operators with param-
eter. By continuity the convolution ∗ for symbols gives rise to a bilinear
map
(2.23)

Sp1,k1|| (U × Rd+1,Λ)× Sp2,k2|| (U × Rd+1,Λ) −→ Sp1+p2,k1+k2
|| (U × Rd+1,Λ).

As Sp,−∞(U ×Rd+1,Λ) is a two-sided ideal we get a convolution on Sp∗(U ×
Rd+1,Λ) as a bilinear map

(2.24) ∗ : Sp1m1
(U × Rd+1)× Sp2m2

(U × Rd+1) −→ Sp1+p2
m1+m2

(U × Rd+1).

To state the composition formula we keep the notations of proposition 1.18.

Proposition 2.14 Let Pi(λ) ∈ Ψpi,mi
V (U,Λ), i = 1, 2, with symbol fi(λ) ∼∑

fi(λ),m1−j and suppose either P1(λ) or P2(λ) uniformly properly supported.

Then P1(λ)P2(λ) lies in Ψp1+p2,m1+m2

V (U,Λ) and has symbol f(λ) ∼
∑
f(λ),m1+m2−j

with

(2.25) f(λ),m1+m2−j =
∑

hαβγδ(x)f δ1(λ),m1−k ∗ f
βγ
2(λ),m2−l,α(x, ξ),

where the summation is taken over the indices such that |β| + |α| ≤ 〈δ〉 +
〈β〉 − 〈γ〉 = j − k − l and |γ| = |β|.

Proof. As either P1(λ) or P2(λ) is uniformly properly supported the propo-
sition 2.13 allows us to suppose both P1(λ) and P(λ) uniformly properly
supported. Then up to a Holp(Λ)-family of smoothing operators we have

(2.26) P1(λ)P2(λ) =
∑
i

ϕiP1(λ)ψiP2(λ) =
∑

ϕif1(λ))#ψif2(λ)(x, σ(x,D)),
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where (ϕi) is a locally finite partition of unity and (ψi) ⊂ C∞c (U) is such
that ψi = 1 near suppϕi.

However it follows from lemma 1.19 and remark 1.22 that for a given
ψ ∈ C∞c (U) the family f1(λ))#ψf2(λ) is a Holp(Λ)-family of smooth func-

tions with an asymptotic expansion f1(λ))#ψf2(λ) ∼
∑
hαβγδf

δ
1(λ) ∗ f

βγ
2(λ),α

in the sense of Holp(Λ)-families of symbols. Therefore P1(λ)P2(λ) lies in

Ψp1+p2,m1+m2

V (U,Λ) and has symbol f(λ) ∼
∑
f(λ),m1+m2−j with f(λ),m1+m2−j

given by (2.25). �

2.3 Kernels of ΨVDO operators with parameter

Let us now study the kernels of ΨVDO operators with parameter.

Definition 2.15 Kpm(U × Rd+1,Λ), m, p ∈ Z, consists in Holp(Λ)-families
K(λ) with values in C∞(U)⊗̂D′(Rd+1) such that:

(i) restricted to U×(Rd+1\0) the family K(λ) is given by Holp(Λ)-family
of smooth functions;

(ii) for any t > 1 the family K(t−2λ)(x, t.y)− tmK(λ)(x, y) is a Holp(Λ)-
family of smooth functions.

The arguments in the proof of lemma 1.32 show that we have the following
characterization of almost homogeneous kernels with parameter.

Lemma 2.16 Let m, p ∈ Z and set m̂ = −(m+ d+ 2).

a) If f(λ)(x, ξ) ∈ S
p
m(U×Rd+1,Λ) then f̌(λ)ξ→y(x, y) belongs to Kpm̂(U×

Rd+1,Λ).

b) If K(λ)(x, y) ∈ Kpm̂(U × Rd+1,Λ) is compactly supported in y uni-

formly with respect to λ, then K̂(λ)y→ξ(x, ξ) belongs to Spm(U×Rd+1,Λ).

Definition 2.17 Kp,m(U ×Rd+1,Λ), m, p ∈ Z, is the space of families K(λ)

of distributions on U × Rd+1 with an asymptotic expansion

(2.27) K(λ) ∼
∑
j≥0

K(λ),m+j , K(λ),m+j ∈ K
p
m+j(U × Rd+1,Λ),

where ∼ means that for any integer N if J is large enough we have

(2.28) K(λ) −
∑
j≤J

K(λ),m+j ∈ Holp(Λ, CN (U × Rd+1)).

Remark 2.18 The definition implies thatK(λ) lies in Holp(Λ, C∞(U)⊗̂D(Rd+1)′)

and is given on U × (Rd+1\0) by a Holp(Λ)-family of smooth functions.
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We can now characterize ΨVDO’s with parameter.

Proposition 2.19 Let P(λ) be a family of continuous operators from C∞c (U)
into C∞(U). Then P(λ) lies in Ψp,m

V (U,Λ) if, and only if, its kernel is of the
form

(2.29) k(λ)(x, y) = |ε′x|K(λ)(x,−εx(y)) +R(λ)(x, y),

for some K(λ) ∈ Kp,m̂(U ×Rd+1,Λ), m̂ = −(m+ d+ 2), and some Holp(Λ)-
family R(λ) of smoothing operators.

Proof. As in the proof of proposition 1.29 we need only to check that a
family K(λ) of distributions on U × Rd+1 lies in Kp,m̂(U × Rd+1,Λ) if , and
only if, it is of the form

(2.30) K(λ)(x, y) = f̌(λ)ξ→y(x, y) +R(λ)(x, y),

for some f(λ) ∈ Sm̂,p(U ×Rd+1,Λ) and some Holp(Λ)-family R(λ) of smooth
functions. However the Fourier transform draws equivalences between:

(i) the classes Spm(U × Rd+1,Λ) and Kpm̂(U × Rd+1,Λ) up to Holp(Λ)-
families of smooth functions;

(ii) the asymptotic expansions for Holp(Λ)-families of symbols and Holp(Λ)-
families of kernels.

Then arguing as in the proof of proposition 1.29 we reach the conclusion. �

2.4 Invariance by Heisenberg diffeomorphisms

Before proving the invariance by Heisenberg diffeomorphism we need
the following lemma.

Lemma 2.20 Let k ∈ R and let µ be the smallest positive integer > 1
2(k +

d+ 2). Then for any f ∈ Sk||(U × Rd+1) we have

(2.31) |∂αx f̌ξ→y(x, y)| ≤ Ckα(x, f)‖y‖−µ, 0 < ‖y‖ ≤ 1,

with Ckα(x, f) locally bounded on U × Sk||(U × Rd+1).

Proof. Let f ∈ Sk||(U × Rd+1). In the case k < −(d+ 2) we have

(2.32) |∂αx f̌ξ→y(x, y)| ≤ Ckα(x, f) =

∫
|f(x, ξ)|dξ.
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Suppose now k ≥ −(d+2). Applying the above inequality to ∂µξ0f and ∂2µ
ξj
f ,

1 ≤ j ≤ d, we get

(2.33) (|y0|µ +

d∑
j=1

|yj |2µ) |∂αx f̌ξ→y(x, y)| ≤ Ckα(x, f),

with Ckα(x, f) locally bounded on U × Sk||(U × Rd+1). This completes the
proof. �

Proposition 2.21 Let φ : U → Ũ be a Heisenberg diffeomorphism where Ũ
is another subset of Rd+1 equipped with a hyperplane bundle Ṽ ⊂ TŨ and a
Ṽ-frame. Then for any P̃(λ) ∈ Ψp,m

Ṽ (Ũ ,Λ) the pullback P(λ) = φ∗P̃(λ) lies in

Ψp,m
V (U,Λ).

Proof. Let K(λ) ∈ Km̂(U × Rd+1). By lemma 2.20 there exists an integer
µ ≥ 0 such that for any pseudocone Λ′ ⊂⊂ Λ and 〈β〉 large enough we have

(2.34) |∂αx ∂βyK(λ)| ≤ CαβΛ′(x)‖y‖−µ−〈β〉, 0 < ‖y‖ ≤ 1, λ ∈ Λ′,

with CαβΛ′(x) locally bounded on U . This remark enables the arguments of
the proof of proposition 1.33 to work mutatis standis for kernels with param-
eter and therefore to prove the invariance by Heisenberg diffeomorphisms. �

Remark 2.22 In the special case U = Ũ , V = Ṽ and φ = φ̃ we obtain the
independence with respect to the V-frame.

2.5 Parametric ΨVDO’s on manifolds

The proposition 2.21 enables us to define ΨVDO’s with parameter on
any Heisenberg manifold.

Definition 2.23 Let (M,V) be a Heisenberg manifold. Then Ψp,m
V (M,Λ),

m, p ∈ Z, is the space of families P(λ) ∈ Holp(Λ,L(C∞c (M), C∞(M)) such
that:

(i) for ϕ, ψ in C∞(M) the family ϕP(λ)ψ is a Holp(Λ) of smoothing
operators;

(ii) on any Heisenberg chart P(λ) is given by a parametric ΨVDO in

Ψp,m
V (U,Λ) where U is an open subset of Rd+1 with a V-frame.

Remark 2.24 There is a similar definition for ΨVDO’s with parameter
acting on sections of a vector bundle over a Heisenberg manifold.
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All the results of the previous sections continue to hold on a general
Heisenberg manifold. In particular for a compact Heisenberg manifold we
get:

Proposition 2.25 Let (M,V) be a compact Heisenberg manifold.

1) Let m1,m2, p1, p2 ∈ Z. Then for any P1(λ) ∈ Ψp1,m1

V (M,Λ) and

P1(λ) ∈ Ψp2,m2

V (M,Λ) the family P1(λ)P1(λ) lies in Ψp1+p2,m1+m2

V (M,Λ).

2) Let m, p ∈ Z. Then any P(λ) ∈ Ψp,m
V (M,Λ) extends to a family in

Holp(Λ,L(Hs(M), Hs−k(M))), s ∈ R, where, with q = 2 max(0,−p),
k is equal to m+ q if m+ q ≥ 0 and to 1

2(m+ q) otherwise.

2.6 Asymptotic resolvent for sublaplacians

Let us now construct an asymptotic resolvent for an elliptic sublaplacian
∆ as a parametrix for ∆−λ in the parametric ΨVDO calculus. For achieving
that we shall set

(2.35) Λ0 = {λ ∈ C\0; <λ < 0},

(2.36) ΛR = {λ ∈ C\0; <λ < 0 or |λ| < R}, R > 0.

Proposition 2.26 Let ∆ be an elliptic sublaplacian on U in the form

(2.37) ∆ = −
d∑
j=1

X2
j − iν(x)X0 +

d∑
j=1

µj(x)Xj + η(x),

where ν, µ1,. . . , µd, η are smooth functions. Let p2(x, ξ) =
∑d

j=1 ξ
2
j+iν(x)ξ0

be the principal symbol of ∆. Then for any R > 0 there exists f(λ) ∈
S−1
−2(U × Rd+1,ΛR) such that

(2.38) (p2−λ)∗f(λ) = 1 = f(λ) ∗(p2−λ) mod S−∞,−∞(U×Rd+1,ΛR).

Proof. The proof follows closely [BG, chapters 1–2] and the proof of the-
orem 5.22 in [BGS]. Let us first precise the subellipticity condition for ∆.
Consider the 1-form θ annihilating V such that θ(X0) = 1 and let L be the
Hermitian function-valued form on V defined by

(2.39) L(X,Y ) = −idθ(X,Y ) = iθ([X,Y ]), X, Y ∈ V.

Note that L(X,Y ) is characterized by

(2.40) [X,Y ] = −iL(X,Y ) mod V.
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At y ∈ U the Hermitian function-valued form L defines a Hermitian form
Ly which is purely imaginary and has real eigenvalues a1 = a1(y), . . . , ad =
ad(y) so that aj ≥ 0 and an+j = −aj for j = 1, . . . , n, and aj = 0 for
j = 2n+ 1, . . . , d. The ellipticity condition for ∆ is

(2.41) |<v(y)| < 1

2

d∑
j=1

|aj(y)|.

For y ∈ U denote by py2 and fy(λ) the symbols p2(y, .) and f(λ)(y, .). Then we

need only to find for each y ∈ U a symbol fy(λ) ∈ S
−1
−2(Rd+1,ΛR) such that

(2.42) (py2 − λ) ∗y fy(λ) = 1 = fy(λ) ∗
y (py2 − λ) mod S−∞,−∞(Rd+1,ΛR),

and in such way that everything is smooth with respect to y, i.e.

(i) the symbol f(λ)(y, ξ) = fy(λ)(ξ) lies in S−1
−2(U × Rd+1,ΛR);

(ii) the remainder terms r1(λ)(y, ξ) = 1− (py2 − λ) ∗y fy(λ) and r2(λ)(y, ξ) =

1− fy(λ) ∗
y (py2 − λ) belong to S−∞,−∞(U × Rd+1,ΛR).

This will be achieved in 3 steps:

1) Find for each y ∈ U coordinates called the normal y-coordinates in
which the equations (2.42) take a simple form.

2) Resolution of (2.42) in the normal y-coordinates.

3) Return to the original y-coordinates and show that the resulting sym-
bol satisfies to the above conditions (i) and (ii).

Step 1: construction of the normal y-coordinates (cf. §1 of [BG]). In the
y-coordinates relatively to this V-frame we have

(2.43) Xj =
∂

∂xj
+

d∑
j=0

γjk(x)
∂

∂xk
, γjk(0) = 0.

The y-invariant vector fields are

(2.44) Xy
0 =

∂

∂x0
,

(2.45) Xj =
∂

∂xj
+

d∑
j=0

cjkxk
∂

∂x0
, 1 ≤ j ≤ d,
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with cjk = cjk(y) = ∂
∂xk

γjk(0). The change of coordinates

(2.46) (x0, x
′)→ (x0 −

1

4

d∑
j,k=1

(cjk + ckj)xjxk, x
′),

brings the matrix (cjk) into anti-symmetric form. Namely the vector fields
Xy
j have the same expression with cjk replaced by

(2.47) ajk =
1

2
(cjk − ckj).

We refer to these coordinates as the anti-symmetric y-coordinates.
However we have

(2.48) Ly(Xj , Xk) = iθy([Xj , Xk]) =
i

2
(ckj − cjk) = −iajk.

Thus there exists an orthogonal matrix Q which brings the matrix A = (ajk)
into the normal form

(2.49) QtAQ =

 0 −A′ 0
A′ 0 0
0 0 0

 , A′ = diag(a1, · · · , an),

where a1, · · · , an are the nonnegative eigenvalues of Ly. Then making the
orthogonal change of coordinates

(2.50) (x0, x′) −→ (x0, Qtx′)

we put the vector fields Xy
j into the form

(2.51) Xy
0 =

∂

∂x0
; Xy

j =
∂

∂xj
− 1

2
ajx

n+j ∂

∂x0
,

(2.52) Xy
n+j =

∂

∂xn+j
+

1

2
ajx

j ∂

∂x0
, 1 ≤ j ≤ n;

(2.53) Xy
k =

∂

∂xk
, k = 2n < k ≤ d.

We refer to these coordinates as normal y-coordinates.
To end up with this step note that we can define the anti-symmetric and

normal y-groups as the 2-step nilpotent groups associated to the y-invariant
vector fields Xy

j in the anti-symmetric and normal y-coordinates. Then the
changes of coordinates (2.46) and (2.50) becomes isomorphisms from the
original y-group onto the anti-symmetric one and from the anti-symmetric
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y-group onto the normal one.

Step 2: resolution in the normal y-coordinates. Let

(2.54) ∆y
2 = py2(σy(x,D)) = −

d∑
j=1

(Xy
j )2 − iνX0, ν = ν(y).

By the very definition of ∗y the symbol (py2 − λ) ∗y f(λ) is characterized by
the equality

(2.55) (py2 − λ) ∗y f(λ)(σ
y(x,D)) = (∆y

2 − λ)f(λ)(σ
y(x,D)).

In other words (py2 − λ) ∗y f(λ) is the symbol at x = 0 of the y-invariant
operator

(2.56) (∆y
2 − λ)f(λ)(σ

y(x,D)).

In the normal y-coordinates ∆y
2 has standard symbol

(2.57)

qy2(x, ξ) =

n∑
j=1

(ξj −
1

2
xn+jajξ0)2 +

n∑
j=1

(ξn+j +
1

2
xjajξ0)2 +

d∑
j=n+1

ξ2
j + νξ0.

As ∆y
2 is a differential operator the standard symbol of the left-hand side

in (2.55) can be explicitly calculated. Letting qy(λ)(x, ξ) = f(λ)(y, σ
y(x, ξ)) it

yields

(py2 − λ) ∗y f(λ)(ξ) =
∑
|α|≤2

1

α!
∂αξ q

y
2(0, ξ)Dα

x q
y
(λ)(0, ξ)− λf(λ)(ξ),

= (
d∑
j=1

ξ2
j + ν − λ)f(λ)(ξ) +

1

i
ξ0

n∑
j=1

(ξn+j∂ξj − ξj∂ξn+j )f(λ)(ξ)(2.58)

−
2n∑
j=1

a2
jξ

2
0∂

2
ξj
f(λ)(ξ).

