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HAD I the heavens’ embroidered cloths,
Enwrought with golden and silver light,

The blue and the dim and the dark cloths

Of night and light and the half-light,

I would spread the cloths under your feet:
But I, being poor, have only my dreams;

I have spread my dreams under your feet;
Tread softly because you tread on my dreams.

W.B. Yeats He Wishes For The Cloths Of Heaven
in The Wind Among The Reeds.
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Version francaise abrégée

Dans cette these on s’attache a démontrer divers théoremes en géométrie
pseudo-hermitienne, et plus généralement pour les variétés de Heisenberg,
comme applications de la construction d’un résidu non-commutatif dans le
cadre du calcul hypoelliptique sur les variétés de Heisenberg.

La these est organisée comme suit. Dans le premier chapitre on fait une
revue compléte sur le calcul pseudo-différentiel sur les variétés de Heisenberg,
qu’on appellera pour simplifier ¥y, DO-calcul, tel qu'il est présenté dans [BG]
et [BGS].

Dans le second chapitre on développe un ¥y, DO-calcul avec parametre
permettant une construction pseudo-différentielle de la résolvante d’un sous-
laplacien elliptique (théoreme 2.17).

Au chapitre 3 on définit et étudie les familles holomorphes de ¥y, DO
qu’on utilise pour construire les puissances complexes d’'un sous-laplacien
elliptique (théoremes 3.6, 3.10 et 3.11).

Dans le chapitre 4 on construit un prolongement analytique de la trace
pour les Uy, DO d’ordre complexe non entier et on montre qu’aux ¥y DO
d’ordre entier on a une trace résiduelle qui ’analogue complet du résidu non
commutatif (théoreme 4.4 et proposition 4.6). On montre ensuite que ce
résidu non commutatif permet d’étendre la trace de Dixmier a toute 1’algebre
des Uy DO d’ordre entier (théoreme 4.7) et que c’est essentiellement 'unique
trace sur cette algebre modulo les opérateurs régularisants (théoreme 4.8).

Dans le dernier chapitre on donne des applications géométriques du
résidu non commutatif et de la trace régularisée. D’abord on définit la fonc-
tion zéta d’un sous-laplacien elliptique dans le Uy, DO-calcul et on relie ses
résidus et valeurs régulieres aux coefficients du développement de la chaleur
(théoremes 5.2 et 5.4). On obtient ensuite des formules variationelles pour
les fonctions zéta qu’on utilise pour produire des invariants conformes d’une
variété pseudo-hermitienne (théoreme 5.8). Apres on étudie la géométrie
non-commutative des variétés de Heisenberg. En particulier on définit ’aire
d’une variété pseudo-hermitienne et on montre qu’en dimension 3 cette aire
est donnée par une formule locale invoquant la courbure scalaire de Tanaka-
Webster (théoreme 5.13).

Enfin dans la derniere section on donne des formules locales pour cal-
culer 'indice d’une racine carrée d’un sous-laplacien elliptique. D’abord on



montre qu’en dimension paire I'indice est toujours égal a zéro et qu’en dimen-
sion impaire il est donné par 'intégrale de la densité qui apparait comme le
terme constant dans I’asymptotique du noyau de la chaleur du sous-laplacien
(théoreme 5.14). Ensuite, en utilisant la cohomologie cyclique et la formule
d’indice locale de Connes-Moscovici [CM2], on montre qu’il existe un courant
de Rham, calculable par des formules locales explicites, dont I’accouplement
avec le caractere de Chern donne l'indice & coefficients dans la K°-théorie
de la variété (théoreme 5.15).

Chapitre 1 : calcul hypoelliptique sur les variétés
de Heisenberg

Dans ce chapitre on fait une revue du ¥y, DO-calcul, aussi appelé ¥y, DO-
calcul, tel qu’il est présenté dans [BG] et [BGS].

Variétés de Heisenberg

Une variété de Heisenberg (M,V) est une variété M avec un fibré en
hyperplans V C TM. Un difféomorphisme ¢ : (M, V) — (M’,V') entre deux
variétés de Heisenberg est dit Heisenberg quand ¢,V = V'.

Le modele local d’une variété de Heisenberg de dimension (d + 1) est
un ouvert U de R avec un fibré en hyperplans V C TU et est un V-
repére Xg, X1,...,Xg de TU, i.e. Xy, Xq,...,Xy est un repere de TU et
X1,...,Xq engendrent V. On définit alors une carte Heisenberg (locale)
pour une variété de Heisenberg comme un difféomorphisme Heisenberg (lo-
cal) vers un tel ouvert.

On a les exemples suivants de variétés de Heisenberg : groupe de Heisen-
berg, feuilletages (de codimension 1), feuilletacts (confeuilletages) [ET], variétés
de contact, CR, pseudo-hermitiennes.

La raison pour laquelle on utilise la terminologie variété de Heisenberg
provient de ce qu’on a en chaque point de la variété un groupe tangent de
la forme Hopq1 X R4—2n Par exemple dans le cas d’une variété de contact
M?"*1 on obtient le groupe de Heisenberg Hy,1 en chaque point, tandis
qu’a 'opposé pour un feuilletage de codimension 1 on obtient toujours le
groupe abélien R 1,

Sous-laplaciens et idées derriere le ¥y, DO-calcul

Soit (M1, V) une variété de Heisenberg. On appelle sous-laplacien un
opérateur différentiel sur M qui localement est de la forme

d d
(1) A== X7 —iN2)Xo+ Y (@)X, +v(x),
j=1 j=1
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ol A, i1, - - ., i4d, v sont des fonctions lisses et Xg, X1,..., X4 est un V-repere
local de T M.