Similarly we can compute f(λ)(ξ) ∗y (py2 − λ) and find

f(λ)(ξ) ∗y (py2 − λ) = (

d∑
j=1

ξ2
j + ν − λ)f(λ)(ξ) +

1

i
ξ0

n∑
j=1

(ξj∂ξn+j − ξn+j∂ξj )f(λ)(ξ)

−1

4

2n∑
j=1

a2
jξ

2
0∂

2
ξj
f(λ)(ξ).(2.59)

However the form of ∆y
2 in the normal y-coordinates shows that it is

invariant under rotations in the (xj , xn+j) plane. We can require the same
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to hold for q(λ)(x,D) which is equivalent to the invariance of f(λ) under
rotations in the (ξj , ξn+j) plane, i.e.

(2.60) ξj
∂

∂ξn+j
f(λ)(ξ, λ)− ξn+j

∂

∂ξj
f(λ)(ξ, λ) j = 1, . . . , n.

Therefore we need only to find a solution invariant under rotations in the
(ξj , ξn+j) planes, j = 1, . . . , n, of the single equation
(2.61)

d∑
j=1

(ξ2
j −

1

4
a2
jξ

2
0∂

2
ξj

)f(λ) + (νξ0 − λ)f(λ) = 0 mod S−∞,−∞(Rd+1,ΛR).

This yields the formal solution:

(2.62) f(λ)(ξ) =

∫ ∞
0

e(λ−νξ0)sG(ξ, s)ds,

where G(ξ, s) satisfies
∑d

j=1(ξ2
j − 1

4a
2
jξ

2
0∂

2
ξj

)G(ξ, s) = −∂sG(ξ, s) and is given
by

(2.63) G(ξ, s) =
d∏
j=1

(cosh(ajξ0s))
− 1

2 e
−ξ2j s

tanh(ajξ0s)

ajξ0s ,

with the convention b−1 tanh b = 1 for b = 0.
We let

(2.64) f(λ)(ξ) =

∫ 1

0
e(λ−νξ0)sG(ξ, s)ds.

Then f(λ) is a Hol(C)-family of smooth functions invariant under rotations
in the (ξj , ξn+j) planes, j = 1, . . . , n. Moreover we have

(2.65) |e(λ−νξ0)sG(ξ, s)| ≤ 2ne<λ−ρ(ξ), 0 < s ≤ 1.

where we have set

(2.66) ρ(ξ) =
1

2
(
d∑
j=1

|aj | − |<ν|)|ξ0|+
d∑
j=1

ξ2
j

tanh(ajξ0)

ajξ0
.

Indeed for any multi-order α there exists Cα > 0 independent of y such that

(2.67) |∂αξ (e(λ−νξ0)sG(ξ, s))| ≤ Cα(1 + ‖ξ‖)〈α〉e<λ−ρ(ξ), 0 < s ≤ 1.

A key point in this proof is then the following lemma.

Lemma 2.27 There exists c = c(y) > 0 depending continuously on y such
that

(2.68) ρ(ξ) ≥ c|ξ| for |ξ| ≥ 1.
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Proof of the lemma. Let |ξ| ≥ 1. Then set ξ̄ = max |ξj | and ā = max |aj |.
If |ξ0| = ξ̄ we have

(2.69) ρ(ξ) ≥ 1

2
(

d∑
j=1

|aj | − |<ν|)|ξ0| ≥
1

2(d+ 1)
(

d∑
j=1

|aj | − |<ν|)|ξ|.

Remember (remark 1.39) that the ellipticity condition implies (
∑d

j=1 |aj | −
|<ν|) > 0. If ξ̄ = |ξj | for some j, 1 ≤ j ≤ d, then

(2.70) ρ(ξ) ≥ ξ̄2 tanh āξ̄

āξ̄
≥ ξ̄ 1

(d+ 1)ā
tanh(

ā

d+ 1
),

for |ξ| ≥ 1 implies ξ̄ ≤ (d + 1)−1. Thus in both cases the inequality (2.68)
holds with

(2.71) c = c(y) =
1

d+ 1
min(

d∑
j=1

|aj | − |<ν|,
1

ā
tanh(

ā

d+ 1
).

Moreover c depends continuously on y since
∑d

j=1 |aj | = Trace |A| and ā is
equal to the spectral radius of the anti-symmetric matrix A and coincides
then with its operator norm. �

Let us go back to the proof of the proposition. The estimates (2.65)
and (2.67) imply

(2.72) |∂αξ f(λ)(ξ)| ≤ Cα(1 + ‖ξ‖)〈α〉(<λ− ρ(ξ))−1.

As −<λ ∼ |λ| on any angle sector Θ ⊂⊂ Λ0 we deduce that f(λ) lies in

Hol−1(ΛR, C
∞(Rd+1)). On the other hand we have

(2.73) t2f(t2λ)(t.ξ)− f(λ)(ξ) =

∫ 1

t2
e(λ−νξ0)sG(ξ, s)ds, 0 < t < 1,

and

(2.74)

d∑
j=1

(ξ2
j −

1

4
a2
jξ

2
0∂

2
ξj

)f(λ) + (νξ0 − λ)f(λ) = 1− eλ−νξ0G(ξ, 1).

Therefore (2.65) and (2.67) together with lemma 2.27 show that f(λ)(ξ) lies

in S−1
−2(Rd+1,ΛR) and satisfies (2.61). Hence f(λ) is a solution of (2.42) in

the normal y-coordinates

Step 3: return to the original y-coordinates and smoothness with respect
to y. Let us first go back to the anti-symmetric y-coordinates. This is
done by means of the change of coordinates (x0, x

′) → (x0, Qx
′) where Q
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is the orthogonal matrix which brings the matrix A into normal form. As
it is a linear change of coordinates the expression of the symbol f(λ) in the
anti-symmetric y-coordinates is obtained from its expression in the normal
y-coordinates by means of the change (ξ0, ξ

′) → (ξ0, Q
tξ′). So in the anti-

symmetric y-coordinates it is given by

(2.75) f(λ)(ξ) =

∫ 1

0
e(λ−νξ0)sF (ξ, s)ds.

By (2.49) we have

(2.76) F (ξ, s) = G(ξ0, Q
tξ′, s) = det cosh(sξ0A)−

1
2 e−s〈ξ

′,(sξ0A)−1 tanh sξ0A〉.

In particular f(λ) depends smoothly on y, i.e. lies in C∞(U×Rd+1)⊗̂Hol(ΛR).
Moreover the estimates (2.65) and (2.67) hold uniformly with respect to y
and the coefficients of the matrix Q are bounded independently of y, for Q
is an orthogonal matrix. So for 0 < s < 1 we have

(2.77) |∂αξ (e(λ−νξ0)sF (ξ, s))| ≤ Cα(1 + ‖ξ‖)〈α〉e<λ−ρ(ξ),

with Cα independent of y.
However we can identify the space of real anti-symmetric d× d matrices

with R
d(d−1)

2 . Then as functions in this space
(2.78)

det(coshA)−1 ∈Md(S(R
d(d−1)

2 )), A−1 tanhA ∈Md(C
∞
b (R

d(d−1)
2 )),

where C∞b (R
d(d−1)

2 ) denotes the space of smooth functions which together
with all their derivatives are bounded. Therefore differentiations with re-
spect to y harm the estimates (2.77) only by factors dominated by C(y)(1 +
‖ξ‖)m. Hence
(2.79)

|∂αy ∂
β
ξ (e(λ−νξ0)sF (ξ, s))| ≤ Cαβ(y)(1 + ‖ξ‖)mαβe<λ−ρ(ξ), 0 < s ≤ 1.

for some integer mαβ and some locally bounded function Cαβ(y). These
estimates together with lemma 2.27 and (2.73)- (2.74) show that in the
anti-symmetric coordinates f(λ) lies in S−1

−2(U × Rd+1,ΛR) and satisfies to
the equalities

(2.80) (py2−λ)∗yfy(λ) = 1 = fy(λ)∗
y(py2−λ) mod S−∞,−∞(U×Rd+1,ΛR).

Let us finally return to the original y-coordinates. The change of coor-
dinates involved is

(2.81) φy(x) = (x0 +
1

4

d∑
j,k=1

(cjk + ckj)xjxk, x
′).
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As φy(x) is an isomorphism from the anti-symmetric y-group onto the orig-
inal y-group, f(λ) transforms into

(2.82) (φy∗f̌(λ))
∧ = (f̌(λ) ◦ φ−1

y )∧.

Since φy depends smoothly on y and is homogenous of degree 1 with respect
to the Heisenberg dilations, it maps S−1

−2(U × Rd+1,ΛR) and S−∞,−∞(U ×
Rd+1,ΛR) into themselves. Hence in the original y-coordinates f(λ) lies in

S−1
−2(U × Rd+1,ΛR) and satisfies

(2.83) (py2−λ)∗yfy(λ) = 1 = fy(λ)∗
y(py2−λ) mod S−∞,−∞(U×Rd+1,ΛR),

which means that f(λ)(y, ξ) = fy(λ)(ξ) inverts p2(y, ξ)−λmodulo S−∞,−∞(U×
Rd+1,ΛR). �

Proposition 2.28 Let (M,V) be a Heisenberg manifold and ∆ an elliptic
sublaplacian on M . Then for any R > 0 there exists Q(λ) ∈ Ψ−1,−2

V (M,ΛR)
such that

(2.84) (∆− λ)Q(λ) = 1 = Q(λ)(∆− λ) mod Ψ−1,−∞
V (M,ΛR).

Proof. Let us first work on an open subset of Rd+1 on which we have

(2.85) ∆ = −
d∑
j=1

X2
j + iν(x)X0 + lower terms,

where X0, X1, . . . , Xd is a V-frame for TU . Let p2(x, ξ) be the principal
symbol of ∆. By proposition 2.26 there exists f(λ),−2 in S−1

−2(U ×Rd+1,ΛR)
such that
(2.86)
(p2 − λ) ∗ f(λ),−2 = 1 = f(λ),−2 ∗ (p2 − λ) mod S−∞,−∞(U × Rd+1,ΛR).

Let Q(λ) ∈ Ψ−1,−2
V (U,ΛR) be uniformly properly supported with symbol

f(λ). By proposition 2.14 the symbol of ∆Q(λ) lies in S0,−1(U × Rd+1,ΛR)
and its principal symbol is equal to

(2.87) p2 ∗ f(λ),−2 = (p2 − λ) ∗ f(λ),−2 + λf(λ),−2 = 1 + λf(λ),−2.

As λf(λ) is the symbol of λQ(λ) it follows that

(2.88) (∆− λ)Q(λ) = 1−R(λ).

with R(λ) ∈ Ψ−1,−1
V (U,ΛR) uniformly properly supported.
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For k ≥ 0 denote by r
(k)
(λ) the symbol of Rk(λ). It follows from propo-

sition 2.8 that there exists r(λ) in S0,−1(U × Rd+1,ΛR) such that r(λ) ∼∑
k≤0 r

(k)
(λ). Then we have

(2.89) (1−R(λ))r(λ)(x, σ(x,D)) = 1 mod Ψ−1,−∞
V (U,ΛR).

So setting Q′(λ) = Q(λ)r(λ)(x, σ(x,D)) we get

(2.90) (∆− λ)Q′(λ) = 1 mod Ψ−1,−∞
V (U,ΛR).

Now, let (ϕi) be a locally finite partition of unity subordinated to a
locally finite open cover (Ui) on which ∆ takes the form (2.85). Then for
each index i there exists Qi(λ) ∈ Ψ−1,−2

V (Ui,ΛR) such that

(2.91) (∆− λ)Qi(λ) = 1 mod Ψ−1,−∞
V (Ui,ΛR).

Pick then some ψi ∈ C∞c (Ui) such that ψi = 1 near suppϕi and set

(2.92) Q(λ) =
∑

ψiQi(λ)ϕi ∈ Ψ−1,−2
V (M,ΛR),

Then we have

(∆− λ)Q(λ) =
∑

(∆− λ)ψiQi(λ)ϕi,

=
∑

[∆, ψi]Qi(λ)ϕi +
∑

ψi(∆− λ)Qi(λ)ϕi,(2.93)

= 1 mod Ψ−1,−∞
V (M,ΛR).

Similarly we can construct Q′(λ) ∈ Ψ−1,−2
V (M,ΛR) such that

(2.94) Q′(λ)(∆− λ) = 1 mod Ψ−1,−∞
V (M,ΛR).

Necessarily Q(λ) −Q′(λ) ∈ Ψ−1,−∞
V (M,ΛR), so Q(λ) is a two-side parametrix

for ∆− λ modulo Ψ−1,−∞
V (M,ΛR) and the proof is complete. �

Remark 2.29 The parametrix constructed above is a parametrix modulo
Ψ−1,−∞
V (M,ΛR) and not modulo Ψ−∞,0V (M,ΛR), as we could have expected

since (∆ − λ) lies in Ψ1,2
V (M,ΛR) and Q(λ) in Ψ−1,2

V (M,ΛR). This is an
essential point for showing the existence of rays of minimal growth for ∆.
In fact if we let R(λ) = 1− (∆− λ)Q(λ) and we replace Q(λ) by

(2.95) Q(λ)(1 +R(λ) + . . .+Rp−1
(λ) ),

then for any integer p we get a parametrix modulo Ψ−p,−∞V (M,ΛR).
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2.7 Rays of minimal growth for sublaplacians

In this section we show the existence of rays of minimal growth for an
elliptic sublaplacian ∆ on a compact Heisenberg manifold (M,V).

Definition 2.30 A ray L ⊂ C is a ray of minimal growth for ∆ if ∆ − λ
is invertible for any λ ∈ L and the norm of the resolvent ‖(∆ − λ)−1‖ is
O(1/|λ|) on L.

For r > 0 and Θ an open angle sector we set

(2.96) Θr = {λ ∈ Θ; |λ| > r}.

Theorem 2.31 On any angle sector Θ ⊂⊂ Λ0 there only finitely many
eigenvalues for Θ moreover on Θ \ sp ∆ we have

(2.97) ‖(∆− λ)−1‖ ≤ CΘ|λ|−1.

Therefore each ray contained in Θ, except maybe a finite number, is a ray
of minimal growth for ∆.

Proof. By proposition 2.28 there exists Q(λ) ∈ Ψ−1,−2
V (U,Λ0) such that

(2.98) R(λ) = 1−Q(λ)(∆− λ), λ ∈ Λ0,

is a Hol−1(Λ1)-family of smoothing operators. As we have Θ ⊂⊂ Λ0 propo-
sition 2.25 implies

(2.99) ‖R(λ)‖ ≤ CΘ(1 + |λ|)−1, λ ∈ Θ.

Thus there exists r > 0 such that ‖R(λ)‖ ≤ 1
2 on Θr = {λ ∈ Θ; |λ| > r}.

Then 1−R(λ) is invertible on L2(M) and ‖(1−R(λ))
−1‖ ≤ 2. Hence

(2.100) (1−R(λ))
−1Q(λ)(∆−λ) = (1−R(λ))

−1(1−R(λ)) = 1, λ ∈ Θr.

However by (2.25) the family Q(λ) lies in Hol−1(Λ1,L(L2(M)). Thus for
any λ ∈ Θr the operator (1−R(λ))

−1Q(λ) is a left inverse of ∆−λ on L2(M)
and

(2.101) ‖(1−R(λ))
−1Q(λ)‖ ≤ CΘr|λ|−1, λ ∈ Θr.

Similarly enlarging r if necessary we can construct a right inverse on
L2(M) satisfying the above estimates. Then ∆ − λ is invertible on L2(M)
for any λ in Θr with a resolvent satisfying to (2.97). �

Corollary 2.32 Any selfadjoint elliptic sublaplacian on a compact Heisen-
berg manifold is bounded from below and thus has a heat kernel asymptotic
as in [BGS] and proposition 1.53.
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We can now prove the main result of this chapter.

Theorem 2.33 Let (M,V) a compact Heisenberg manifold and ∆ an ellip-
tic sublaplacian ∆ on M .Then there exist R > 0 and an open pseudocone Λ
containing D(0, R) \ 0, contained in

(2.102) ΛR = {λ ∈ C\0; <λ < 0 or |λ| < R},

such that:

(i) for any λ ∈ Λ the operator ∆− λ is invertible on L2(M);

(ii) the family (∆− λ)−1, λ ∈ Λ, lies in Ψ−1,−2
V (M,Λ);

(iii) for any pseudocone Λ′ ⊂⊂ Λ,

(2.103) ‖(∆− λ)−1‖ ≤ CΛ′(1 + |λ|)−1, λ ∈ Λ′.

In particular each ray contained in Λ is a ray of minimal growth for ∆.

Proof. Consider an open angle sector Θ ⊂⊂ Λ0. By proposition 2.31 there
exists r > 0 such that sp ∆ ∩ Θr = ∅. As sp ∆ is discrete sp ∆ ∩ D̄(0, r) is
finite and there are only finitely many rays L1, . . . , Lk contained in Θ and
intersecting sp ∆.

On the other hand as 0 is at most an isolated point in the spectrum of
∆ there exists R > 0 such that sp ∆ ∩D(0, R) ⊂ {0}. Therefore the set

(2.104) Λ = (D(0, R) \ {0}) ∪ (Θ \ (L1 ∪ . . . ∪ Lk)).

is an open pseudocone contained in ΛR, and for any λ ∈ Λ the operator
∆− λ is invertible on L2(M).

However the proposition 2.28 yields Q(λ) in Ψ−1,−2
V (U,ΛR) and R(λ) in

Ψ−1,−∞
V (U,ΛR) such that

(2.105) Q(λ)(∆− λ) = 1−R(λ).

Then we have

(2.106) (∆− λ)−1 = Q(λ) +R(λ)(∆− λ)−1.

Since (∆−λ)−1 is an analytic family of bounded operators, proposition 2.31
the family (∆ − λ)−1 shows that it is a Hol−1(Λ)-family with values in
L(L2(M)). Therefore R(λ)(∆− λ)−1 is a Hol−1(Λ)-family of smoothing op-

erators, which implies that (∆− λ)−1 lies in Ψ−1,−2
V (U,Λ1). Then (2.103) is

a consequence of proposition 2.25. �
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Chapter 3

Holomorphic families of
ΨVDO operators and complex
powers of sublaplacians

The aim of this chapter is to introduce holomorphic families of ΨVDO
operators and to construct the complex powers of an elliptic sublaplacian
as a holomorphic 1-parameter group of ΨVDO’s. In section 3.1 we define
holomorphic families of ΨVDO operators and study their main properties.
In section 3.2 we can study in terms of holomorphic families the complex
powers of a non-negative elliptic sublaplacian with the help of the pseudodif-
ferential construction of heat-kernels given in [BGS] (theorem 3.17). Finally
in section 3.3 we follow [Se] to define the complex powers of an elliptic sub-
laplacian by means of the parametric ΨVDO calculus developed in chapter 2
(theorems 3.21 and 3.22).

3.1 Holomorphic families of ΨVDO operators

In all this section Ω is an open domain in C and U is an open sub-
set of Rd+1 equipped with a hyperplane bundle V ⊂ TU and V-frame
X0, X1, . . . , Xd of TU . Then σ(x, ξ) and εx denotes the (real) symbol of
the V-frame and the affine change onto the x-coordinates.

Definition 3.1 A family (fz) ⊂ S∗(U ×Rd+1) indexed by Ω is holomorphic
if the following conditions hold:

(i) the order mz of the symbol fz depends holomorphically on z;

(ii) for (x, ξ) ∈ U×Rd+1 fixed the function z → fz(x, ξ) is holomorphic
on Ω;
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(iii) the bounds of the asymptotic expansion

(3.1) fz(x, ξ) ∼
∑
j≥0

fz,mz−j(x, ξ), fz,l ∈ Sl(U × Rd+1),

are locally uniform with respect to z.

The space of holomorphic families of symbols is denoted Hol(Ω, S∗(U ×
Rd+1).

Remark 3.2 The axiom (iii) requires that for any integer N we have
(3.2)

|∂αx ∂
β
ξ (fz −

∑
j<N

fz,mz−j)(x, ξ)| ≤ CαβN (x, z)‖ξ‖<mz−N−〈β〉, ‖ξ‖ ≥ 1,

where Cαβn(x, z) is a locally bounded function on U ×Ω. By [Ho1, theorem
2.9] this equivalent to the condition: for any Ω′ ⊂⊂ Ω and any integer N if
J large enough we have

(3.3) |∂αx ∂
β
ξ (fz −

∑
j≤J

fz,mz−j)(x, ξ)| ≤ CαβNJΩ′(x)|ξ|−N , |ξ| ≥ 1,

with CαβnjΩ′(x) locally bounded function on U .

Remark 3.3 It follows from the above axioms that the homogeneous sym-
bols fj,z(x, ξ) depends holomorphically on z. Indeed for the principal symbol
we have pointwise

(3.4) f0,z(x, ξ) = lim
λ→+∞

λ−mzfz(x, λ.ξ), ξ 6= 0.

By the axioms (i) and (ii) the right-hand side is holomorphic in z and by
the last axiom this family is bounded in Hol(Ω, C∞(U × (Rd+1\0)). Hence
the above limit converges in Hol(Ω, C∞(U × (Rd+1 \0)) and f0,z depends
holomorphically on z. Similarly for any j > 0 we have

(3.5) fj,z(x, ξ) = lim
λ→+∞

λj−mz(fz(x, λ.ξ)−
∑
l<j

λmz−lfl,z(x, ξ)), ξ 6= 0.

So by induction we can show that all the symbols fj,z are holomorphic with
respect to z.

Definition 3.4 A family (fz) ⊂ S∗ah(U ×Rd+1) over Ω is holomorphic if it
fulfills the following conditions:

(i) the order mz of the symbol fz depends holomorphically on z;

(ii) for (x, ξ) ∈ U×Rd+1 fixed the function z → fz(x, ξ) is holomorphic
on Ω;
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(iii) for any t > 0 the family

(3.6) fz(x, t.ξ)− tmzf(x, ξ), z ∈ Ω,

is a holomorphic family with values in S−∞(U × Rd+1).

The space of holomorphic S∗ah-valued families is denoted Hol(Ω, S∗ah(U ×
Rd+1).

Lemma 3.5 A holomorphic family of almost homogeneous symbols is a
holomorphic family of symbols.

Proof. Let (fz) be a holomorphic S∗ah-valued family and let us show it is a
holomorphic family of symbols. As the first two conditions of definition 3.1
are fulfilled we need only to check the last one. In fact it follows from
lemma 1.10 and the property (iii) of definition 3.4 there exists a family
(gz) ⊂ C∞(U × (Rd+1\0)) such that gz is homogeneous of degree mz and
for any integer N we have

(3.7) |∂αx ∂
β
ξ (fz(x, ξ)− gz(x, ξ))| ≤ CαβN (x, z)‖ξ‖−N , ξ 6= 0,

with CαβN (x, z) locally bounded on U × Ω. This means that (fz) satisfies
the last condition and completes the proof. �

Therefore we have the following characterization of holomorphic families
of symbols.

Proposition 3.6 A family (fz) of symbols over Ω with order mz is a holo-
morphic family of symbols if, and only if, it fulfills the following properties:

(i) the order mz depends holomorphically on z;

(ii) for (x, ξ) ∈ U×Rd+1 fixed the function z → fz(x, ξ) is holomorphic
on Ω;

(iii) there exist a holomorphic families (fj,z), j = 0, 1, . . ., of almost
homogeneous symbols with ordfj,z = mz − j such that we have an
asymptotic expansion fz ∼

∑
fj,z with locally uniform bounds in z.

Definition 3.7 A family (Pz) ⊂ Ψ∗V(U) is holomorphic if, and only if, Pz
is in the form

(3.8) Pz = fz(x, σ(x,D)) +Rz,

with (fz) and (Rz) holomorphic families of symbols and smoothing oper-
ators. The space of holomorphic families of ΨVDO operators is denoted
Hol(Ω,Ψ∗V(U)).
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Proposition 3.8 Let (Pz) be a holomorphic family of ΨVDO’s over Ω.
Then:

1) (Pz) defines a holomorphic family with values in L(C∞c (U), C∞(U))
and L(E ′(U)),D′(U)).

2) The kernel of Pz is given outside the diagonal of U × U by a holo-
morphic family of smooth functions.

3) We can write Pz as Pz = Qz+Rz, where (Qz) is a holomorphic fam-
ily of uniformly properly supported ΨVDO’s and (Rz) is a holomorphic
family of smoothing operators.

4) If the family (Pz) is uniformly properly supported, it gives rise to
holomorphic families of continuous operators from C∞c (U), C∞(U),
E ′(U) and D′(U) to themselves.

Proof. To prove 1) and 2) it is enough to consider the case Pz = fz(x, σ(x,D))
with (fz) holomorphic family of symbols. Shrinking Ω if necessary we can
suppose the order mz of fz stays bounded. Then there exists a real k such
that the family (fz) is holomorphic with values in Sk||(U × Rd+1).

As noted in the proof of proposition 2.11 the map f → f(x, σ(x,D)) is
continuous from Sk||(U×Rd+1) into L(E ′(U)),D′(U)). So by the closed graph

theorem it is also continuous from Sk||(U×Rd+1) into L(C∞c (U), C∞(U)). As
these maps are C-linear it follows that the family of operators fz(x, σ(x,D))
is holomorphic with values in L(C∞c (U), C∞(U)) and L(E ′(U)),D′(U)).

Similarly the map which assigns to the symbol f ∈ Sk||(U × Rd+1) the
restriction of the kernel of f(x, σ(x,D)) to U×U \∆ is a continuous C-linear
map from Sk||(U×Rd+1) into C∞(U×U \∆). So the kernel of fz(x, σ(x,D))
is given outside ∆ by a holomorphic family of smooth functions.

Finally the proofs of the assertions 3) and 4) follow along the same lines
of the proof of proposition 2.13. �

Proposition 3.9 Let (P1,z) and (P2,z) be two holomorphic families of ΨVDO
operators, one of them being uniformly properly supported. Then the family
Pz = P1,zP2,z is a holomorphic family of ΨVDO operators over Ω.

Proof. By definition of a holomorphic family of ΨVDO’s we have

(3.9) P1,z = f1,z(x, σ(x,D)) +R1,z, P2,z = f2,z(x, σ(x,D)) +R2,z,

with (f1,z), (f2,z) holomorphic families of symbols and (R1,z), (R2,z) holo-
morphic families of smoothing operators. So by proposition 3.8 up to a
holomorphic family of smoothing operators we have

(3.10) Pz = P1,zP2,z =
∑

ϕi(f1,z#ψif2,z)(x, σ(x,D)),
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where (ϕi) ⊂ C∞c (U) is a locally finite partition of unity and (ψi) ⊂ C∞c (U)
is such that ψi = 1 near suppϕi. Therefore it is enough to show that given
ψ ∈ C∞c (U) the family

(3.11) f1,z#ψf2,z, z ∈ Ω,

is a holomorphic family of symbols.

However shrinking Ω if necessary, we can suppose the orders of f1,z and
f2,z stay bounded. Thereby the families f1,z and f2,z are holomorphic with
values in Sk||(U×Rd+1) for some real k. Then it follows from the lemma 1.19
and the remark 1.22 that the axioms (ii) and (iii) of the definition 3.1 are
satisfied by the family f1,z#ψf2,z. As the first axiom is obviously satisfied
f1,z#ψf2,z is a holomorphic family with values in S∗(U × Rd+1) and the
proof is achieved. �

Let us now define holomorphic families of kernels and obtain a charac-
terization of holomorphic families of ΨVDO operators.

There is a technical difficulty for defining holomorphic families with val-
ues in K∗(U × Rd+1) since when the order crosses positive integers the ho-
mogeneity of the distributions breaks down and logarithmic terms appear.
As with ΨVDO’s with parameter this can be avoided if we consider instead
holomorphic families of almost homogenous distributions.

Definition 3.10 A family (Kz) ⊂ K∗ah(U ×Rd+1) over Ω is holomorphic if
it satisfies the following properties:

(i) the order mz of Kz is a holomorphic function on Ω;

(ii) the family (Kz) is holomorphic with values in C∞(U)⊗̂D′(Rd+1)
and Kz is given on U × (Rd+1\0) by a holomorphic family of smooth
functions;

(iii) for any t > 0 the family

(3.12) Kz(x, t.y)− tmzKz(x, y), z ∈ Ω,

is holomorphic with values in C∞(U × Rd+1).

The space of holomorphic K∗ah(U×Rd+1)-valued families is denoted Hol(Ω,K∗ah(U×
Rd+1)).

Definition 3.11 A family (Kz) ⊂ K∗(U × Rd+1) over Ω is holomorphic if
the following conditions hold:

(i) the order mz of Kz depends holomorphically on z;
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(ii) there exist holomorphic families of almost homogeneous kernels
(Kj,z), j = 0, 1, . . ., with ordKj,z = mz + j such that we have an
asymptotic expansion

(3.13) Kz ∼
∑

Kj,z,

in the sense that for any open Ω′ ⊂⊂ Ω and any integer N if J is large
enough we have

(3.14) Kz −
∑
j≤J

Kz,mz+j ∈ Hol(Ω′, CN (U × Rd+1)).

The space of holomorphic K∗(U×Rd+1)-valued families is denoted Hol(Ω,K∗(U×
Rd+1)).

Remark 3.12 This definition implies that such a family is actually a holo-
morphic family with values in C∞(U)⊗̂D′(Rd+1) and it is given on U ×
(Rd+1\0) by a holomorphic family of smooth functions.

This leads to the following characterization of holomorphic families of ΨVDO
operators:

Proposition 3.13 Let (Pz) be a family of ΨVDO’s over Ω. Then it is a
holomorphic family of ΨVDO’s if, and only if, the kernel of Pz is in the
form

(3.15) kz(x, y) = Kz(x, εx(y)) +Rz(x, y),

with (Kz) and (Rz) holomorphic families with values in K∗(U × Rd+1) and
C∞(U × U).

Proof. The arguments of the proof of proposition 1.29 apply to holomorphic
families if, as in the proof of proposition 2.19, we replace the homogeneity
of symbols and kernels by almost homogeneity. �

Using the above kernel characterization we can obtain the invariance by
Heisenberg diffeomorphisms of holomorphic families of ΨVDO operators.

Proposition 3.14 Let φ : U → Ũ be a Heisenberg diffeomorphism from U
onto Ũ where Ũ is an open subset of Rd+1 equipped with a hyperplane bundle
Ṽ ⊂ TŨ and a Ṽ-frame. For any holomorphic family P̃z of ΨṼDO operators

on Ũ the family Pz = φ∗P̃z is a holomorphic family of ΨVDO operators on
U .
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Proof. Let (Kz) be a holomorphic family with values in K∗(U ×Rd+1) over
Ω. By shrinking Ω if necessary we can suppose that the order of Kz stays
bounded. Then it follows from lemma 2.20 and proposition 3.13 there exists
a real k ≥ 0 such that for 〈β〉 large enough we have

(3.16) |∂αx ∂βyKz(x, y)| ≤ Ckαβ(x, z)‖y‖−k−〈β〉, 0 < ‖y‖ ≤ 1,

with Ckαβ(x, z) locally bounded on U × Ω. Together with proposition 3.13
these estimates allow the arguments of the proof of proposition 1.33 to work
verbatim with holomorphic families of ΨVDO operators, thereby proving the
invariance by Heisenberg diffeomorphism. �

We can now define holomorphic families of ΨVDO’s on any Heisenberg
manifold.

Definition 3.15 Let (M,V) be a Heisenberg manifold. A family (Pz) ⊂
Ψ∗V(M) over Ω is a holomorphic it satisfies to the following:

(i) the order mz of Pz depends holomorphically on z;

(ii) for ϕ, ψ in C∞(M) with disjoint supports ϕPzψ is given by a holo-
morphic family of smooth kernels.

(iii) On any local Heisenberg chart Pz is given by a holomorphic family
of ΨVDO’s on an open subset of Rd+1 equipped with a V-frame.

All the preceding properties of holomorphic families of ΨVDO’s on an
open subset of Rd+1 continue to hold in the case of manifolds. In a case of
a compact manifold we have:

Proposition 3.16 Let (M,V) be a compact Heisenberg manifold. Let P1,z

and P2,z be two holomorphic families of ΨVDO’s on M . Then Pz = P1,zP2,z

is also a holomorphic family of ΨVDO operators.

3.2 Complex powers of an elliptic sublaplacian (pos-
itive case)

Let ∆ be a formally selfdajoint elliptic sublaplacian on a compact
Heisenberg manifold (Md+1,V). We assume here that we have ∆ ≥ c > 0
with respect to the inner product induced by a smooth non-negative density
on M .

In this section we shall study the complex powers ∆s, s ∈ C, of ∆
from the point of view of holomorphic families of ΨVDO operators. These
operators are well defined by functional calculus as unbounded operators on
L2(M) and they give rise to a 1-parameter group.
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Theorem 3.17 The family (∆s)s∈C of the complex powers of ∆ is a holo-
morphic family of ΨVDO operators.

Proof. As ∆s is a 1-parameter group and the product of ΨVDO operators
is holomorphic by proposition 3.16, we need only to show that the family
(∆s) is a holomorphic family of ΨVDO’s over the left half-plane {<s < 0}.
By Mellin formula for <s > 0 we have

(3.17) ∆−s =
1

Γ(s)

∫ ∞
0

tse−t∆
dt

t
.

As
∫∞

1 tse−t∆ dt
t = e−

1
2

∆(
∫∞

0 tse−t∆ dt
t )e−

1
2

∆ is a holomorphic family of smooth-
ing operators, it is enough to check that

(3.18) Ds =

∫ 1

0
tse−t∆

dt

t
, <s > 0.

is a holomorphic family of ΨVDO operators.

However by proposition 1.52 the operator ∆+ ∂
∂t is invertible on C∞c (M×

R) and its inverse Q = (∆ + ∂
∂t)
−1 belongs to Ψ−2

V,h(U ×R). If kQ(x, y, u− t)
denotes its kernel then kQ(x, y, t) is the kernel of et∆ for t > 0. Thus the
kernel of Ds is

(3.19) ks(x, y) =

∫ 1

0
tskQ(x, y, t)

dt

t
, <s > 0.

For ϕ and ψ in C∞(M) with disjoint supports the operator ϕQψ is smooth-
ing, so that ϕ(x)kQ(x, y, t)ψ(y) is smooth and ϕ(x)ks(x, y)ψ(y) is a holo-
morphic family of smooth kernels.

Moreover we locally have

(3.20) kQ(x, y, t) = |ε′x(y)|K(x, εx(y), t) +R(x, y, t),

where K is in K−(d+2)
h (U × Rd+1 × R), the kernel R is smooth and U is

an open subset of Rd+1 together with a V-frame. As
∫ 1

0 t
sR(x, y, t)dtt is a

holomorphic family of smooth functions, it remains to prove that

(3.21) Ks(x, y) =

∫ 1

0
tsK(x, y, t)

dt

t
, <s > 0,

is a holomorphic family with values in K∗(U × Rd+1).