Ce type d’opérateur ne peut étre elliptique. Néanmoins il peut étre
hypoelliptique et dans ce cas le ¥y DO-calcul permet de construire une
paramétrix. L’idéé est d’abord de considérer

d
(2) Ay == X7 —iXx)Xo,
j=1

comme ayant ordre 2 dans le Wy DO-calcul grace aux dilatations

(3) NE = (N2, \q, ..., NE), >0,

puis de figer les coefficients de As en le modélisant en chaque point y par un
opérateur différentiel AY invariant & gauche sur le groupe tangent en y. Sous
une certaine condition sur la fonction A\ on montre que AY est inversible et
que l'inverse fournit le symbole principal d’une paramétrix pour A.

Donnons, dans le cas d’une variété pseudo-hermitienne (M™, 6), quelques
exemples de sous-laplaciens :

1) lelaplacien de Kohn [, qui agit sur les formes C'R complexes (voir [Ko]);
2) le sous-laplacien pseudo-hermtien A, = 2R, introduit par Lee [Le];

3) le sous-laplacien conforme [y = Ay + iz Bn, o Ry, est la courbure
scalaire de la connexion de Tanaka-Webster ( [JL1]).

Le ¥y, DO-calcul

A partir de maintenant U est un ouvert de R4*! avec un fibré en hyper-
plans V C TU et un V-repere Xy, X1,...,X4g de TU. Pour x € U on note
par €, 'unique changement de coordonnées affine qui envoie x sur l'origine
et tel que pour tout j le champs de vecteurs X; coincide avec % en 'origine.

On appelle ces nouvelle coordonnées les x-coordonnées. On pose aussi

(4) U(x7€) = (00($7§)701(5€7€)7"'vo-d(xvé))’

olt 0j(z,&) est le symbole de 2X;. On dit alors que o le symbole (réel) du
repére X(), Xl, ce ,Xd.

Les symboles dans le Uy, DO-calcul sont associés aux dilatations (3) et a
la pseudo-norme homogene

(5) €l = (&l + 6]t + ...+ |&aH)T, € e R

Définition 1.1 S,,,(U x R¥Y), m € C, est l'espace des fonctions f €
C®(U x R\ 0) qui sont homogénes de degré m en la derniére variable,
i.e.

(6) [, A8 = A"f(2,6),  A>0.

11



Définition 1.2 S{T(UdeH), k € R, est l’espace des fonctions f € C*°(U x
RI1) satisfaisant aur estimées suivantes

(7) 10997 £(£)] < Cala)(1+ [I€])",

ot Cop(x) est localement bornée sur U et ou on a posé @) = oo + |af =
200+ a1 + ... + aq-

Définition 1.3 S™(U x R¥1), m € C, est l'espace des fonctions f €
C>®(U x R4 avec un développement asymptotique

(8) F@, ) ~ > fnj(@,8),  fr € Sp(U x R,

320

au sens ot pour tout entier N on a

9) 19202 = D fms)(@: )] < Capn (@) Pm =Y,

j<N

€l > 1.

avec Copng(x) localement bornée sur U.

Définition 1.4 Un Wy, DO opérateur d’ordre m, m € C, est un opérateur
continu de C°(U) vers C*(U) de la forme

(10) P = f(z,0(x,D)) + R,

avec f € S™(U deH), appelé le symbole de P, et R opérateur régularisant.
L’espace des Wy DO d’ordre m est noté W} (U).

Proposition 1.5 ([BG]) Soit m € C. Alors:
1) L’espace W1 (U) ne dépend pas du choiz du V-repére Xo, X1, ..., Xq.

2) Chaque P € V}(U) a un noyau lisse en dehors de la diagonale et
s’étend en un opérateur continu de E'(U) vers D'(U). Cet opérateur

est régqularisant si, et seulement si, le symbole de P est dans S~°(U x
Rd—i—l)‘

3) Posons k=Rm si Rm >0 et k = %ﬂ%m sinon. Alors on a

(11) vy (U) c v L (U)

SIS

)

N[ T

1 (U) est Uespace des opérateurs pseudo-différentiels de type
2
(%,%) voir [Holj).

Combinant cette derniére inclusion avec le théoreme de Calderén-Vaillancourt ([CV], [Hw])
on obtient la régularité Sobolev pour les Wy, DO.

12



Proposition 1.6 Soit P € V{}(U) et posons k = ®m si R*m > 0 et k =
%%m sinon. Alors pour tout réel s 'opérateur P s’étend en une application
linéaire continue

(12) P:HS,(U) — HEFU).

comp loc

1 (U) le développement asympto-

Comme VU3,(U) est contenu dans ¥ 1
272

tique classique

(13) 0 #0560 Y  Dea (7, )Dra(, ),

pour le symbole du produit de deux opérateurs pseudo-différentiels n’a plus
de sens. Cependant on peut montrer que le produit de deux Wy, DO est
encore un ¥y DO et donner alors un développement asymptotique pour le
symbole du produit. Mais au lieu d’invoquer le produit ponctuel des sym-
boles la formule s’exprime en terme d’une convolution en variable de Fourier
par rapport au groupe tangent en chaque point.

Pour y € U on note Xj‘y le vecteur invariant a gauche sur le y-groupe qui

coincide avec % en lorigine. On note alors o¥(z, &) le symbole du repere
XY XY, XY,
Lemme 1.7 ([BG]) Soit y € U. Alors:

1) Pour tout f € S(T(RdH) Vopérateur f(o¥(z,D)) envoie S(R)
vers lui-meéme.

2) Pour f1 € Sﬁl(Rd“) et fo € S(T2(Rd+1) on a
(14) fi(e?(z, D)) o fo(0¥(x, D)) = (fr + f2)(c¥(z, D)),

ot y — *Y est une famille lisse applications bilinéaire continues de
k k k1+k
SR x S (RITY) vers ST (RO,

Lemme 1.8 Pour tous my, ma € C la convolution * pour les symboles dans
SiHU x R induit une application bilinéaire

(15) %1 Sy (U x R 5 S, (U x R — Sy m, (U x RETL),
Si f(z,€) est un symbole on pose
(16)  f(2,8) =000 f(2,&)  and  f(2,€) = Dif(x,9).