Consider now the asymptotic expansion for K in K∗h(U ×Rd+1×R), i.e.

(3.22) K(x, y, t) ∼
∑

Kj−(d+2)(x, y, t), Kl ∈ Kh,l(U × Rd+1 × R),
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Since for j = 0, 1, . . . the kernel Kj−(d+2) has integrable order on Rd+1 ×R,

hence lies in C∞(U)⊗L1
loc(Rd+2), we define holomorphic families with values

in C∞(U)⊗̂S ′(Rd+1) by setting

(3.23) Kj,s(x, y) =

∫ 1

0
tsKj−(d+2)(x, y, t)

dt

t
, <s > 0.

As Kj−(d+2) is smooth on U × (Rd+1 \0) × R the family Kj,s is given on

U × (Rd+1\0) by a holomorphic family of smooth functions. Moreover the
homogeneity of Kj−(d+2) implies
(3.24)

λd+2−(2z+j)Kj,s(x, λ.y)−Kj,s(x, y) =

∫ λ−2

1
tsKj−(d+2)(x, y, t)

dt

t
, λ > 0.

As the right-hand side is a holomorphic family of smooth functions we con-
clude that Kj,s(x, y) is holomorphic family of almost homogeneous kernels
with order ms + j.

Finally the asymptotic expansion (3.22) implies that we have an asymp-
totic expansion Ks ∼

∑
Kj,s in the sense of holomorphic K∗-valued families.

So Ks is a holomorphic family of kernels and the proof is complete. �

3.3 Complex powers of elliptic sublaplacians (gen-
eral case)

Let (Md+1,V) be a compact Heisenberg manifold and let ∆ be an el-
liptic sublaplacian on M . In this section we use the ΨVDO calculus with
parameter of chapter 2 in order to construct as in [Se] the complex pow-
ers of ∆ in such way to obtain a holomorphic 1-parameter group of ΨVDO
operators.

By theorem 2.33 there exists R > 0 and an open pseudo-cone Λ contain-
ing D(0, R) \ 0, contained in ΛR = {λ ∈ C\0 ; <λ < 0 or |λ| < R} and such
that:

(i) for any λ ∈ Λ the operator ∆− λ is invertible on L2(M);

(ii) the family (∆− λ)−1, λ ∈ Λ, lies in Ψ−1,−2
V (M,Λ);

(iii) for any pseudocone Λ′ ⊂⊂ Λ there exists CΛ′ > 0 such that

(3.25) ‖(∆− λ)−1‖ ≤ CΛ′(1 + |λ|)−1, λ ∈ Λ′.

In particular each ray contained in Λ is a ray of minimal growth for ∆.
Suppose for simplicity that such a ray is the negative real axis. Then

there exists a curve Γ ⊂ Λ beginning at ∞, passing along the ray λ < 0 to a
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small circle about the origin with radius ρ < R, then clockwise around the
circle and back to ∞ along the ray. For <s < 0 we set

(3.26) ∆s =
1

2iπ

∫
Γ
λs(∆− λ)−1dλ.

To define λs we choose a continuous determination of the logarithm on
C \R−. This gives a determination of the argument which has shifted of 2π
once λ has turned around the circle.

The above integral is convergent for the L2-norm and yields a holomor-
phic family of bounded operators on L2(M). Indeed we have:

Lemma 3.18 The family (∆s)<s<0 is a holomorphic family of ΨVDO’s and
ord∆s = 2s.

Proof. Let ϕ, ψ be in C∞(M) and with disjoint supports. As the family
(∆− λ)−1 lies in Ψ−1,−2

V (M,Λ) proposition 2.11 implies that ϕ(∆− λ)−1ψ
is a Hol−1(Λ)-family of smoothing operators. Thus ϕ∆sψ is a holomorphic
family of smoothing operators.

On the other hand we locally have

(3.27) (∆− λ)−1 = f(λ)(x, σ(x,D)) +R(λ),

where f(λ) is in S−1,−2(U×Rd+1,Λ) and R(λ) is a Hol−1(Λ)-family of smooth-

ing operators on the open U ⊂ Rd+1 equipped with a V-frame. So on U we
have

(3.28) Ps = fs(x, σ(x,D)) +Rs, <s < 0,

where Rs is a holomorphic family of smoothing operators and (fs) is the
holomorphic family of smooth functions on U × Rd+1 given by

(3.29) fs(x, ξ) =

∫
Γ
λsf(λ)(x, ξ)dλ, <s < 0.

Thus it is enough to show that (fs) is a holomorphic family of symbols.

Now we have an asymptotic expansion

(3.30) f(λ) ∼
∑
j≥0

f(λ),−2−j , f(λ),−2−j ∈ S−1
−2−j(U × Rd+1,Λ),

in the sense of symbols with parameters. For j = 0, 1, . . . we define a holo-
morphic C∞-valued family by setting

(3.31) fs,j =

∫
Γ
λsf(λ),−2−jdλ, <s < 0.
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Let t ∈ (0, 1). As we don’t change the value of the integral (3.31) by replacing
Γ by t2Γ we have
(3.32)

fs,j(x, t.ξ) =

∫
t2Γ

λsf(λ),−2−j(x, t.ξ)dλ = t−(s+2)

∫
Γ
λsf(t2λ),−2−j(x, t.ξ)dλ.

So by almost homogeneity of f(λ),−2−j the family

(3.33) fs,j(x, t.ξ)− t2s−jfs,j(x, ξ), <s < 0,

is a holomorphic family with values in S−∞(U × Rd+1). Hence (fs,j) is a
holomorphic S∗ah-valued family.

Finally the asymptotic expansion (3.30) implies that fs ∼
∑
fj,s in the

sense of holomorphic family of symbols. Thus (fs) is a holomorphic family
of symbols and the proof is complete. �

Lemma 3.19 ([Se]) Suppose ∆ invertible. Then the family (∆s)<s<0 has
the following properties:

1) It contains the negative integer powers of ∆, that is

(3.34) ∆−k = ∆−k k integer > 0.

2) It is a semi-group, i.e.

(3.35) ∆s∆t = ∆s+t <s < 0, <t < 0.

Proof. We have

(3.36) ∆−k =
1

2iπ

∫
Γ′
λ−k(∆− λ)−1dλ,

where Γ′ is the circle of radius ρ traversed in the reverse, for the two integral
along λ ≤ −ρ cancel each other. Then setting µ = λ−1 yields

∆−k =
1

2iπ

∫
Γ′−1

∆−1µk−1(µ−∆−1)−1dµ,

= ∆−1(∆−1)k−1 = ∆−k.(3.37)

This follows from the Cauchy formula since the spectrum of ∆−1 lies inside
Γ
′−1.

Now let Γ′′ be a curve contained in Λ and enlacing Γ. As we don’t change
the value of the integral (3.26) by replacing Γ by Γ′′ we get

∆s∆t =
−1

4π2

∫
Γ′′

∫
Γ
µsλt(∆− µ)−1(∆− λ)−1dµdλ,

=
−1

4π2

∫
Γ′′

∫
Γ

µsλt

µ− λ
((∆− µ)−1 − (∆− λ)−1)dµdλ,(3.38)

=
−1

4π2

∫
Γ′′
µs(∆− µ)−1

∫
Γ

λtdλ

λ− µ
dµ− 1

4π2

∫
Γ
λt(∆− λ)−1

∫
Γ′′

µsdµ

µ− λ
dλ,
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By Cauchy formula the second integral in the last side vanishes and the first
one is equal to

(3.39)
1

2iπ

∫
Γ′′
µs+t(∆− µ)−1dλ = ∆s+t.

So ∆s∆t = ∆s+t and the proof is achieved. �

We can now define the complex powers of ∆ in the invertible case.

Definition 3.20 Suppose ∆ invertible. Then the complex power ∆s for
s ∈ C is defined by

(3.40) ∆s = ∆k∆s−k,

where k is any integer > <s whose value is irrelevant.

Combining lemma 3.18 and lemma 3.19 we obtain

Theorem 3.21 Suppose ∆ invertible. Then the family (∆s) of the complex
powers of ∆ given by definition 3.20 is a holomorphic 1-parameter group of
ΨVDO operators containing ∆0 = 1 and ∆1 = ∆.

Suppose now that ∆ is selfadjoint and not invertible. Then the semi-
group property (3.35) of ∆s continue to hold and the equality (3.34) remains
true if we replace the inverse by the partial inverse of ∆, i.e. the operator
annihilating ker ∆ which is the inverse of ∆ on im ∆ = (ker ∆)⊥. As (∆−1)k

is the partial inverse of ∆k the definition 3.20 still makes sense and we
obtain:

Theorem 3.22 Suppose ∆ selfadjoint. Then the family (∆s) of the complex
powers of ∆ is a holomorphic 1-parameter group of ΨVDO’s such that ∆1 =
∆ and ∆0 = 1−Π0, where Π0 is the orthogonal projection onto ker ∆.

Remark 3.23 Suppose that ∆ is selfadjoint and let λk(∆) be the k’th
eigenvalue of ∆ counted with multiplicity. By corollary 2.32 and proposi-

tion 1.53 for k large we have λk(∆) ∼ αk−
d+2
2 . So it is possible to char-

acterize the Sobolev spaces of M in terms of Fourier series associate to an
orthonormal basis of eigenvectors for ∆ as in [Sh]. This enables us to relate
the Sobolev regularity of f(∆) to the polynomial growth of f . In particular
if f has slow growth then f(∆) maps continuously C∞(M) to itself and if
f has rapid decay then f(∆) is a smoothing operator.

Remark 3.24 In the case of a pseudohermitian manifold (M, θ) the theo-
rem 3.22 holds for the sublaplacian ∆b and the conformal sublaplacian �θ.
As the construction of the complex powers can as well be carried out for a
sublaplacian acting on sections of a bundle, the theorem holds also for the
Kohn Laplacian �b acting on forms with elliptic bidegree.
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Chapter 4

Non-commutative residue for
Heisenberg manifolds

In this chapter we extend the trace on ΨVDO’s with non-integral com-
plex order as in [KV] and [CM2]. This new functionnal is holomorphic in
the sense that the evaluation on any holomorphic family of ΨVDO’s of non-
integral order defines a holomorphic function, and we show that it gives rise
to a residue trace on ΨVDO with integral order which is an analogue of the
non-commutative residue for ΨVDO operators (section 4.1, theorem 4.5 and
proposition 4.9). Then we prove that this new non-commutative residue
extends the Dixmier trace on the ΨVDO algebra (section 4.2, theorem 4.11)
and is the unique trace up to a constant multiple on this algebra quotiented
by the smoothing operators(section 4.3, theorem 4.15). As corollary we
obtain a complete characterization of sums of commutators in the ΨVDO
algebra (corollary 4.16).

4.1 Trace regularization and non-commutative residue

Let (Md+1,V) be a compact Heisenberg manifold and E a vector bundle
over M . If P is a ΨVDO of integrable order, i.e. <ordP < −(d + 2), its
kernel is continuous so that P is traceable and its trace is given by

(4.1) Trace(P ) =

∫
M

trE kP (x, x)dx.

Following closely [KV] and [CM2] we shall show that the functional Trace a
priori defined on

(4.2) Ψint
V (M, E) = {P ∈ Ψ∗V(M, E);<ordP < −(d+ 2)},

can be holomorphically extended to a trace functional TR to

(4.3) Ψ
C\Z
V = {P ∈ Ψ∗V(M, E); ordP ∈ C\Z}.
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Moreover this trace gives rise to a residue trace on ΨZ
V(M) which turns out

to be the complete analogue of the non-commutative residue for Heisenberg
manifolds.

The starting point is to reinterpret the lemma 1.23 in terms of holomor-
phic maps.

Lemma 4.1 For f ∈ SC\Z(Rd+1) denote by τf its unique homogeneous ex-

tension as a tempered distribution on Rd+1 given by lemma 1.23. Then:

1) The map f → τf is holomorphic from SC\Z(Rd+1) into S ′(Rd+1), i.e.

for any holomorphic SC\Z(Rd+1)-valued family (fz) the family (τfz) is
a holomorphic family of tempered distributions.

2) Let (fz) be a holomorphic family of homogeneous symbols defined
near the integer m and such that ordfz = z. Then for any u ∈ S(Rd+1)
the function z → 〈τfz , u〉 has only meromorphic singularities near m
with at most simple poles with residues

(4.4) resz=k〈τfz , u〉 =
∑

<α>=−(m+d+2)

1

α!
cα(fm)u(α)(0),

where, as in lemma 1.23, the constants cα(fk) are given by

(4.5) cα(fk) =
1

α!

∫
‖ξ‖=1

ξαfk(ξ)iEdξ.

Proof. Let fz be a holomorphic family of symbols on Rd+1 with non integral
order mz and let τz be the unique homogeneous extension of fz as a tempered
distribution on Rd+1.

For <mz > −(d + 2) the symbol fz is integrable near the origin and
defines a distribution which is its unique homogeneous extension. Then (τz)
is a holomorphic family of tempered distributions. Thus, shrinking Ω if
necessary, we can suppose that mz stays in some stripe {|<z−m| < 1} with
m integer ≤ −(d + 2). Then in the definition (1.79) of τz we maay take
k = −(m+ d+ 2) and get
(4.6)

〈τz, u〉 =

∫
(u(ξ)−

∑
<α>≤−(m+d+2)

ξα

α!
u(α)(0)ψz(‖ξ‖))fz(ξ)dξ, uS(Rd+1),

with ψz ∈ C∞c ([0,∞)) equals to 1 near zero and satisfying

(4.7)

∫
µaψ′z(µ)

dµ

µ
= 0 for a = mz − (m+ d+ 2), . . . ,mz −m.

For instance we can take ψz(µ) of the form

(4.8) ψz(µ) =

∫ +∞

log µ
hz(s)ds, hz(t) =

−(d+2)∏
j=m

(
1

mz − j
d

dt
+ 1)g(t),
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where g is some compactly supported function on R such that
∫
g(t)dt = 1.

Remember that since mz is not an integer the distribution τz is uniquely
defined and independent of the above choices. Then the family (ψz(‖.‖)) is
a holomorphic family of smooth functions supported in a fixed compact set
and identically equal to 1 in a fixed neighborhood of the origin. Thus the
formula (4.6) shows that (τz is a holomorphic family of tempered distribu-
tions.

Suppose now that the family (fz) is holomorphic around m with order
mz = z and let us investigate the singularity of 〈τz, u〉 near z = m. This
singularity comes only from the appearance of the term 1

z−m in the equal-
ity (4.8). We can isolate it if we write hz in the form

(4.9) hz(t) =
1

z −m
d

dt
kz(t) + kz(t), kz(t) =

−(d+2)∏
j=m+1

(
1

z − j
d

dt
+ 1)g(t).

Then

(4.10) ψz(µ) =
−1

z −m
kz(logµ) + ϕz(µ), ϕz(µ) =

∫ +∞

log µ
kz(t)dt,

and (4.6) becomes

〈τz, u〉 =

∫
(u(ξ)−

∑
<α>≤−(m+d+2)

ξα

α!
u(α)(0)ϕz(‖ξ‖))fz(ξ)dξ

− 1

z −m
∑

<α>≤−(m+d+2)

u(α)(0)

α!

∫
ξαkz(log ‖ξ‖)fz(ξ)dξ.(4.11)

As (ϕz(‖.‖)) is near z = m a holomorphic family of smooth functions
supported in a fixed compact set and identically equal to 1 in a fixed neigh-
borhood of the origin, the first integral in the above right-hand side defines
a holomorphic function near z = m.

Similarly, the family (kz) is a holomorphic family of smooth functions on
R supported on a fixed compact set and the integrals

∫
ξαkz(log ‖ξ‖)fz(ξ)dξ

defines holomorphic functions. It follows then that 〈τz, u〉 has at most a
simple singularity near z = m with residue∑

<α>≤−(m+d+2)

u(α)(0)

α!

∫
ξαkm(log ‖ξ‖)fm(ξ)dξ

=
∑

<α>≤−(m+d+2)

u(α)(0)

α!

∫ ∞
0

µ<α>+m+d+2km(logµ)
dµ

µ
cα(fm).(4.12)

However it follows from (4.9) that km satisfies

(4.13)

∫
µakm(logµ)

dµ

µ
= 0, a = 1, . . . ,−(m+ d+ 2),
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(4.14)

∫ ∞
0

km(logµ)
dµ

µ
=

∫ +∞

−∞
km(t)dt =

∫ +∞

−∞
g(t)dt = 1.

Therefore resz=m〈τz, u〉 = −
∑

<α>=−(m+d+2)
u(α)(0)
α! cα(fm) and the proof is

complete. �

Following [CM2] we consider the functional

(4.15) L(f) =

∫
f(ξ)dξ, f ∈ Sint(Rd+1).

defined on

(4.16) Sint(Rd+1) = {f ∈ S∗(Rd+1);<ordf < −(d+ 2)}.

Lemma 4.2 Let L be the above functional on Sint(Rd+1). Then:

1) L has an unique holomorphic extension L̃ on SC\Z(Rd+1), in the
sense that for any holomorphic family of symbols (fz) with values in
SC\Z(Rd+1) the function L̃(fz) is holomorphic. The value of L̃ on a
symbol f ∼

∑
fm−j with non integral order is given by

(4.17) L̃(f) =

∫
(f(ξ)−

∑
j≤N

τm−j(ξ))dξ, N ≥ <m+ d+ 2,

where τm−j is the unique homogeneous extension of fm−j provided by
lemma 1.23.

2) Let (fz) be a holomorphic S∗(Rd+1)-valued family such that ordfz =
z. Then L̃(fz) has at most simple pole singularities near Z with
residues
(4.18)

resz=k L̃(fz) = −c0(fk,−(d+2)) = −
∫
‖ξ‖=1

fk,−(d+2)(ξ)iEdξ, k ∈ Z.

Proof. First the extension is necessarily unique since the functional L is
holomorphic on Sint(Rd+1) and each f ∈ SC\Z(Rd+1) can be connected to
Sint(Rd+1) by a holomorphic path within SC\Z(Rd+1).

Let f ∼
∑
fm−j be a symbol with non-integral order and denote by

τm−j the unique homogeneous extension of fm−j given by lemma 1.23. For
N ≥ <m+ d+ 2 the distribution f −

∑
j≤N τm−j agrees with an integrable

function near ∞ and we can set

(4.19) L̃(f) = (f −
∑
j≤N

τm−j)
∧(0) =

∫
(f −

∑
j≤N

τm−j)(ξ)dξ.

In fact if j > <m + d + 2 then τm−j is also integrable near ∞ and we can
define τ̂m−j(0). By homogeneity the value must be 0, so the value of the
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integer N is irrelevant and (4.19) defines a functional on SC\Z(Rd+1) which
agrees with L on symbols of integrable non-integral order.

Let us show that L̃ is holomorphic and let fz(ξ) ∼
∑
fz,mz−j(ξ) be a

holomorphic family of symbols with non-integral order mz. As L̃ agrees
with L on Sint(Rd+1) ∩ SC\Z(Rd+1) we can suppose that mz lies in some
stripe {|<z − k| < 1} with k integer ≥ −(d+ 2). Then in (4.19) we can set
N = k+ d+ 2, and if we pick some function ϕ ∈ C∞c (Rd+1) such that ϕ = 1
near the origin we obtain

L̃(fz) =

∫
(fz(ξ)− (1− ϕ(ξ)

∑
j≤N

fz,mz−j(ξ))dξ −
∑
j≤N

(ϕτz,mz−j)
∧(0),

= L(fz − (1− ϕ)
∑
j≤N

fz,mz−j)−
∑
j≤N
〈τz,mz−j , ϕ〉.(4.20)

The functions 〈τz,mz−j , ϕ〉 are holomorphic by lemma 4.1 and fz − (1 −
ϕ)
∑

j≤k+d+2 fz,mz−j is a holomorphic family of integrable symbols. There-

fore L̃(fz) is a holomorphic map and we have shown that L̃ is a holomorphic
functional.

Finally suppose that (fz) is a holomorphic family of symbols near z = k
such that ordfz = z Then L(fz − (1 − ϕ)

∑
j≤N fz,j) is holomorphic near

z = k and by lemma 4.1 the function
∑
〈τz,j , ϕ〉 has at most a simple pole

singularity at z = k with a residue equal to c0(fk,−(d+2)). This concludes
the proof. �

Remark 4.3 Let (fz) be a holomorphic family of symbols around z = 0
such that ordfz = z. If c0(f0,−(d+2)) = 0 the function L̃(fz) is regular at
zero, but by (4.11) and (4.11) the regular value depends on both the values
of f0,−(d+2) and ∂zf0,−(d+2).

As the proof works as well with smooth families of symbols we obtain:

Lemma 4.4 Let U be an open subset of Rd+1.

1) The map f → L̃(f(x, .)) is holomorphic from SC\Z(U × Rd+1) into
C∞(U).

2) Let (fz) be a holomorphic S∗(U × Rd+1)-valued family such that
ordfz = z. Then L̃(fz(x, .)) is meromorphic for the C∞-topology.

Theorem 4.5 Let (Md+1,V) be a compact Heisenberg manifold and let E
be a vector bundle over M .

1) The functional Trace on Ψint
V (M, E) has an unique holomorphic ex-

tension on Ψ
C\Z
V (M, E) defined by

(4.21) TRP =

∫
M

trE tP (x), P ∈ Ψ
C\Z
V (M, E),
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where tP (x) is a END E-valued density on M invariant by Heisenberg
diffeomorphisms.

2) Let P1 and P2 be in Ψ
C\Z
V (M, E) and such that ordP1 + ordP2 6∈ Z.

Then

(4.22) TRP1P2 = TRP2P1.

3) Let P ∈ ΨZ
V(M, E) and let (Pz) be a holomorphic family of ΨVDO’s

such that P0 = P and ordPz = z + ordP . Then TRPz has at most a
simple pole at z = 0 and we have

(4.23) resz=0 TRPz = −
∫
M

trE cP (x),

where cP (x) is the density on M which occurs as the coefficient of
the logarithmic singularity of the kernel of P near the diagonal (cf.
proposition 1.43).

Proof. First a holomorphic extension of Trace is necessarily unique as any

P ∈ Ψ
C\Z
V (M, E) can be connected to Ψint

V (M, E) by means of the holomorphic
path z → ∆z/2P , where ∆ is an elliptic selfdajoint sublaplacian on M .

If P is a ΨVDO acting on C∞(M, E) with integrable order, the restriction
of its kernel on the diagonal kP (x, x) is a smooth density with values in
END E and we have

(4.24) TraceP =

∫
M
kP (x, x).

The map P → kP (x, x) is holomorphic from Ψint
V (M, E) into the space of

END E-valued densities. The strategy of the proof is to construct an analytic

extension of this map on Ψ
C\Z
V (M, E). Then an integration over M would

give the required holomorphic extension of Trace.
Actually, using a partition of unity it is enough to proceed locally and

we can restrict ourselves to the case of scalar ΨVDO’s on an open subset U
of Rd+1 with a V-frame. Such an operator is of the form

(4.25) P = f(x, σ(x,D)) +R,

with f ∈ S∗(U × Rd+1) and R smoothing. So lemma 4.4 provides us with

an analytic continuation of P → kP (x, x) on Ψ
C\Z
V (U) by letting

(4.26) tP (x) = (2π)−(d+2)|ε′x|L̃(f(x, .)) + kR(x, x).

Note that the definition is independent of the choice of f and R. Moreover,
as kP (x, x) is a density and by proposition 3.14 the action of a Heisenberg

110



diffeomorphism on ΨVDO’s is holomorphic, we get a holomorphic exten-
sion at the level of END E-valued densities on M . Then the holomorphic

extension of Trace on Ψ
C\Z
V (M, E) is given by

(4.27) TRP =

∫
M

trE tP (x), P ∈ Ψ
C\Z
V (M, E).

Now, let P ∈ ΨZ
V(U) and let (Pz) be a holomorphic family of ΨVDO’s

such that P0 = P and ordPz = z + ordP . It follows also from lemma 4.4
that locally tPz(x) has at most a simple pole at z = 0 with a residue equal
to

(4.28) −(2π)−(d+2)|ε′x|c0(f−(d+2)(x, .)) = −cP (x),

where fd+2 is the symbol of degree −(d+ 2) of P . Thus TRPz has at most
a simple pole with a residue equal to −

∫
M trE cP (x).

Finally, to see that TR is a trace let P1 and P2 be in Ψ∗V(M, E) such
that m = ordP1 + ordP2 is not an integer. If ∆ is an elliptic selfadjoint
sublaplacian we have

(4.29) TraceP1P2∆−z/2 = TraceP2∆−z/2P1, z +m 6∈ Z,

for this is true for <z +m < −(d+ 2). Setting z = 0 we obtain TRP1P2 =
TRP2P1. �

Remark 4.6 As we worked at the level of densities the theorem rephrased
only in terms of densities continues to hold for non-compact manifolds.

Remark 4.7 Let P ∈ ΨZ
V(M, E) be such that cP (x) = 0. For any holo-

morphic family (Pz) of ΨVDO’s near z = 0 such that P0 = P and ordPz =
z + ordP the function TRPz is regular at z = 0. By remark 4.3 the regular
value depends on the choice of the family (Pz), but if (P1,z) and (P2,z) are
two such families satisfying furthermore ordP1,z − ordP2,z < ordP then the
regular values at zero of TRP1,z and TRP2,z coincides.

We define the non-commutative residue for Heisenberg manifolds as fol-
lows:

Definition 4.8 Let (M,V) be a compact Heisenberg manifold. The non-
commutative residue on ΨZ

V(M, E) is the linear functional defined by

(4.30) ResP =

∫
M
cP (x), P ∈ ΨZ

V(M, E),

where cP (x) is the density on M which occurs as the coefficient of the loga-
rithmic singularity of the kernel of P near the diagonal.
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Proposition 4.9 Let (M,V) be a compact Heisenberg manifold.

1) Let P ∈ ΨZ
V(M, E) and let (Pz) be a holomorphic family of Ψ∗V(M, E)

such that P0 = P and ordPz = z + ordP . Then

(4.31) ResP = − resz=0 TRPz.

In particular if ∆ is an elliptic sublaplacian on M we have

(4.32) ResP = resz=0 TRP∆−z/2, P ∈ ΨZ
V(M, E).

2) The functional Res is a trace on ΨZ
V(M, E) vanishing on ΨVDO

operators with integral order < −(d+ 2).

3) Let φ : (M,V)→ (M̃, Ṽ) be a Heisenberg diffeomorphism. Then

(4.33) Resφ∗P = ResP, P ∈ ΨZ
V(M, E).

Proof. The first assertion is just a restatement of the last assertion in
theorem 4.5, and by definition Res vanishes on ΨVDO’s with integral order
< −(d+ 2).

Moreover if P1, P2 are in ΨZ
V(M, E) we can pick an elliptic sublaplacian

∆ on M and obtain
(4.34)
ResP1P2 = − resz=0 TRP1P2∆−z/2 = − resz=0 TRP2∆−z/2P1 = ResP2P1.

So Res is a trace on ΨZ
V(M, E).

Finally let φ : (M,V)→ (M̃, Ṽ) be a Heisenberg diffeomorphism and let
P ∈ ΨZ

V(M, E). By proposition 1.43 φ∗P lies in ΦṼ(M̃, φ∗E) and we have
cφ∗P (x̃) = φ∗(cP (x)). Hence Resφ∗P = ResP . �

4.2 The Dixmier trace of ΨVDO operators

Let (Md+2,V) be a compact Heisenberg manifold. In this section we
shall prove that the non-commutative residue agrees with the Dixmier trace
on ΨVDO operators of order ≤ −(d + 2). Then we will get an analogue of
the following theorem for classical pseudodifferential operators.

Theorem 4.10 ([Co3]) Let Md be a compact manifold and E a vector bun-
dle over M .

1) For any P ∈ Ψ∗(M, E) with integral order −k < 0 we have

(4.35) µn(P ) = O(n−
k
d ) as n→∞,

where µn(P ) is the (n+ 1)’th characteristic value of P .
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2) If P has integral order ≤ −d, it is measurable for the Dixmier trace
and we have

(4.36) −
∫
P =

1

d
ResP,

where Res denotes the non-commutative residue on ΨZ(M, E).

Before enouncing the corresponding theorem for Heisenberg manifolds,
let us briefly recall the definition and the main properties of the Dixmier
trace (for more details see [Co1] and [CM2]).

Suppose H is a separable Hilbert space and let K be its ideal of compact
operators. If T is a compact operator the characteristic value µn(T ) is the
(n+ 1)’th eigenvalue of |T | = (T ∗T )1/2. Then one can show that

µn(T ) = inf{‖TE⊥‖; dimE = n},
= dist(T,Rn), Rn = {operators of rank ≤ n},(4.37)

the first equality being the max-min principle. This implies

(4.38) µn(ATB) ≤ ‖A‖µn(T )‖B‖ for A,B ∈ L(H).

The compact operator T lies in L1, i.e. T is traceable, if and only if we have

(4.39) ‖T‖1 =

∞∑
n=0

µn(T ) <∞.

Then the trace of T is given by

(4.40) TraceT =
∞∑
n=0

〈Tξn|ξn〉, (ξn) orthonormal basis,

the value of the sum being independent of the choice of the orthonormal
basis.

The Dixmier trace arises in the study of the divergency of the trace of a
positive operator only satisfying

(4.41) µn(T ) = O(1/n) as n→∞.

Define the partial sums

(4.42) σN (T ) =
N−1∑
n=0

µn(T ), T ∈ K.

If µn(T ) = O(1/n) then σN (T ) = O(logN). The domain of the Dixmier
trace is the two-sided ideal

(4.43) L(1,∞) = {T ∈ K; ‖T‖(1,∞) <∞}, ‖T‖(1,∞) = sup
σN (T )

logN
.
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We can define σN (T ) for non integer values of N by means of the interpo-
lation formula

(4.44) σλ(T ) = inf{‖x‖1 + λ‖y‖;x+ y = T}, λ > 0,

which in turn shows that L(1,∞) is the (real) interpolated space of L1 and
K. We define the Cesāro mean of σλ(T ) by setting

(4.45) τλ(T ) =
1

log λ

∫ λ

e

σu(T )

log u

du

u
, λ ≥ e.

The functionals τλ have the asymptotic additivity property
(4.46)

|τλ(T1+T2)−τλ(T1)−τλ(T2)| ≤ 3(‖T1‖(1,∞)+‖T2‖(1,∞))
log log λ

log λ
, Tj ≥ 0.

It follows that any limit point limω τλ of this functional gives rise to a positive
continuous trace on L(1,∞), denoted Trω, such that

(4.47) Trω T = lim
ω
τλ(T ), T ∈ L(1,∞), T ≥ 0.

Moreover, if S is a (topological) isomorphism from H onto another Hilbert
space H′, then we have

(4.48) TrωH′(STS
−1) = TrωH T, T ∈ L(1,∞)(H).

So Trω does not depend on the choice of an inner product on H.
In fact the choice of the limit procedure limω is not important because in

most examples the value Trω T is independent of the choice of the limit pro-
cedure. An operator for which this property occurs is said to be measurable
and then we let

(4.49) −
∫
T = Trω T.

If T ∈ L(1,∞) is positive, T is measurable if, and only if,

(4.50) lim
λ→∞

τλ(T ) exists,

and then the Dixmier trace of T is equal to the value of this limit. So if T
is a positive compact operator such that

(4.51)
1

logN

N−1∑
n=0

µn(T )→ L as N →∞

then T is measurable and −
∫
T = L. In particular the Dixmier trace vanishes

on finite rank operators. Hence it vanishes on their closure in L(1,∞), the
ideal

(4.52) L(1,∞)
0 = {T ∈ K;σN (T ) = o(logN)},
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which contains the ideal L1 of trace-class operators.

An important example of measurable operator for which the Dixmier
trace can be computed is provided by an application the Tauberian theorem
of Hardy-Littlewood [Ha]. If T is a compact operator such that µn(T ) =
O( 1

n) and

(4.53) (s− 1)
∑
n≥0

µn(T )s → L as s→ 1+,

then T is measurable and −
∫
T = L.

For instance, if ∆ is an elliptic selfadjoint sublaplacian on a compact

Heisenberg manifold (Md+1,V) then using theorem 4.5 we see that ∆−
d+2
2

is measurable and

(4.54) −
∫

∆−
d+2
2 =

1

d+ 2
res ∆−

d+2
2 .

Indeed the following holds:

Theorem 4.11 Let (Md+1,V) be a compact Heisenberg manifold and let E
be a vector bundle over M .

1) Let P ∈ Ψm
V (M, E) with −k = <m < 0. Then we have

(4.55) µn(P ) = O(n−
k
d+2 ) as n→∞.

2) Each P ∈ Ψ
−(d+2)
V (M, E) is measurable for the Dixmier trace and

we have

(4.56) −
∫
P =

1

d+ 2
ResP,

where Res is the non-commutative residue on ΨZ
V(M, E).

Proof. First let ∆ be a selfadjoint elliptic sublaplacian on M and let λn(∆)
be the (n + 1)’th eigenvalue of ∆ counted with multiplicity. By proposi-
tion 1.53 for n large we have

(4.57) λn(∆) ∼ (An)
d+2
2 , A > 0.

As P∆−k/2 is bounded the inequality (4.38) implies

(4.58) µn(P ) = µn(P∆−k/2∆k/2) ≤ ‖∆−k/2‖λn(∆)−k/2 = O(n−
k
d+2 ).

In particular if P has order ≤ −(d+2) then µn(P ) = O(n−1) and P belongs
to L(1,∞)(L2(M)), i.e. it is in the domain of the Dixmier trace.
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Let us now show that for any limit procedure limω as before we have

(4.59) Trω P =
1

d+ 2
ResP.

In fact both sides vanish on smoothing operators and it follows from the
equality (4.48) and proposition 1.43 that they are both invariant by Heisen-
berg diffeomorphisms. So it is enough to check (4.59) locally, and we can
restrict ourselves to the case of scalar ΨDO’s compactly supported in a trivi-
alizing Heisenberg chart which is diffeomorphic to Rd+1. Then Rd+1 inherits
a V-frame and we can identify compactly supported ΨVDO’s on Rd+1 with
ΨVDO’s on M . This will allow to perform a yoga between ΨVDO’s M and
those in Rd+1.

However each P ∈ ΨV,comp(Rd+1) can be written P as

(4.60) P = PcP + P ′ + P”,

where PcP , P ′, and P ′′ are compactly supported ΨVDO’s such that

• PcP has kernel −cP log ‖εx(y)‖′,

• P ′ has a kernel |ε′x|a(x,−εx(y)) with a ∈ K0(Rd+1 × Rd+1) homoge-
neous of degree 0 in the last variable,

• P ′′ has order ≤ −(d+ 3).