Ensuite on note 0(®(2,€) = (£4)«0(z,€) le symbole du V-repere dans les
x-coordonnées et on pose

1 1,/ o
(17) hagys(x) = ﬁaghaﬁv(%())a hapy (2, 2) = m(% '(2)) egy(z, 2),
ol les fonctions eg, sont définies par 1'égalité
(18) (0(2,6) = 0%(2,)° = Y epy(w,2)0(2,6)".

Iv|=181

13



Proposition 1.9 ([BG]) Soit P, € V)" (U) de symbole f1 ~ 3 fim,—; et
Py € U12(U) de symbole fo ~ > fam,—j et supposons que Q1 ou Qo soit
proprement supporté. Alors Py Py est un Wy, DO d’ordre mi+meo de symbole
[~ mer‘rmz—j avec

(19) fm1+m2—j(x7€> = Z haﬁ’y(?(w)ff,ml—k * fQB,ZnQ_l@(xag)a

ot la somme est prise sur les indices tels que

(20) =18l 1B+l <@+B@-0)=i—k-L

En particulier le symbole principal de P1 Py est fim, * fom, la convolution
des symboles principaux de Py et Ps.

On peut caractériser les ¥y, DO par leurs noyaux de la fagon suivante. Si
K () est une distribution tempérée sur R4\ > 0 on note K(\.x), A > 0,
la distribution tempérée définie par

(21) (K(\z),u(z)) = A" 2D(K(2),u(A" a)),  uwe SR,
Alors K est dite homogene de degré m, m € C, si

(22) K(\x) = \"K(x) pour tout A > 0.

Lemme 1.10 ([BG]) Soit f € C®(R¥1\0) homogéne de degré m.

1) Sim n'est pas un entier < —(d+2), alors f s’étend de fagon unique
en une distribution tempérée homogéne sur R4,

2) Sim est un entier < —(d + 2), les seules obstructions a une telle
extension sont données la (les) non annulation(s) de

(2)  calf) = = / € F(©)ipde, @) = —(m+d+2),
I€]I=1

a!
ou E est le générateur du flot ¢4(&) = (€23¢0, e5¢).
Cela amene & considérer les espaces suivants de distributions.

Définition 1.11 K,,(U x R¥*Y), m € C, est l'espace des distributions
K(z,y) € C®(U)RS'(R¥Y) qui sont lisses sur U x (R¥1\0) et telles que
pour tout A > 0 on ait

(24) K(z,\y) = \"K(z,y), sim &N,

(25) K(z,Ay) = A"K(z,y) + X" log A Z co(x)y®, sim € N.

=m

14



Définition 1.12 K™(U x R¥1), m € C, est l'espace des distributions K €
D'(U x R‘”l) admettant un développement asymptotique

(26) K(‘Tay) ~ ZKm+](xay>v Kl € ,Cl(U X Rd+1)v
j=0

au sens ou pour tout entier N st J est assez grand on ait

(27) K=Y KpnyjeCVU xR
J<J

Proposition 1.13 Soit K € K™(U x R, Alors:

1) La distribution K appartient a C>®(U)QD' (R et est C sur U x

(RTH\D).
2) Pres dey =0, si m est un entier >0 on a
(28)
K(z,y) = Zogjg_mm am+j(7,y) — cx (x) log [ly[| + O(1), sim €N,
K(z,y) = Zogjgfmm am+j(x,y) + O(1), st m & N.

3) Preés de y =0, si m est un entier > 0 on a

(29) K(wy) = Y  anj(z,y) - cx(x)logy| +O(1),
0<j<—Rm

et si m n’est pas un entier > 0 on a

(30) K($7y) = Z am+j(xay) +O(1)'

0<j<—Rm

Dans les deuz cas ay(x,y) est une fonction lisse sur U x (RT1\0)
homogene de degré k en la variable y.

Proposition 1.14 ([BG]) Soit P un opérateur continu de C°(U) wvers
C>®(U). Alors P est un ¥y DO d’ordre m si, et seulement si, son noyau est
de la forme

(31) kp(z,y) = e, | K (2, —ex(y)) + R(z,y),
avec K € K™(U x R&Y), i = —(m+d+2), et R€ C®(U x U).

Corollaire 1.15 Soit P un Wy, DO d’ordre m entier. Alors pres de la di-
agonale son noyau kp(x,y) a un comportement de la forme

(32)  kp(z,y) = Z aj(z,e2(y)) — cp(x)log [ex(y)[ + O(1),
—(m+d+2)<j<0

15



avec aj(x, z) homogéne de degré j en la variable z et cp(x) donné par

€% .
(33) cp(r) = (275((#2) /||§|=1 f(a+2)(z,§)ipdE,

ot f_(412) est le symbole (homogene) de degré —(d + 2) de P.

Proposition 1.16 ([BG]) Soit ¢ : U — U un difféomorphisme Heisen-
berg, ot U est un autre ouvert de R4 qvec un fibré en hyperplans VcTU
et un V- repere de TU.Alors pour tout Pe cI>m(U) lUopérateur P = gb*P est
un Wy DO d’ordre m sur U et on a

(34) cp(x) =|¢'(2)lep(d(x), €U,

ot cp(x) et cp(Z) sont les coefficients des divergences logarithmiques des
noyaux de P et P données par le corollaire 1.15.

Définition 1.17 Soit P € U (U) de symbole principal f, € Sp(UxRETL).
On dit que P est elliptique dans le Wy DO-calcul s’il existe g_pm € S_p (U %
R tel que

(35) fm*g—mzlzg—m*fm‘
Proposition 1.18 Soit P € V}(U). Alors:

1) Le Wy,DO-opérateur P est elliptique si, et seulement si, il existe
€ U,"™(U) tel que
Q v q

(36) PQ=1=QP  mod U ().