Obviously Trω P
′′ = ResP ′′ = ResP ′ = 0. Moreover the holomorphic family

(Pz) of ΨVDO’s given around z = 0 by the kernels

(4.61) kz(x, y) = |ε′x|a(x,−εx(y))‖εx(y)‖−z, −1 < <z < 1,

is such that P0 = P ′ and ordPz = z − (d+ 2).
By (4.58) the map f → f(x, σ(x,D)) is continuous from S||,comp(Rd+1 ×

Rd+1) into L(1,∞). Hence P ′ is the limit in L(1,∞) as z → 0 of the trace class

operators Pz, −1 < <z < 0. Hence P ′ lies in L(1,∞)
0 and Trω P

′ vanishes.
Thereby Trω P depends only on P and Trω P = Trω PcP .

However the linear functional

(4.62) τ(c) = Trω Pc, c ∈ C∞c (Rd+1).

is positive. Indeed as c
∆−

d+2
2

= 1
Γ( d+2

2
)
a0(x) > 0 we have

(4.63) τ(c2) = Trω(c2(c
∆−

d+2
2

)−1∆−
d+2
2 ) ≥ 0.

So τ must be a measure. As translations are Heisenberg diffeomorphisms
with jacobian 1, this measure is translation invariant and thus proportional
to the Lebesgue measure. Hence

(4.64) Trω P = τ(cP ) = cω

∫
cP (x) = cω ResP, ordP = −(d+ 2).
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It follows that Trω is proportional to Res on each connected component of
M . By (4.54) the constant of proportionality is always equal to (d + 2)−1.
Thus each P ∈ ΨC

V \Z(M, E) of order ≤ −(d + 2) is measurable and its
Dixmier trace is equal to (d+ 2)−1 times its non-commutative residue. �

4.3 Traces and sum of commutators on the ΨVDO
algebra

Let (Md+1,V) be a compact Heisenberg manifold and E a vector bun-
dle over M . By proposition 4.9 the non-commutative residue is a trace on
ΨZ
V(M, E) vanishing on Ψ−∞(M, E). In this section we shall show it is es-

sentially the only one. This is proved independently in [EMM] using the
homological techniques of [BrGe]. Here we give an elementary proof based
on the ideas of [FGLS].

First we need some lemmas giving criteria for a ΨVDO on an open subset
U of Rd+1 with a V-frame to be a sum of commutators.

Lemma 4.12 Any P ∈ ΨZ
V(U) whose symbol is a sum of ξ-derivatives is a

sum of commutators up to a smoothing operator.

Proof. Let f ∈ SZ(U×Rd+1) and set q(x, ξ) = f(x, σ(x, ξ)). As [q(x,D), xj ] =
∂ξjq(x,D) the Heisenberg symbol of [f(x, σ(x,D)), xj ] is equal to

(4.65) xj#f − f#xj =

d∑
k=0

∂ξjσk∂ξkf.

Let c(x) = (cij(x)) be the inverse matrix of the linear map σ(x, .) and set

fij(x, ξ) = cij(x)f(x, ξ). Since the symbol of
∑d

j=0[xj , fij(x, σ(x,D))] is
equal to

(4.66)
d∑

j,k=0

cij(x)∂ξjσk(x, ξ)∂ξkf(x, ξ) = ∂ξif(x, ξ),

we see that ∂ξif(x,D) is a sum of commutators. The lemma follows at once.
It follows that any P ∈ ΨZ

V(U) whose symbol is a sum of ξ-derivatives is a
sum of commutators up to a smoothing operator. �

Lemma 4.13 Let P ∈ ΨZ
V(U) with a zero symbol in degree −(d+ 2). Then

P is a sum of commutators up to a smoothing operator.
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Proof. Let f ∈ Sm(U × Rd+1), m 6= −(d + 2). As f(x, ξ) is homogeneous
in ξ we have

(4.67) 2ξ0∂ξ0f(x, ξ) +

d∑
j=1

ξj∂ξjf(x, ξ) = mf(x, ξ).

Hence

(4.68) f =
1

m+ d+ 2
(2∂ξ0(ξ0f) +

d∑
j=1

∂ξj (ξjf)).

Now, let f ∼
∑
fm−j be the symbol of P . By hypothesis f−(d+2) = 0.

So for j = 0, . . . , d there exists f (j) ∈ S∗(U × Rd+1) such that

(4.69) f (j) ∼
∑
k≥0

1

m− k + d+ 2
ξjfm−k.

Then (4.67) implies

(4.70) f(x, ξ) = 2∂ξ0f
(0)(x, ξ)+

d∑
j=1

∂ξjf
(j)(x, ξ) mod S−∞(U ×Rd+1).

Hence by lemma 4.12 the ΨVDO operator P is a sum of commutators up to
a smoothing one. �

Lemma 4.14 Let P ∈ ΨZ
V(U) be such that cP (x) is a sum of derivatives.

Then P is a sum of commutators up to a smoothing operator.

Proof. First suppose cP = 0. Then we have P = P0 + P1 where P1 has no
symbol of degree −(d+ 2) and P0 is given by a kernel of the form

(4.71) kP0(x, y) = |ε′x|a(x,−εx(y)),

with a0 ∈ K0(U × Rd+1) homogeneous of degree 0 in the last variable. By
lemma 4.13 we know that P1 is a sum of of commutators up to a smoothing
operator. Set

(4.72) a0(x, y) =
y0

‖y‖4
a(x, y), aj(x, y)

y3
j

‖y‖4
a(x, y), 1 ≤ j ≤ d.

Denote by c(x) = (cjk(x)) the matrix of ε′x, so that εx(y) = c(x)(x−y), and
let Pjk be the ΨVDO with kernel

(4.73) kjk(x, y) = |ε′x|cjk(x)aj(x,−εx(y)).
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Then
∑

[xk, Pjk] has kernel

(4.74) |ε′x|
d∑

j,k=0

(xk − yk)cjk(x)aj(x,−εx(y)) = |ε′x|a(x,−εx(y)).

Thus P0, and a fortiori P , is a sum of commutators up to smoothing oper-
ators.

Suppose now that cP =
∑
∂xjcj and let Pj be the ΨVDO with kernel

(4.75) kj(x, y) = −cj(x) log ‖εx(y)‖.

As c[∂xj ,Pj ]
= ∂xjcj we have P =

∑d
j=0[∂xj , Pj ] + R with cR = 0. Thus by

the first part of the proof P is a sum of commutators up to a smoothing
operator. �

Theorem 4.15 Let (Md+1,V) be a compact Heisenberg manifold and E be a
vector bundle over M . If M is connected each trace on ΨZ

V(M, E)/Ψ−∞(M, E)
is proportional to the non-commutative residue.

Proof. Let τ be a trace on ΨZ
V(M, E)/Ψ−∞(M, E). We shall see it as a trace

on ΨZ
V(M, E) vanishing on Ψ−∞(M, E) and we want to show the existence

of some constant λ such that

(4.76) τ(P ) = λResP ∀P ∈ ΨZ
V(M, E).

As M is connected and both sides vanish on smoothing operators, it is
enough to prove (4.76) locally for scalar operators on a trivializing Heisen-
berg chart which is diffeomorphic to Rd+1. Then Rd+1 is equipped with a
V-frame and τ induces a trace on the algebra ΨZ

V,comp(Rd+1) vanishing on

Ψ−∞comp(Rd+1).

Now if P ∈ ΨZ
V,comp(Rd+1) then we have P = PcP +Q, where PcP is the

ΨVDO with kernel −cP (x) log ‖εx(y)‖ and Q ∈ ΨZ
V,comp(Rd+1) such that

cQ = 0. By lemma 4.14 the ΨVDO operator Q is a sum of commutators
up to a smoothing one. Actually it follows from the proof of the previous
lemmas that we can build this construct by means of compactly supported
ΨVDO operators. Then τ(Q) vanishes and we have τ(P ) = τ(Pc).

However, again by lemma 4.14, the functional c → τ(Pc) on C∞c (Rd+1)
vanishes on sum of derivatives. Therefore it is proportional to the Lebesgue
measure and there is a constant λ such that

(4.77) τ(P ) = τ(PcP ) = λ

∫
cP (x) = λResP, P ∈ ΨZ

V,comp(Rd+1).

Going back to M we conclude that τ as a trace on ΨZ
V(M, E) is proportional

to the non-commutative residue. �
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As a smoothing operator is a sum of smoothing commutators if, and only
if, its trace vanishes (see [Gu2, appendix]) we get the following corallary.

Corollary 4.16 Let (Md+1,V) be a compact Heisenberg manifold and E be
a vector bundle over M . Then P ∈ ΨZ

V(M, E) is a sum of commutators if,
and only if, it is of the form

(4.78) P = Q+R,

with Q ∈ ΨZ
V(M, E) and R ∈ Ψ−∞(M, E) such that

(4.79) ResQ = TraceR = 0.
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Chapter 5

Spectral geometry of
Heisenberg and
pseudohermitian manifolds

In this last chapter we give geometric applications of the non-commutative
residue and the TR-trace. In the first section we define the zeta function of
an elliptic sublaplacian and, in the selfadjoint case, we relate its residues and
regular values to the coefficients of the heat kernel asymptotics (theorems 5.3
and 5.5).

In section 5.2 we derive variational formulae for zeta functions with re-
spect to C1 families of sublaplacians. We use them in section 5.3 to produce
conformal invariants associate to sublaplacians (theorem 5.14) extending
then the results of N.K. Stanton [St].

In section 5.4 we look at the non-commutative geometry of pseudoher-
mitian manifolds. In particular we are able to define the area of a compact
three dimensional pseudohermitian manifold and to compute it by an explicit
local formula involving the Tanaka-Webster scalar curvature (theorem 5.20).

In the last section we study the index of a square root of an elliptic
sublaplacian. First we show that in even dimension the index is always zero
and in odd dimension the index is given by the right coefficient of the heat
kernel asymptotics (theorem 5.21).

Next using cyclic cohomology and the local index formula of Connes-
Moscovici we are able to show the existence of an even homology class
whose pairing with the Chern character of a vector bundle gives the in-
dex with coefficients in the bundle and we give a local formula for currents
represented the components of this homology class as a universal finite linear
combination of non-commutative residues (theorem 5.27).
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5.1 The zeta function of an elliptic sublaplacian

Let (Md+1,V) be a compact Heisenberg manifold and let ∆ be an elliptic
sublaplacian on M . We assume here that ∆ is either invertible or selfadjoint.
Then we can construct its complex powers as in chapter 3 and define the
zeta function of ∆ as the meromorphic function

(5.1) ζ(s) = TR ∆−s, s ∈ C.

Since the non-commutative residue of a differential operator is zero theo-
rem 4.5 gives

Proposition 5.1 Let Σ = {1
2k ; k = 0, 1, . . . , d+ 2} ∪ (−1

2 +Z−). Then the
zeta function (5.1) is holomorphic on C \ Σ and has at worst simple pole
singularities on Σ with residues

(5.2) ress=s0 ζ(s) = 2 Res ∆−s0 = 2

∫
M
c∆−s0 (x), s0 ∈ Σ.

Suppose now that ∆ is selfadjoint and let us relate the residues and the
regular values of the zeta function to the heat kernel asymptotics of ∆ for t
small,

(5.3) kt(x, x) ∼ t−
d+2
2

∑
j≥0

tjaj(∆)(x),

where the aj(∆)(x)’s are smooth densities on M .
The idea here is to introduce an auxiliary meromorphic function, directly

related to the heat kernel, and which is very much like the zeta function at
integer points. This function is

(5.4) ϑ(s) = TRD−s, D−s =
1

Γ(s)

∫ 1

0
tse−t∆

dt

t
.

Lemma 5.2 The family (D−s) given by (5.4) is holomorphic on the right
half-plane {<s > 0}. It extends to a holomorphic family on the whole C
such that the family

(5.5) Rs = ∆−s −D−s, s ∈ C,

is a holomorphic family of smoothing operators satisfying

(5.6) R0 = −Π0, R−k = 0, k integer > 0.

Proof. That (D−s) is a holomorphic family of ΨVDO’s on the right half-
plane follows from the proof of theorem 3.17. Moreover an integration by
parts yields

∆D−s =
1

Γ(s)

∫ 1

0
ts∆e−t∆

dt

t
=
−1

Γ(s)

∫ 1

0
ts
d

dt
(e−t∆)

dt

t
.

=
−1

Γ(s)
e−∆ +

s− 1

Γ(s)

∫ 1

0
ts−1e−t∆

dt

t
.(5.7)
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Since Γ(s) = (s− 1)Γ(s− 1) we obtain the equality

(5.8) D−(s−1) = ∆D−s + Γ(s)−1e−∆.

As Γ(s)−1 is a holomorphic function on C it follows that the family (D−s)
extends to a holomorphic family on the whole complex plane.

Now let Π+ (resp. Π−) be the orthogonal projection onto the span of
the eigenvectors with non-negative (resp. non-positive) eigenvalues. Then
the families

(5.9) Π−D−s, Π−∆−s, Π0D−s =
1

sΓ(s)
Π0, Π0∆−s = 0,

are all holomorphic family of smoothing operators over C. Moreover the
Mellin formula gives

(5.10) Π+∆−s =
1

Γ(s)

∫ ∞
0

tsΠ+e
−t∆dt

t
= Π+D−s +

1

Γ(s)

∫ ∞
1

tse−t∆
dt

t
.

So using the equalities

(5.11)

∫ ∞
1

tse−t∆
dt

t
= Π+e

−∆/4

∫ ∞
1
2

tse−t∆
dt

t
e−∆/4,

(5.12) ∆−s −D−s = Π−(∆−s −D−s) +
1

sΓ(s)
Π0 +

1

Γ(s)

∫ ∞
1

tse−t∆
dt

t
,

we see that Rs = ∆−s−D−s is a holomorphic family of smoothing operators
on C.

Finally as Γ(s) has simple poles at negative integers with residue 1 at
zero, the equality (5.12) shows that R0 = −Π0 and R−k = 0 if k is a non-
negative integer. �

Theorem 5.3 Suppose d + 1 odd, d + 1 = 2n + 1, and assume that ∆ is
selfadjoint. Then:

1) For k = 1, . . . , n+ 1 we have

(5.13) ress=k ζ(s) =
1

2
Res ∆−k =

1

(k − 1)!

∫
M
an+1−k(∆)(x).

2) At s = 0 the regular value is

(5.14) ζ(0) =

∫
M
an+1(∆)(x)− dim ker ∆.
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3) For any non-positive integer −k we have

(5.15) ζ(−k) = (−1)k−1(k − 1)!

∫
M
an+1+k(∆)(x).

Proof. By lemma 5.2 the family Rs = ∆−s −D−s is a holomorphic family
of smoothing operators on C. So by remark 4.7 we need only to look at the
auxiliary function

(5.16) ϑ(s) = TRD−s, s ∈ C.

Moreover the asymptotic (5.3) implies that for any integer N we have

(5.17) kt(x, x) = t−
d+2
2

N∑
j=0

tjaj(∆)(x) + tN−(n+1)rN (x, t),

with rN (x, t) bounded for t small. Thus

(5.18)

∫ 1

0
tskt(x, x)

dt

t
=

N∑
j=0

1

s+ j − (n+ 1)
aj(∆)(x) + hN,s(x),

where hN,s(x) is a holomorphic family of densities for <s > n + 1 − N .
Integrating over M we obtain

(5.19) TraceD−s =
1

Γ(s)

N∑
j=0

1

s+ j − (n+ 1)

∫
M
aj(∆)(x) +

1

Γ(s)
hN (s),

where hN (s) is a holomorphic function for <s > n+ 1−N . The conclusion
follows from this last equality and the properties of the Gamma function,
noting that TraceRs is equal to −dim ker ∆ at s = 0 and vanishes at non-
positive integers. �

Remark 5.4 The above computations are local and (5.18) shows that we
can calculate explicitly the densities c∆−k(x) and the regular values of t∆−s
at negative integers. We get

(5.20) c∆−k(x) =
1

(k − 1)!
an+1−k(∆)(x), k = 1, . . . , n+ 1,

(5.21) t∆k(x) = (−1)k−1(k − 1)!an+1+k(∆)(x), k ∈ N.

Arguing similarly in the even dimensional case we obtain:

Theorem 5.5 Suppose d+ 1 = 2n even and assume ∆ selfadjoint. Then:
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1) For k = −n,−n+ 1, . . . we have

(5.22) ress= 1
2
−k = Res ∆−

1
2

+k =
1

Γ(1
2 − k)

∫
M
an+k(x).

2) The regular value at s = 0 is given by

(5.23) ζ(0) = −dim ker ∆.

3) The regular values at non-positive integers all vanish.

5.2 Variational formulae and homotopy invariance

In this section we shall derive variational formulae for the zeta functions
associate to a C1-family of elliptic sublaplacians on a compact Heisenberg
manifold. The first step is to justify the switching over of the trace and
the derivation with respect of the parameter. This follows from a more
general variational formula for the TR-trace which is an almost immediate
consequence of the procedure carried out to construct it.

Before achieving that let us first define C1-family of ΨVDO operators
over an open interval I of R.

Definition 5.6 For m ∈ C a family (fε)ε∈I with values Sm(Rd+1) is C1 if:

(i) for ξ fixed fε(ξ) is C1 function of ε;

(ii) for any j the homogeneous symbols fε,m−j of degree m − j of fε
depends in a C1 way on ε;

(iii) the bounds of the asymptotic fε ∼
∑
fε,m−j are uniform with re-

spect to the C1-topology.