2) Si P est elliptique dans le Uy DO-calcul c¢’est un opérateur hypoel-
liptique, i.e. pour toute u € E'(U) on a

(37) Pu lisse prés de xg = wu lisse preés de xg.

Proposition 1.19 ([BG]) Soit A un sous-laplacien sur U, i.e.

(38) thm %+ZW )X+ v(z),

o\, i1, - - -, g, v sont des fonctions lisses Alors pour chaque y € U il existe
un sous-ensemble AY C R de telle sorte que les assertions suivantes soient
équivalentes :

(i) Pour tout y € U le coefficient A(y) n’appartient pas a AY.

ii) Pour tout y € U lopérateur y-invariant AY est inversible.
Y Y 2

16



(i1i) A est elliptique dans le ¥y DO-calcul.

De plus, si une de ces conditions est satisfaite alors le symbole principal
d’une paramétriz est donné par

(39) f=2(y,€) = [25(8),
ou fY5(&) est de Uinverse de AY.

Soit maintenant (M, V) une variété de Heisenberg et £ un fibré vectoriel
au-dessus de M. La proposition 1.18 permet de définir les Wy, DO sur M
agissant sur les sections de £. Tous les résultats précédents dans le cas d'un
ouvert continuent d’étre vrais dans le cas d’une variété.

De plus la proposition 1.18 montre aussi que le coefficient c¢p(x) d'un
Wy, DO d’ordre entier P peut-étre globalement défini comme une densité sur
m a valeurs dans END £.

Enfin dans le cas d’'un Wy DO elliptique sur une variété de Heisenberg
compacte on peut construire une paramétrix modulo des opérateurs de rangs

finis, de sorte qu’'un tel opérateur a un noyau de dimension finie formé de
sections lisses et est un opérateur Fredholm.

Proposition 1.20 ([BG]) Soit (M?"*1,0) une variété pseudo-hermitienne
compacte et soit V = ker. Alors les opérateurs suivants sont elliptiques
dans le Wy, DO-calcul:

(i) le laplacien de Kohn Oy agissant sur les (p, q)-formes avec 0 < q <
n;

(ii) le sous-laplacien pseudo-hermitien Ay;

(iii) le sous-laplacien conforme [y.

Noyau de la chaleur d’un sous-laplacien elliptique

Proposition 1.21 ([BGS]) Soit (M1, V) une variété de Heisenberg mu-
nie d’une densité > 0 et soit A un sous-laplacien positif sur M.

1) L’opérateur e 1A est régularisant pourt > 0.

2) Soit ky(z,y), t > 0, le noyau de e **. Pour t — 0% on a

(40) k() ~ 5 S aj(@)td,

J=0
ou les aj(x) sont des densités lisses sur M avec ag(x) > 0.

3) Pourt— 0" on a

(41) Trace(e '2) ~ =% th/ a;(x)

7>0

17



4) Soit M\(A) la k-éme valeur propre de A comptée avec multiplicité.
Alors pour k grand on a

(42) A (A) ~ (A/{)%, A=T(1+ d—;Q)_l/ agp(x).
M

Dans le cas d’une variété pseudo-hermitienne on obtient :

Proposition 1.22 ([BGS]) Soit (M?"*1 0) une variété pseudo-hermitienne
compacte. Alors la proposition 1.21 est satisfaite par les opérateurs suiv-
ants :

(i) le laplacien de Kohn Oy sur les (p, q)-formes, 0 < g < n,
(ii) le sous-laplacien pseudo-hermitien Ay,
(iii) le sous-laplacien conforme [y.

De plus pour chacun de ces opérateurs le coefficient a;(x) dans le développement
asymptotique (40) est de la forme

(43) a;(x) = A;(2)(dO)" N6, <O,

ou Aj(x) est un polyndme universel en les jets des composantes de la cour-
bure et de la torsion de la connexion de Tanaka-Webster. Pour j = 0 et
j=1lona

(44) AO = Qlp, Al - BnR’m

ol Quy, By sont des constantes universelles et R, est la courbure scalaire de
la connexion de Tanaka- Webster.

Chapitre 2 : ¥y, DO a parametre et résolvante d’un
sous-laplacien elliptique

Dans ce chapitre on développe un calcul idoine de Wy, DO a paramétre
qui permet de construire une résolvante asymptotique pour un sous-laplacien
elliptique sur une variété de Heisenberg compacte.

Dans tout ce chapitre A C C\0 est un pseudo-cone ouvert (cf. définition
ci-dessous).

Uy, DO-calcul a parametre

Définition 2.1 On dit que A C C\0 est un pseudo-cone si pour tout t €

(0,1) on a tA C A et s’il existe © conique et D borné tels que A = © U D.
Si A et A sont deux pseudo-cones on écrit N CC A pour signifier qu’a

lorigine prés la fermeture de A est contenue dans lintérieur de A.
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L’espace des parametres est I’espace de Fréchet suivant :

Définition 2.2 Hol?(A), p € Z, est 'espace des fonctions holomorphes h :
A — C telles que pour tout pseudo-cone N' CC A on ait

(45) RN < Car(T+ AP, Ae A

Sa topologie est définie au moyen des semi-normes données par des plus
petites constantes dans ces estimées.

Définition 2.3 Si E espace vectoriel topologique localement convexe HolP (A, E),
p € Z, est l’espace des Hol?(A)-familles a valeurs dans E, c.a.d. des appli-
cations holomorphes h : A — E telles que, pour toute semi-norme continue

p sur £ et tout pseudo-cone N' CC A, on ait

(46) p(R(N)] < Cpar (L4 AP, A€,

Si E = SEU x R (resp. E = S~°(U x R*™™)) on utilise la notation
SPE(U x R, A) (resp. SP=>°(U x RHL A)).

Définition 2.4 S5, (U xR A), m,p € Z, consiste en les Hol?(A)-familles
foy de fonctions lisses sur U x R telles que

(47)  fuen (@, 1.8 —t" foy (@, &) € SPTX(U xRITLA),  0<t< 1.
Lemme 2.5 Soit m,p € Z et soit p— = max(0, —p). Alors
(48) SP(U x R A) € SE™P=(U x R A).

Définition 2.6 SP™(U x R¥1A), m,p € Z, est l'espace des HolP(A)-
Jamilles f(5) de fonctions lisses sur U x R quec un développement asymp-
totique

(49) foo ~ D foym—is foyr € SYU x RTTA),
>0

au sens ou, pour tout entier N, st J est assez grand on a

(50) F=Y " fogm—j € SETNU x R A).
J<J
Définition 2.7 1) W™(U, ), p € Z, est Uespace des familles d’opérateurs
de C°(U) vers C*(U) données par des HolP(A)-familles de noyauz
lisses.
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2) \I/@m(U, A), m,p € Z, est 'espace des familles P(yy a valeurs dans
L(CX(U),C>*(U)) de la forme

(51) Poy = foy(z,o(x, D)) + Ry,

avec fiy € SP™(U x RN, appelé le symbole de Py, et Ry €
WY (U,A).

Proposition 2.8 Soit m,p € Z. On pose k = m+p_ si m+p_ > 0 ou
bien k = &(m +p_) sinon.

a) La classe O3 (U, A) ne dépend pas du choix du V-repére Xo, X1,. .., Xg4.

b) Chaque Pyy € W™ (U, A) s’étend en une Hol? (A)-famille d’opérateurs
continus de E'(U) vers D'(U).

¢) Le noyau de tout Py € W™ (U, A) est en dehors de la diagonale
par une HolP(A)-famille de fonctions lisses.

d) Pour tout s € R, chaque Py € W5™(U,A) définit une HolP(A)-
famille d’opérateurs continus de HE, (U) vers HS *(U).

comp loc

Un opérateur a parametre Py : £'(U) — D'(U) est dit uniformeément pro-
prement supporté s’il est proprement supporté uniformement par rapport a

A

Proposition 2.9 Soit P,y € W™ (U,A). Alors:

1) On peut écrire Py sous la forme Py = Qx) + Ry avec Q) €
WL™(U, A), uniformément proprement supporté, et R(yy dans W), (U, A).

2) Si Py est uniformément proprement supporté, il définit des Hol?(A)-
famille d’endomorphismes continus de C2°(U), C*(U), E'(U) et D'(U)
respectivement.

Par continuité la convolution * pour les symboles induit une application
bilinéaire
(52)

k d k dtl pakatk .
SPUEL(TT X RHL A x SP2R2 (1 5 RAFL A) — gPrtPekathe g7 o Rt 7).

qui ensuite définit une convolution sur SL(U x R+ A),

53 ¥ 1 8P (U x R¥) x 8P2 (U x Ry —y gP1tP2 (17 o RA+1),
mi m2

mi+ma
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Proposition 2.10 Soit P,y € W™ (U,A), i = 1,2, de symbole fin) ~
Zfi(A),mrj tels que Py(y ou Py(yy soit uniformément proprement sup-
porté. Alors Py(y)Pyy) est dans \Iﬂ{;ﬁpz’mﬁmQ (U, A) et a pour symbole f)
Zf(/\),m1+m2—j’ avec

(54) f( ),mi+mao—j Z haﬁ’yé \),m1—k * fQB(’Z\)’m2,l7a(xa 5),

ot la somme est prise sur les indices tels que |B|+|a] < O+ —0) = j—k—I
et [y| = [B]-

Proposition 2.11 Soit ¢ : U — U un difféomorphisme Heisenberg, ot U
est un autre ouvert de R muni d’un sous- -fibré en hyperplans VCTU et
d’un V-repére. Alors pour tout P( ) dans \I/p’ (U A) la famille d’opérateurs

¢*P appartient a W™ (U, A).

On peut ainsi définir les Wy, DO a parametre sur n’importe quelle variété
de Heisenberg et agissant sur les sections d’un fibré vectoriel. Toutes les
propriétés précédemment décrites restent vraies mutatis standis pour les
variétés.

Résolvante asymptotique pour un sous-laplacien elliptique

Pour tout R > 0 on pose :
(55) Ar={A e C\0; RA<O0or |\ <R}

Proposition 2.12 Soit A un sous-laplacien elliptique sur U de la forme
(56) ZXQ—ZV X0+Zu] )X +n(z),

ol Vv, Ui,..., lq, N sont des fonctions lisses. Soit pa(x,§) = Z‘;:l é’j? +
iv(z)&o le symbole principal de A. Alors pour tout R > 0 il existe f\) €
ST (U x R¥1AR) tel que

(57) (pg — A) * f()\) =1= f()\) * (pg — )\) mod Sfoo,fooa] X Rd+l, AR)

Proposition 2.13 Soit (M,V) une variété de Heisenberg et A un sous-
laplacien elliptique sur M. Alors, pour tout R > 0, il existe Q(y) € \Il;l’_2(M, AR)
tel que

(58)  (A=NQu =1=Qu (AN mod U, (M, Ag).

Définition 2.14 Un rayon L C C est un rayon de croissance minimale
pour A si A — X est inversible pour tout A € L et la norme de la résolvante
(A = X)7Y| est un O(1/|\]) sur L.
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Pour r > 0 et © secteur angulaire ouvert on pose
(59) O, ={A€ O]\ >r}.

Proposition 2.15 Soit © un secteur angulaire ouwvert CC Ag. Alors il ex-
iste v > 0 tel que le spectre de A soit contenu dans C\ ©, et qu’on ait

(60) [(A=XN"H < CerlA™,  AeO,.

Corollaire 2.16 Tout sous-laplacien elliptique auto-adjoint sur une variété
de Heisenberg compacte est borné inférieurement et vérifie donc les conclu-
stons de la proposition 1.21.