If U is an open subset of Rd+1 we can as well define C1-families of symbols
of order m on U × Rd+1, obtaining C1⊗̂C∞-families of symbols of order m
on Rd+1.

If U is equipped with a hyperplane bundle V ⊂ TU and a V-frame, we
define a C1-family of ΨVDO operators on U as a family (Pε) of ΨVDO’s of
the form

(5.24) Pε = fε(x, σ(x,D)) +Rε,

with (fε) a C1-family of symbols on U × Rd+1 and (Rε) a C1-family of
smoothing operators.

The notion of C1-family of ΨVDO’s is stable under the composition of
operators and invariant by Heisenberg diffeomorphisms. So we can define
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them on any Heisenberg manifold. Moreover if ∆ε is a C1-family of sub-
laplacians then the parametrix construction of [BG] can be carried out so
that to obtain a C1-family of parametrices.

If Ω ⊂ C is an open and Λ ⊂ C\0 is a pseudocone we can similarly
define C1(I)⊗̂Hol(Ω)-families and C1(I)⊗̂Holp(Λ)-families of ΨVDO oper-
ators using the same procedures as in chapters 2 and 3.

The notion of C1⊗̂Hol-family is very relevant for our purpose. Remem-
ber that theorem 4.5 followed from lemma 4.4 which was itself a straight-
forward extension to smooth families of symbols of lemma 4.2. In the same
way we have an extension of lemma 4.2 to C1⊗̂C∞-families.

Lemma 5.7 Let (fε,z) be a C1(I)⊗̂Hol(Ω)-family of symbols on U ×Rd+1.

1) If ordfε,z 6∈ Z then L̃(fε,s(x, .)) is holomorphic from Ω into C1(I)⊗̂C∞(U)
and we have

(5.25) ∂εL̃(fε,s(x, .)) = L̃(∂εfε,s(x, .)).

2) If ordfε,z = z around some integer m then L̃(fε,s(x, .)) has a simple
pole singularity near z = m and the equality (5.25) continues to hold
as an equality of meromorphic function near z = m.

Combining this lemma with the proof of theorem 4.5 we obtain:

Proposition 5.8 Let (M,V) be a compact Heisenberg manifold and let (Pε,s)
be a C1⊗̂Hol-family of ΨVDO operators on M .

1) If ordPε,s 6∈ Z then TRPε,s is holomorphic for the C1-topology and
we have

(5.26) ∂ε TRPε,s = TR ∂εPε,s

2) Suppose that ordPε,s = z around some integer m then TRPε,s has
a simple pole singularity for the C1-topology near z = m and (5.26)
holds as an equality of meromorphic functions near z = m.

Proposition 5.9 Let (Md+1,V) be a compact Heisenberg manifold and let
(∆ε) be a C1-family of elliptic sublaplacians on M . We make the following
assumptions:

(i) the operator ∆ε is either invertible or selfadjoint;

(ii) there exists a connected open pseudocone Λ ⊂ C \ 0 such that Λ ∩
sp ∆ε = ∅ for any ε.
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We can the define the complex powers for ∆ε as in chapter 3 by means
of an integration contour contained in Λ. Then the function TR ∆−sε is
meromorphic for the C1-topology and we have

(5.27) ∂ε TR ∆−sε = −sTR ∂ε(∆ε)∆
−s−1
ε .

In particular,

(5.28) ∂ε Res ∆−kε = −kRes ∂ε(∆ε)∆
−k−1
ε k = 0,

1

2
, . . . ,

d+ 2

2
.

Proof. The construction of an asymptotic resolvent for ∆ε − λ, λ ∈ Λ,
in chapter 2 can be carried out smoothly with respect to the parameter
ε. As the domain of ∆ε doesn’t depend on ε and for any ε there is no
spectrum of ∆ε in Λ, it follows that (∆ε−λ)−1 is a C1-family of parametric
ΨVDO operators. Then the construction of the complex powers of ∆ε of
section 3.3 gives a C1⊗̂Hol-family of ΨVDO operators. So by proposition 5.8
the function TR ∆−sε is meromorphic for the C1-topology and we have the
equality of meromorphic functions

(5.29) ∂ε TR ∆−sε = TR ∂ε(∆
−s
ε ).

Therefore it is enough to show that for <s >> 0 we have

(5.30) TR ∂ε(∆
−s
ε ) = −sTR ∂ε∆ε ∆−sε

Now let m be an integer > −d+2
2 . Then (∆−mε ) is a C1-family of trace

class operators and for <s < 0 we have

∂ε Trace ∆−m+s
ε =

i

2π

∫
Γ
λs∂ε Trace ∆−mε (∆ε − λ)−1dλ,

= −mTrace ∂ε∆ε∆
−m−1
ε

i

2π

∫
Γ
λs(∆ε − λ)−1dλ(5.31)

− Trace ∂ε∆ε∆
−m−1
ε

i

2π

∫
Γ
λs(∆ε − λ)−2dλ.

As an integration by parts yields

(5.32)
i

2π

∫
Γ
λs(∆ε − λ)−2dλ =

−is
2π

∫
Γ
λs−1(∆ε − λ)−1dλ = −s∆−s−1

ε ,

we conclude that

(5.33) ∂ε Trace ∆−m+s
ε = (s−m) Trace ∂ε∆ε∆

−m+s−1
ε <s < 0.

Hence (5.27) holds for <s > m. As both sides of this equality are meromor-
phic functions, it holds on the whole C. �

Corollary 5.10 Let ∆0 and ∆1 be two elliptic sublaplacians on M which
can be connected to each other by means of a C1-family satisfying the as-
sumptions of proposition 5.9. Then the regular values at zero of the zeta
functions associated to ∆0 and ∆1 coincide.
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5.3 Conformal invariants of sublaplacians

Let (Mn, g) be a compact Riemannian manifold and let �g be the
conformal Laplacian on M ,

(5.34) �g = d∗d+
1

4

n− 2

n− 1
sn,

where sn is the scalar curvature. This operator, also called Yamabe oper-
ator, was studied in order to solve the Yamabe problem of finding within
the conformal class of g a metric with constant scalar curvature (see [Au]
and [Sc]). It transforms conformally under a conformal change g → e2fg of
metrics, i.e.

(5.35) �e2fg = e−(n
2

+1)f�ge
(n
2
−1)f , f ∈ C∞(M).

For t small the kernel of e−t�g admits on the diagonal an asymptotics of the
form

(5.36) kt(x, x) ∼ t−
n
2

∑
tkak(�g)(x),

where the ak(�g)(x)’s are densities on M given by local invariants in the
jets of the metric [Gi].

If F (g) is a function of the metric g, or of the contact form θ below, we
set

(5.37) δf =
∂

∂ε
F (e2εfg)|ε=0

, f ∈ C∞(M).

In [BØ1] and [PR] the following theorem is proved.

Theorem 5.11 ([BØ1], [PR]) Let (M2n, g) be an even dimensional com-
pact Riemannian manifold and let f ∈ C∞(M). Then:

1) We have

(5.38) an−1(�e2fg)(x) = e2f(x)an−1(�g)(x),

i.e. an−1(�g, x) is a local conformal invariant of weight −2.

2) For any integer k,

(5.39) δf

∫
M
ak(�g)(x) = 2(n− k)

∫
M
f(x)ak(�g)(x),

In particular An =
∫
M an(�g, x) is a conformal invariant.
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There is an analogous result for pseudohermitian manifolds proved by
N.K. Stanton [St]. Let (M2n+1, θ) be a compact pseudohermitian manifold
and let �θ be the conformal sublaplacian,

(5.40) �θ = ∆b +
n

n+ 2
Rn,

where Rn is the Tanaka-Webster scalar curvature. The operator was intro-
duced in [Le] in order to solve the corresponding Yamabe problem on CR
manifolds [JL1]. Under a conformal change of contact form θ → e2fθ the
operator �θ transforms into

(5.41) �e2fθ = e−(n+2)f �θ e
nf .

By proposition 1.53 the heat kernel of �θ admits on the diagonal an asymp-
totics for t small in the form

(5.42) kt(x, x) ∼ t−(n+1)
∑
j≥0

tjaj(�θ)(x).

Then N.K. Stanton proved:

Theorem 5.12 ([St]) Let (M2n+1, θ) be a compact pseudohermitian man-
ifold. Then

1) For any f ∈ C∞(M) we have

(5.43) an(�e2fθ)(x) = e2f(x)an(�θ)(x).

In other words an(�e2fθ)(x) is a local conformal invariant of weight
−2.

2) We define a global conformal invariant by setting

(5.44) An+1 =

∫
M
an+1(�e2fθ)(x).

We shall give here a shorter proof of the first assertion and goes a little
bit further with the second one. To this end we need the following lemma.

Lemma 5.13 Let (M2n+1, θ) be a compact pseudohermitian manifold. For
f ∈ C∞(M) define the C1-family of sublaplacians

(5.45) �θ,ε = �e2εfθ, −1 < ε < 2.

Then the family (�θ,ε) satisfies to the assumptions of the proposition 5.9.
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Proof. Let u0, . . . , ul be an orthonormal basis of ker�θ. The kernel of the
projection Πθ onto ker�θ is then given by

(5.46) πθ(x, y) =
l∑

j=0

uj(x)ūj(y)(dθ)n ∧ θ(y).

As e−nεfu0, . . . , e
−nεful is a basis for ker ∆ε a Gram-Schmidt orthonormal-

isation produces an orthonormal basis v0,ε, . . . , vl,ε, with respect the inner-
product induced by the volume form e2(n+2)εf (dθ)n ∧ θ, such that vj,ε is C1

with respect to ε. Then it follows from (5.46) that the orthogonal projection
Πε onto ker�θ,ε is a C1-family of smoothing operators. Then the equality

(5.47) �−1
θ,ε = (�θ,ε + Πε)

−1 −Πε,

shows that �−1
θ,ε is a C1-family of bounded operators and there exists C > 0

such that

(5.48) ‖�−1
θ,ε ‖ ≤ C, −1 ≤ ε ≤ 2.

This implies that �θ,ε has no eigenvalue, except maybe 0, in the interval
] − C−1, C−1[. Hence the family of sublaplacians �−1

θ,ε satisfies to the as-
sumptions of proposition 5.9. �

Theorem 5.14 Let (M2n+1, θ) be a compact pseudohermitian manifold and
let f ∈ C∞(M).

1) We have

(5.49) an(�e2fθ)(x) = e2f(x)an(�θ)(x),

i.e. an(�e2fθ)(x) is a local conformal invariant of weight −2.

2) We have the equality of meromorphic functions

(5.50) δf TR�−sθ = 2sTR f �−sθ .

Hence ζ�θ(0) is a conformal invariant.

3) For any integer k,

(5.51) δf

∫
M
ak(�θ)(x) = 2(n+ 1− k)

∫
M
f(x)ak(�θ)(x).

Thus An+1 =
∫
M an+1(�e2fθ)(x) is a conformal invariant.
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Proof. Let Π0 be the orthogonal projection onto ker�θ. Then

(5.52) e−nf �−1
θ e(n+2)f�e2fθ = e−nf �−1

θ �θe
nf = 1− e−nfΠ0e

nf .

So e−nf �−1
θ e(n+2)f is a parametrix for �e2fθ and differs from �−1

e2fθ
only by

a smoothing operator. Therefore it follows from theorem 5.3 that
(5.53)
an(�θ)(x) = c�−1

θ
(x) = ce−nf�−1

θ e(n+2)f (x) = e2f(x)c�−1
θ

= e2f(x)an(�θ)(x).

On the other hand, by lemma 5.13 the family �θ,ε = �e2εfθ satisfies
to the assumptions of proposition 5.9. So TR�−sθ,ε is meromorphic for the

C1-topology and we have the equality of meromorphic functions

(5.54) δf TR�−sθ = −sTR(∂ε�θ,ε)ε=0�
−s−1
θ = 2sTR f �−sθ .

Hence the second assertion.
Finally the last assertion follows from the second one and theorem 5.3,

noting that dim ker�θ is a conformal invariant. �

Remark 5.15 The last assertion answers positively to a conjecture raised
by Branson-Ørsted [BØ2].

5.4 Non-commutative geometry of pseudohermi-
tian manifolds

Let (M2n+1, θ) be a compact pseudohermitian manifold. Then propo-
sition 1.55 and theorem 5.3 express the non-commutative residues of the
geometric sublaplacians as integrals of universal polynomials in the Tanaka-
Webster connection. For instance:

Proposition 5.16 Let ∆b be the pseudohermitian sublaplacian on (M, θ).
Then

(5.55) Res ∆
−(n+1)
b = αn

∫
M

(dθ)n ∧ θ, Res ∆−nb = βn

∫
M
Rn(dθ)n ∧ θ,

where αn and βn are universal constants and Rn is the Tanaka-Webster
scalar curvature.

Remark 5.17 These equalities are pseudohermitian analogues of the cor-
responding results in Riemannian geometry (see [Co1], [Kast], [KaW]).

By remark 5.4 we actually have

(5.56) c
∆
−(n+1)
b

(x) = αn(dθ)n ∧ θ(x), c∆−nb
(x) = βnRn(dθ)n ∧ θ(x).

Combining with theorem 4.11 we obtain:
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Corollary 5.18 For any f ∈ C∞(M) we have

(5.57) −
∫
f∆
−(n+1)
b = αn

∫
M
f(dθ)n ∧ θ.

So extrapolating [Co4] we can interpret ds = α
−1

2(n+1)
n ∆

− 1
2

b as a length element
and define the area of (M, θ) as follows.

Definition 5.19 The area of (M, θ) is

(5.58) areaθM = Res ds2 = α
−1

(n+1)
n Res ∆−1

b .

Theorem 5.20 For any 3-dimensional pseudohermitian manifold (M3, θ)
we have

(5.59) areaθM =
1

8
√

2

∫
M3

R1dθ ∧ θ.

Proof. By proposition 5.16 there exists a constant β1 such that for any
3-dimensional pseudohermitian manifold (M3, θ) we have

(5.60) areaθM =
β1√
α1

∫
M
R3dθ ∧ θ.

To compute the ratio β1√
α1

we need only to look at the specific example of

the unit sphere S3 of C2 with contact form θ = i
2(z1dz̄1 + z2dz̄2). By [We]

the scalar curvature R1 is then equal to 4 and thus we get

(5.61)
β1√
α1

=
Res ∆−1

b

4
∫
S3 dθ ∧ θ

(
Res ∆−2

b∫
S3 dθ ∧ θ

)
−1
2 =

1

4

Res ∆−1
b√

Res ∆−2
b

(

∫
S3

dθ ∧ θ)
−1
2 .

On the other hand, by theorem 5.3 as t→ 0+ we have

(5.62) Trace e−∆b =
1

2t2
Res ∆−2

b +
1

2t
Res ∆−1

b + O(1).

Since R1 = 4 here, we have ∆b = �θ − 1. So using [St, theorem 4.34] we
obtain

(5.63) Trace e−∆b = et(
π2

16t2
+ O(t∞)) =

π2

16t2
+
π2

16t
+ O(1).

Thus Res ∆−2
b = Res ∆−1

b = π2

8 and we get

(5.64)
β1√
α1

=
π

8
√

2
(

∫
S3

dθ ∧ θ)
−1
2 .
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It remains then to compute
∫
S3 dθ ∧ θ. We have

dθ ∧ θ =
−1

4
(z2dz1 ∧ dz̄1 ∧ dz̄2 + z1dz1 ∧ dz2 ∧ dz̄2)

=
1

2
ıR(dx1 ∧ dy1 ∧ dx2 ∧ dy2),(5.65)

where R = ∂
∂r is the radial vector fields. Thus

(5.66) volθ S
3 =

∫
S3

dθ ∧ θ =
1

2
|S3| = π2,

which finally yields β1 = 1
8
√

2
. �

5.5 Local index formulae

LetD be an order 1 selfadjoint ΨVDO operator on a compact Heisenberg
manifold (Md+1,V) acting on a the sections of a vector bundle S over M .
We assume that D is elliptic in the Heisenberg calculus and it anti-commutes
with a Z2-grading γ on S. With respect to this grading we can decompose
S as a direct sum

(5.67) S = S+ ⊕ S−,

and write D as

(5.68) D =

(
0 D−

D+ 0

)
, D± : S± → S∓.

By definition the index of D is

(5.69) indD = indD+ = dim kerD+ − dim kerD−,

The aim of this section is to compute by a local formula the index of D.

Theorem 5.21 Assume that D2 is a sublaplacian, so that its heat kernel
has an asymptotic on the diagonal of the form

(5.70) kt(x, x) ∼ t−
d+2
2

∑
j≥0

tjaj(D
2)(x),

where the aj(D
2)(x) are smooth densities on M with values in ENDS.

1) If d+ 1 is even we have indD = 0.

2) If d+ 1 is odd, d+ 1 = 2n+ 1, then

(5.71) indD =

∫
M

StrS a0(D2)(x).
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Proof. We have

(5.72) D2 =

(
∆+ 0
0 ∆−

)
, ∆± = D∓D±.

The idea of the proof is to express the index of D as the difference of the
zeta functions of ∆+ and ∆−,

(5.73) ζ± = TR(∆±)−s.