Théoréme 2.17 Soit (M,V) une variété de Heisenberg compacte et soit A
un sous-laplacien elliptique sur M. Alors il existe R > 0 et un pseudo-cone
ouvert A contenant D(0, R) \ 0 et contenu dans

(61) Ar={X € C\0; RA <0 or |\ < R},

de telle sorte que
(i) Pour tout X € A l'opérateur A — X soit inversible sur L*(M).
(ii) La famille (A —X\)~', X € A, appartienne a \IJ;I’_Z(M, A).
(11i) Pour tout pseudo-cone ' CC A on ait

(62) IA=NTH <O+ ) Aed

En particulier chaque rayon contenu dans A est un rayon de croissance
minimale pour A.

Chapitre 3 : famille holomorphes de ¥V, DO et puis-
sances complexes d’un sous-laplacien elliptique

Le but de ce chapitre est de définir les familles holomorphes de ¥y, DO
et de construire les puissances complexes d'un sous-laplacien elliptique sur
une variété de Heisenberg compacte.

Familles holomorphes de ¥, DO

Ici © est un domaine ouvert de C.

Définition 3.1 Une famille (f.) € S*(U x RY) indexée par Q est holo-
morphe si les conditions sont satisfaites :
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(i) Uordre m, du symbole f, dépend holomorphiquement de z ;

(i3) pour (x,€&) € UxRIF! firé, la fonction z — f.(x,€) est holomorphe
sur ) ;

(iii) les bornes du développement asymptotique

(63) L2, ~ Y fomej(@,8),  far € S(U xR,

Jj=0
sont localement uniformes par rapport a z.

L’espace des familles holomorphes de symboles est noté Hol(Q, S* (U x R4+1).

Définition 3.2 Une famille (P,) C ¥3,(U) est holomorphe quand P, est de
la forme

(64) Pz:fz(waa(va))"i_Rm

avec (f,) famille holomorphe de symboles et (R, ) famille holomorphe d’opérateurs
régularisants. L’espace des familles holomorphes de Wy, DO est noté Hol(2, U3,(U)).

Proposition 3.3 Soit (P,) une famille holomorphe de Wy, DO indexée par
Q. Alors :

1) La famille (P,) donne des familles holomorphes a valeurs dans L(C°(U), C>=(U))
et L(E'(U)), D' (U)).

2) Le noyau de P, est donné en dehors de la diagonale par une famille
holomorphe fonctions lisses.

3) On peut écrire P, sous la forme P, = Q, + R, avec (Q,) famille
holomorphe de Wy DO uniformément proprement supportés et (R))
famille holomorphe d’opérateurs régularisants.

4) Sila famille (P,) de Wy DO est uniformément proprement supportée,
elle induit des familles holomorphes d’endomorphismes continus de

C>(U), C=(U), &' (U) and D'(U) respectivement.

Proposition 3.4 Soit (P ;) et (P») deuz familles holomorphes de ¥y DO,
l'une d’entre elle étant uniformeément proprement supportée. Alors la famille
P, = P, P, . est une famille holomorphe de ¥y, DO.

Proposition 3.5 Soit ¢ : U — U un difféomorphisme Heisenberg, ot U est
un autre ouvert de R4 muni d’un sous-fibré en hyperplans V C TU et d'un
V-repére Alors pour famille P, dans Hol(Q,\I/*\}(f])) la famille P, = ¢*P,
appartient a Hol(€2, \I'E(U))

On peut ainsi définir les familles holomorphes de ¥y, DO sur n’importe quelle
variété de Heisenberg et agissant sur les sections d’un fibré vectoriel. Toutes
les propriétés précédentes sont encore vraies pour les variétés.
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Puissances complexes d’un sous-laplacien elliptique

Soit A un sous-laplacien elliptique sur une variété de Heisenberg (M d+1 V).
Supposons d’abord qu’on ait A > ¢ > 0 par rapport a un produit scalaire
définit par une densité non-négative sur M. On peut alors définir les puis-
sances complexes de A par calcul fonctionnel comme un groupe & 1 -parametre
d’opérateurs non-bornés sur L?(M). En utilisant la formule de Mellin et la
construction pseudo-différentiel du noyau de la chaleur donnée dans [BGS]
on montre :

Théoréme 3.6 La famille (A®)sec des puissances complexes de A est une
famille holomorphe de Wy DO sur M.

Ne supposons plus A non-négatif. Il vérifie de toutes fagons les conclu-
sions du théoreme 2.17. Soit R > 0 et A un pseudo-cone tels que dans le
théoreme 2.17. En particulier chaque rayon contenu dans A est un rayon de
croissance minimale. Pour simplifier supposons que ’axe réel négatif soit un
tel rayon et considérons une courbe I' C A commenant & I'infini, passant le
long du rayon A < 0 jusqu’a un petit disque centré en l'origine et de rayon
p < R, tournant alors autour de cercle dans le sens indirect puis retournant
a l'infini le long du rayon A < 0. Pour Rs < 0 on pose :

(65) A = = / M (A =) "la
r

2

Lemme 3.7 La famille (As) ci-dessus est une famille holomorphe de Wy, DO
t.q. ordAg = 2s.

Lemme 3.8 ([Se|) Supposons A inversible. Alors la famille (As) a les
propriétés suivantes :

1) Elle contient les puissances entiéres négatives de A, c.a.d.
(66) A_p=A"F k entier > 0.
2) C’est un semi-groupe, i.e.
(67) AsAp = Agyy Rs <0, Rt<O.
Définition 3.9 Supposons A inversible. Alors A®, s € C, est définit par
(68) AT = AFAL
ot k est entier > Rs dont la valeur est indifférente.

On obtient ainsi :
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Théoréme 3.10 Supposons A inversible. Alors la famille (A®) des puis-
sances complexes de A est un groupe a 1-paramétre de Uy DO tel que A° = 1
et A = A.

Supposons maintenant A auto-adjoint mais non inversible. Alors la pro-
priété de semi-groupe (67) reste vraie. L’égalité (66) aussi & condition qu’on
remplace les inverses par les inverses partiels. On peut alors encore définir
les puissances complexes de A et dans ce cas on obtient :

Théoréme 3.11 Supposons A auto-adjoint. Alors la famille (A®) des puis-
sances complexes de /A est un groupe ¢ 1-paramétre de Wy DO tel que A = A
et A =1 —Tly, ou Il est le projecteur orthogonal sur ker A.

Chapitre 4 : Résidu non commutatif pour les variétés
de Heisenberg

Dans ce chapitre on construit un prolongement analytique de la trace
sur les Uy, DO d’ordre complexe non entier, comme dans [KV] et [CM2], et
on montre qu’on obtient alors sur les ¥y, DO d’ordre non entier une trace
résiduelle qui est un résidu non-commutatif pour le ¥y, DO-calcul. On mon-
tre ensuite que ce nouveau résidu non-commutatif permet d’étendre la trace
de Dixmier a toute l'algebre des ¥, DO d’ordres entiers et que, si la variété
est connexe, il induit I'unique trace a coefficient multiplicatif pres sur cette
algebre quotientée par les opérateurs régularisants.

Régularisation de la trace et résidu non-commutatif

Soit (M9t V) une variété de Heisenberg compacte et £ un fibré vec-
toriel au-dessus de M. On va montrer que la fonctionnelle Trace qui est a
priori définie pour les ¥, DO qui sont dans

(69) WM, E) = {P € U},(M, E); RordP < —(d +2)},
a un prolongement analytique sur
(70) V¥ — (P € U}(M, €);ordP € C\Z}.

Le point de départ est de réinterpréter le lemme 1.10 en termes de familles
holomorphes.

Lemme 4.1 Pour f € SC\Z(]RdH) on note Ty son unique extension ho-
mogéne comme distribution sur R4t donnée par le lemme 1.10. Alors :

1) L’application f — 7y est holomorphe de Spg(R™™) vers S'(RI1).
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2) Soit (f.) une famille holomorphe de symboles telle que ordf, = z.
Alors pout toute u € S(RUTL) la fonction z — (4., u) a au plus des
singularités de type pole simple prés de Z dont les résidus sont donnés
par

1 «
(T1)  res,—p(Ty.,u) = > aca(fk)u( )0), keZ,
<a>=—(k+d+2)

ot les co(fr) sont les obstructions a une extension homogéne de fi
données par le lemme 1.10.

Soit L la fonctionnelle sur S (R%+1) definie par
(72) L) = [r©ds  fesm@.

Lemme 4.2 1~) La fonctionnelle L ci-dessus a un unique prolongement
holomorphe L sur SC%(R4Y).  La valeur de L en le symbole f ~
> fm—j d’ordre non entier est donnée par

@) L= [UO - mslO)de, Nz Rmdr2
J<N
0l Ty—j est l'unique extension homogene de fr,— ;.

2) Soit (f.) une famille holomorphe a valeurs dans S* (R telle que
ordf, = z. Alors L(f.) a au plus des pole simples prés de 7 de résidus
(74)

ves.—p, L(f2) = —co(fy,—(ar2)) = — /H£1 fre,—(ar2) (§)ipds, kel

De la démonstration de lemme on en obtient directement la version C*°
suivante.

Lemme 4.3 Soit U un ouvert de R3+1.

1) L’application f — L(f(x,.)) est holomorphe de SO (U x RH1) vers
c>*(U).

2) Soit (f.) une famille holomorphe a valeurs dans S*(U x R+ telle
que ordf, = z. Alors L(f,(x,.)) est méromorphe pour la topologie C*°.

Théoréme 4.4 1) La fonctionnelle Trace on WiN*(M,E) a un unique

prolongement holomorphe sur WgZ(M,E) défini par
(75) TRP—/ tretp(z), P eUSH(M,E),
M

ot tp(x) est une densité sur M a valeurs dans END & invariante par
difféomorphismes Heisenberg.
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2) Soit Py et Py dans WgZ(M, E) tels que ord P + ord Py & Z. Alors
(76) TR PP, = TR P, P,.

3) Soit P € WE(M,E) et soit (P,) une famille holomorphe de Wy, DO
telle que Py = P et ordP, = z + ordP. Alors TR P, a au plus un péle
stmple en z =0 et on a

(77) res,—o TR P, = —/ trg ep(x),
M

ot cp(x) est la densité sur M qui apparait comme le coefficient de la
singularité logarithmique du noyau de P prés de la diagonale.

On définit alors le résidu non-commutatif pour les variétés de Heisenberg
comme suit.

Définition 4.5 Le résidu non-commutatif sur \II{Z,(M, &) est la fonctionnelle
linéaire

(78) ResP:/ cp(x),  PeUL(M,E).
M
Proposition 4.6 1) Soit P € VL(M,E) et (P,) une famille holomor-
phe a valeurs dans V,(M,E) alors Py = P et ordP, = z + ordP.
Alors
(79) Res P = —res,—o TR P,.

En particulier, si A est sous-laplacien elliptique sur M on a

(80) Res P =res,o TR PA™*/2, P e W5(M,¢E).

2) La fonctionnelle Res est une trace sur W5 (M, E) s’annulant sur les
Uy, DO d’ordre entier < —(d + 2).

3) Soit ¢ : (M,V) — (M, V) un difféomorphisme Heisenberg. Alors
(81) Res ¢ P = Res P, P c UE4(M,¢E).

Trace de Dixmier des ¥\, DO

Soit (M1, V) une variété de Heisenberg compacte et £ un fibré vecto-
riel au-dessus de M.

Théoréme 4.7 1) Soit P € V3 (M, &) avec —k = RNm < 0. Alors
(82) pn(P) = O(n_ﬁ) quand n — 0.