In fact for <s > 1
2(d+ 2) we have

(5.74) ζ+(s)− ζ−(s) =
∑
λ>0

λs(dim ker(∆+ − λ)− dim ker(∆− − λ)) = 0,

for D induces for any λ > 0 a bijection between ker(∆+−λ) and ker(∆−−λ).
So if d+ 1 is even then by theorem 5.5 we have

(5.75) 0 = ζ+(0)− ζ−(0) = −dim ker ∆+ + dim ker ∆− = − indD,

while if d+ 1 = 2n+ 1 is odd theorem 5.3 gives
(5.76)

indD =

∫
M

trE+ a(n+1)(∆
+)(x)−

∫
M

trE− a(n+1)(∆
−)(x) =

∫
M

StrE a(n+1)(D
2)(x),

which completes the proof. �

Remark 5.22 It is actually possible to show that the square D2 of any
elliptic ΨVDO operator D of order 1 has an heat kernel asymptotic of the
kind of (5.70), adding logarithmic terms as in [DG] and [GruS]. So the
theorem holds for any odd selfdajoint elliptic ΨVDO of order 1.

Now let E be a Hermitian vector bundle and let ∇ be a Hermitian con-
nection on E , i.e.

(5.77) 〈∇ξ, η〉 − 〈ξ,∇η〉 = d〈ξ, η〉, ξ, η ∈ C∞(M, E).

We form the twist of D by ∇ as follows. By [Co1, prop. VI.1.4] we
define a define a morphism of C∞(M)-modules π : C∞(M,ΛT ∗M) →
C∞(M,EndS) by letting

(5.78) π(f0df1 . . . dfn) = f0[D, f1] . . . [D, fn], f j ∈ C∞(M).

For example, in the case of the Dirac operator on a spin Riemannian mani-
fold we would have got the Clifford representation. We get then a morphism
of C∞(M)-modules π : C∞(M,S ⊗ΛT ∗M)→ C∞(M,EndS). The twisted
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operator D∇,E is the differential operator acting on C∞(M,S ⊗ E) defined
by

(5.79) D∇,E = D ⊗ 1 + π∇,

where π∇ is given by the compositions

(5.80) C∞(M,S ⊗ E)
1⊗∇−→ C∞(M,S ⊗ ΛT ∗ ⊗ E)

π⊗1−→ C∞(M,S ⊗ E).

However by Serre-Swan theorem the map E → C∞(M, E) induces an
isomorphism in K-theory,

(5.81) K0(M) ' K0(A),

where A is the (Fréchet) algebra C∞(M). Under this isomorphism the
definition of D∇,E coincides the one given in [Mo], so that

(5.82) indD∇,E = indD[E ],

where [E ] is the class of E in K0(M) ' K0(A) and indD is the index map
from K0(A) into Z ([At], [Kas], [Co1]).

The cyclic cohomology [Co1] can be presented as follows. First the
Hochschild cohomology H∗(A,A∗) is the cohomology of the complex of
cochains,

Cn(A) = {continuous (n+ 1)-linear form on A} if n ≥ 0,

= 0 if n < 0,(5.83)

with coboundary

bψ(a0, · · · , an+1) =
∑

(−1)jψ(a0, · · · , ajaj+1, · · · , an+1)

+ (−1)n+1ψ(an+1a0, · · · , an) ∀aj ∈ A.(5.84)

The cyclic cohomology is the cohomology of the sub-complex (C∗λ(A), d)
of the Hochschild complex consisting in cyclic cochains, i.e.

(5.85) ψ(a1, · · · , an, a0) = (−1)nψ(a0, · · · , an) aj ∈ A.

It can equivalently described in terms of the second filtration of the (b, B)-
bicomplex defined as follows. Let

(5.86) Cn,m(A) = Cn−m(A), n,m ∈ N,

take b as vertical differential and as horizontal differential take B : Cm(A)→
Cm−1(A) given by
(5.87)

B = AB0, (Aφ)(a0, · · · , am−1) =
∑

(−1)(m−1)jψ(aj , · · · , aj−1),
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(5.88) B0ψ(a0, · · · , am−1) = ψ(1, a0, · · · , am−1), aj ∈ A.

One can check that b2 = B2 = bB + Bb = 0 so that (C∗,∗, b, B) is really a
bicomplex.

Actually, it is more convenient to work with the short cyclic complex

(5.89) Cev(A)
∂
� Codd(A), ∂ = b+B,

(5.90) Cev(A) =
⊕
n≥0

C2n(A), Codd(A)
⊕
n≥0

C2n+1(A),

where⊕ is the algebraic direct sum, so that the cochains in the short complex
have finite supports. We thus obtain two cohomology groups HCev(A)
and HCodd(A). For the reader familiar with [Co1] note that HCev(A) ⊕
HCodd(A) is just the periodic cyclic cohomology seen as the filtration by
dimension of the entire cyclic cohomology HC∗ε (A).

We have a pairing between HCev(A) and K0(A) such that for a cyclic
cocycle ϕ = (ϕ2n) in Codd(A) and for an idempotent e ∈ ProjMk(A) we
have

(5.91) 〈[ϕ], [e]〉 =
∑
|≥|0

(−1)n
(2n)!

n!
ϕ2n# tr(e, · · · , e),

where ϕ2n# tr is then+ 1-linear map on Mk(A) = Mk(C)⊗A defined by

ϕ2n# tr(µ0 ⊗ a0, · · · , µ2n ⊗ a2n)

= tr(µ0 . . . µ2n)ϕ2n(a0, · · · , a2n), µj ∈Mk(C), aj ∈ A.(5.92)

(See [Co1, sect. IV.7.δ] using the table p. 371).

However we are dealing here with A = C∞(M) and this has important
topological counterparts. First we can explicitly described the Hochschild
cohomology in terms of de Rham’s currents.

Proposition 5.23 ([Co2]) 1) We define an isomorphism ψ → Cψ
from the Hochschild cohomology group Hk(A,A∗) onto the space D′k(M)
of k-dimensional currents by letting
(5.93)

〈Cψ, f0df1 . . . dfk〉 =
1

k!

∑
σ∈Sk

ε(σ)ψ(f0, f1, · · · , fk), f j ∈ A.

2) Under this isomorphism we have B = kdt where dt is the de Rham
boundary for currents.
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Note that if the k-cocycle ψ is completely antisymmetric in the last k vari-
ables then

(5.94) 〈Cψ, f0df1 . . . dfk〉 = ψ(f0, f1, · · · , fk), f j ∈ A.

The inverse of the above isomorphism is given by C → ψC where

(5.95) ψC(f0, f1, · · · , fk) = 〈Cψ, f0df1 . . . dfk〉, f j ∈ A.

This defines a cocycle and we have

B0ψC(f0, · · · , fk−1) = ψC(1, f0, · · · , fk−1)

= 〈C, df0 ∧ . . . ∧ dfk〉 = 〈dtC, f0 ∧ df1 ∧ . . . ∧ dfk〉.(5.96)

Therefore given a current C = (Ck) ∈ ⊕k≤0D′k(M) we define a cochain
in the short complex by letting

(5.97) ϕC = (ϕCk), ϕCk =
1

k!
ψCk .

Since ∂ϕC = ϕdtC this map induces a morphism ω → ϕω from the even
de Rham homology Hev(M) = ⊕n≤0H2n(M) of the manifold into the even
cyclic cohomology HCev(A) of A.

Proposition 5.24 1) The map ω → ϕω is an isomorphism from Hev(M)
onto HCev(A).

2) Let C be an even closed current on M and let E be an Hermitian
vector bundle over M . Then

(5.98) 〈[ϕC ], [E ]〉 = 〈[C],Ch∗ E〉,

where the l.h.s. is the pairing of the cyclic cohomology class of ϕC with
the class of E in K0(A) ' K0(M), while the r.h.s. is the pairing of
the homology class of C with the Chern character of E.

Proof. 1) Let ϕ = (ϕ2n) ∈ Cev(A) such that ∂ϕ = 0, i.e.

(5.99) Bϕ2n + bϕ2n = 0.

For n large enough we have ϕ2p = 0 for p > n. In particular ϕ2n+2 = 0 so
that bϕ2n = 0. Thus ϕ2n is a Hochschild cocycle and by proposition 5.23
there exists an unique 2n dimensional current C2n = (2n)!Cϕ2n on M such
that ϕ2n − ϕC2n is a cobounday cochain,

(5.100) ϕ2n = ϕC2n + bψ2n−1, ψ2n−1 ∈ C2n−1(A).
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This current is closed since the boundary dt corresponds in Hochschild
cohomology to the B operator and we have

(5.101) BϕC2n = Bϕ2n +Bbψ2n−1 = −b(ϕ2n−2 +Bψ2n−1).

Then (5.96) implies BϕC2n = 0, so

(5.102) b(ϕ2n−2 −Bψ2n−1) = −B(ϕ2n − bψ2n−1) = 0.

Hence ϕ2n−2 − Bψ2n−1 is a Hochschild cocycle and there exists an unique
2n − 2 dimensional current C2n−2 and a cochain ψ2n−3 ∈ C2n−3(A) such
that

(5.103) ϕ2n−2 = ϕC2n−2 +Bψ2n−1 + bψ2n−3.

The current C2n−2 is also closed, since

(5.104) BϕC2n−2 = Bϕ2n−2 −Bbψ2n−3 = b(ϕ2n−4 +Bψ2n−3).

Moreover if ψ′2n−1 is another cochain satisfying (5.100) then ψ2n−1 −
ψ′2n−1 is a Hochschild cocycle and ψ′2n−1 yields another closed current C ′2n−2 ∈
D′2n−2(M) such that

(5.105) ϕC2n−2 − ϕC′2n−2
= B(ψ2n−1 − ψ′2n−1).

So C2n−2−C ′2n−2 is a boundary current and the homology class of C2n−2 is
uniquely determined.

Repeating this process we get an even current C = (C2n) and an odd
cochain ψ = (ψ2n+1) such that

(5.106) ϕ = ϕC + ∂ψ.

Each step yields an uniquely determined homology class of currents, so we
have proven that for each class ϕ ∈ HCev(A) there exists an unique even
homology class ω ∈ Hev(M) such that ϕ = ϕω. Thus ω → ϕω is an isomor-
phism from Hev(M) onto HCev(A).

2) Let E be an Hermitian vector bundle overM . As aA-module C∞(M, E)
is isomorphic to eAk for some integer k and some idempotent e ∈ ProjMk(A).
So we can suppose that E = im e and define a connection on E by setting

(5.107) ∇ = (e⊗ 1)d : C∞(M, E) −→ C∞(M, E ⊗ Λ1T ∗M).

One can check that the curvature of this connection is

(5.108) ∇2 = e(de)2 = e(de)2e ∈ C∞(M, E ⊗ Λ2T ∗M),

so that the Chern character of E is represented by the even closed form

(5.109) Tr e−∇
2

=
∑ (−1)n

n!
Tr(e(de)2)n =

∑ (−1)n

n!
Tr e(de)2n.
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Now let C = (C2n) be an even closed current. Then

ϕC2n# Tr(a0 ⊗ µ0, · · · , a2n ⊗ µ2n) =
1

(2n)!
Tr(µ0 · · ·µ2n)〈C2n, a

0da1 · · · a2n〉

=
1

(2n)!
〈C2n,Tr(a0 ⊗ µ0, · · · , a2n ⊗ µ2n)〉.(5.110)

Therefore

(5.111) 〈[ϕC ], [E ]〉 =
∑ (−1)n

n!
〈C2n,Tr e(de)2n〉 = 〈[C],Ch∗ E〉,

which concludes the proof. �

Let us now go back to our index problem. The cyclic cohomology is
actually the natural recipient, at least at the operatorial level, to a dual
Chern character whose pairing enables us as in the Atiyah-Singer index
theorem [AS] to compute the index of D with coefficient in K0(A).

Indeed let H be the Hilbert space

(5.112) L2(M,S) = L2(M,S+)⊕ L2(M,S−).

Then A = C∞(M) acts on this Hilbert space by multiplication and D is
an odd unbounded selfadjoint operator on H. As D is an (Heisenberg)
elliptic differential operator of order 1, it has compact resolvent and almost
commutes with A to the extent that [D, a] is bounded for any a ∈ A. Hence
(A,H, D) is an even spectral triple in the sense of [CM2].

This spectral triple is (d+ 2)-summable since by theorem 4.11 we have

(5.113) µn(D−1) = O(n
−1

(d+2) ).

Suppose now that the complex powers |D|z, z ∈ C, define a one pa-
rameter group of ΨVDO’s such that ord|D|z = z. By chapter 3 this is
certainly true if D2 is a sublaplacian. Then theorem 4.5 implies that if we
let Σ = {k ∈ Z; k ≤ (d+2)} then for any ΨVDO with integral order ≤ 0 the
function TRP |D|−z is holomorphic on C \ Σ and has at most simple pole
singularities on Σ with a residue at z = 0 given by

(5.114) resz=0 TRP |D|−z = ResP.

It follows that the spectral triple (A,H, D) has a discrete and simple dimen-
sion spectrum contained in Σ. Thus it satisfies to the hypothesis of [CM2,
theorem II.3] which provides us with a Chern character in cyclic cohomology
given by local formulae.

Proposition 5.25 ([CM2]) Suppose that D2 is a sublaplacian. Then:
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1) We define an even cyclic cocycle ϕ = (ϕ2n) as follows. For n 6= 0
the cochain ϕ2n is given by
(5.115)

ϕ2n =
∑
α

cα Res γa0[D, a1](α1) . . . [D, a2n](α2n)|D|−2(|α|+n), aj ∈ A,

where c−1
α = (−1)|α|2α!(α1 +1) · · · (α1 + · · ·+α2n+2n) and the symbol

T (k) denotes the k’th iterated commutator with D2, while for n = 0 we
have

(5.116) ϕ0(f) =

∫
M
f(x) StrS a0(D2)(x), f ∈ A,

where a0(D2)(x) is the density occurring as the constant term on the
asymptotics of the heat kernel on the diagonal.

2) The pairing with the class of ϕ in HCev(A) gives the index with
coefficients in K0(A),

Remark 5.26 The expression of ϕ0 differs a little bit from [CM2] but it is
the good one since it gives back the index of D and if D is not invertible
resz=0 zTR γ|D|−z is not equal to the constant term in the asymptotics of
Trace γe

−εD2
for ε small.

Putting all these things together we obtain:

Theorem 5.27 If D2 is a sublaplacian, then:

1) There exists an even homology class Ch∗D ∈ Hev(M) such that for
any Hermitian vector bundle over M with a Hermitian connection ∇
we have

(5.117) indD∇,E = 〈Ch∗D,Ch∗ E〉.

2) We can define an explicit closed even current C = (C2n) representing
Ch∗D as follows. For n 6= 0 define C2n by

〈C2n, f
0df1 ∧ . . . ∧ df2n〉

= (2n)!
∑
α

cα Res γf0[D, f1]α1 . . . [D, f2n]α2n |D|−2(|α|+n),(5.118)

where c−1
α = (−1)|α|2α!(α1 +1) · · · (α1 + · · ·+α2n+2n) and the symbol

T (k) denotes the k’th iterated commutator with D2, while for n = 0 we
have

(5.119) 〈C0, f〉 =

∫
M
f(x) StrS a0(D2)(x),

where a0(D2)(x) is the density occurring as the constant term on the
asymptotic of the heat kernel on the diagonal.
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Remark 5.28 The only thing we need for applying the Connes-Moscovici
theorem is that the complex powers |D|z, z ∈ C, define a one parameter
group of ΨVDO’s such that ord|D|z = z. It is also possible to prove this is
true for any elliptic ΨVDO of order 1. So the above theorem holds for any
odd selfadjoint elliptic ΨVDO of order 1.
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241, (1997), Exp. No. 816, 5, 313–349.

[CK1] A. Connes, D. Kreimer Hopf algebras, renormalization and non-
commutative geometry. Comm. Math. Phys. 199 (1998), no. 1,
203–242.

[CK2] A. Connes, D. Kreimer Renormalization in quantum field theory
and the Riemann-Hilbert problem I: The Hopf algebra structure of
graphs and the main theorem. Comm. Math. Phys. 210 (2000), no.
1, 249–273.

[CM1] A. Connes, H. Moscovici Cyclic cohomology, the Novikov conjec-
ture and hyperbolic groups. Topology 29 (1990), no. 3, 345–388.

[CM2] A. Connes, H. Moscovici The local index formula in noncommuta-
tive geometry. Geom. Funct. Anal. 5 (1995), no. 2, 174–243.

[CM3] A. Connes, H. Moscovici Hopf algebras, cyclic cohomology and the
transverse index theorem. Comm. Math. Phys. 198 (1998), no. 1,
199–246.

[CV] A.P. Calderón, R. Vaillancourt A class of bounded pseudo-
differential operators. Proc. Nat. Acad. Sci. U.S.A. 69 (1972),
1185–1187.

[DG] J.J Duistermaat, V.W. Guillemin The spectrum of positive elliptic
operators and periodic bicharacteristics. Invent. Math. 29 (1975),
39–79.

144



[EMM] C.L. Epstein, G. Mendoza, R.B. Melrose The Heisenberg alge-
bra, index theory and homology. To appear. Partially available at
http://www-math.mit.edu/̃rbm.

[ET] Y. Eliashberg, W. Thurston Confoliations. University Lecture Se-
ries, 13, AMS, Providence, RI, 1998.

[FGLS] B.V. Fedosov, F. Golse, E. Leichtnam, E. Schrohe The noncom-
mutative residue for manifolds with boundary. J. Funct. Anal. 142
(1996), no. 1, 1–31.
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Séminaire Bourbaki, Vol. 1988/89. Astérisque No. 177-178, (1989),
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