2) Tout P € W4(M, &) d’ordre —(d +2) est mesurable pour la trace de
Dizmier au sens de [Col] et on a

1
P=— P.
(83) ][ 712 Res
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Traces et sommes de commutateurs sur 1’algebre des ¥, DO

On suppose dans cette section que M est connexe. Alors :

Théoréme 4.8 Toute trace sur W5 (M,E)/V=°(M,E) est proportionnelle
au résidu non-commutatif.

Corollaire 4.9 Soit P € VL(M,E). Alors P est une somme de commuta-
teurs si, et seulement si, il est de la forme P = Q + R avec Q € W%(M,é‘)
et R e W=°(M,E) tels que Res @Q = Trace R = 0.

Chapitre 5 : géométrie spectrale des variétés de
Heisenberg et pseudo-hermitienne

Dans ce chapitre on donne des applications géométriques du résidu non
commutatif et de la trace régularisée. D’abord on définit la fonction zéta
d’un sous-laplacien elliptique dans le Wy, DO-calcul et on relie ses résidus et
valeurs régulieres aux coefficients du développement de la chaleur. On ob-
tient ensuite des formules variationelles pour les fonctions zéta qu’on utilise
pour produire des invariants conformes d’une variété pseudo-hermitienne.
Apres on étudie la géométrie non-commutative des variétés de Heisenberg
et en particulier on définit ’aire d’une variété pseudo-hermitienne de di-
mension 3. Enfin on donne des formules locales pour calculer 'indice d’une
racine carrée d’'un sous-laplacien elliptique. D’abord on montre qu’en di-
mension paire I'indice est toujours égala a zéro et qu’en dimension impaire
il est donné par l'intégrale de la densité qui apparait comme le terme con-
stant dans 'asymptotique du noyau de la chaleur du sous-laplacien. Ensuite,
en utilisant la cohomologie cyclique et la formule d’indice locale de Connes-
Moscovici [CM2], on montre qu’il existe un courant de Rham, calculable par
des formules locales explicites et dont ’accouplement avec le caractere de
Chern donne l’'indice a coefficients dans la K-théorie.

Fonction zéta d’un sous-laplacien elliptique

Soit (M1 V) une variété de Heisenberg compacte et soit A un sous-
laplacien elliptique sur M. On suppose ici qu’il est soit inversible, soit
auto-adjoint. On peut alors construire ses puissances complexes et définir
la fonction zéta de A en posant :

(84) ((s)=TRA™%, seC.

Proposition 5.1 Soit ¥ = {3k; k=1,...,d+2} U (=3 +Z_). Alors la
fonction ((s) est holomorphe sur C\ X et a au plus des pdles simples sur X
dont les résidus sont donnés par

(85) ress—y ((s) = 2Res A~ = 2/M cp—s (), sex.
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On suppose désormais que A est auto-adjoint. On peut alors relier les
résidus et les valeurs régulieres de sa fonction zéta aux coefficients de son
développement de la chaleur pour ¢ petit

(86) k() ~ 65 S tai(A)(x),
Jj=0

ou les aj(A)(x) sont des densités lisses sur M.
Théoreme 5.2 On suppose dim M = d+ 1 impaire, d+1 =2n+1. Alors :

1) Pourk=1,....n+1ona

61 resnCe) = pRes A = e [k (A)().
2) En s =0 la valeur réqulicre est

(88) c(0) = /M a1 (A)(z) — dimker A,
3) Pour tout entier non-négatif —k on a

(9) =) = (D= 1! [ el A)a),

Remarque 5.3 Les calculs sont purement locaux et en fait on a

1
(90) CAfk(x) = mdn_k(A)(CL‘), k= 0, ey Ny
(91) tar(x) = (—1)k_1(k — Dapr146(A)(2), k e N*.
Dans le cas pair on obtient :

Théoréme 5.4 Supposons dim M = d + 1 paire, d+ 1 = 2n. Alors :

1) Pourk=-n,—n+1,... ona

1 1
92 _ =ResA7ztF = / n .
(92)  res,1 ) =Res R oy @

2) La valeur réguliére en s = 0 est donnée par

(93) ¢(0) = — dimker A.

3) Les valeurs réguliéres aux entiers strictement positifs sont toutes
nulles.
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Formules variationnelles et invariance par homotopie

Dans cette section montre des formules variationelles pour la fonction
zéta d’un sous-laplacien elliptique. Pour cela on introduit la notion de famille
C' de ¥y, DO indexée par un intervalle ouvert I de R.

Définition 5.5 Une famille (f.) a valeurs dans S™(R1), m € C, est C*
st

(i) Pour & fixé, f-(&) est une fonction Ct de e.
1) Les symboles homogénes _:, 7 >0, de f. sont Ct avec e.
( ) ) g fe,m i J ’ fe

(111) Les bornes du développement asymptotique fe ~ > fem—; sont
uniformes pour la topologie C*.

On peut aussi définir des familles C' de symboles sur U x R4, c.a.d
des des C*(I)&C™>(U)-familles de symboles sur R*1. Cela permet alors de
définir les familles C' de ¥y, DO.

Si © C C est un ouvert et A C C\0 un pseudo-céne on définit similaire-
ment les C*(1)® Hol(Q)-familles et les C*(I)&® Hol?(A)-familles de ¥y, DO.

Proposition 5.6 Soit (M,V) une variété de Heisenberg compacte et soit
(P..s) une C'& Hol-famille de ¥y, DO sur M.

1) SiordP. s € Z alors TR P(e, s) est holomorphe pour la topologie C!
et on a

(94) 8. TR P,y = TROP, ;.

2) Supposons que ordP. 3 = z prés d’un entier m. Alors TR P, s a un
péle simple pour la topologie C' prés de z = m et (94) donne une
égalité de fonctions pres de z = m.

Proposition 5.7 Soit (M1, V) une variété de Heisenberg compacte et soit
(Ac) une famille C* de sous-laplaciens elliptiques sur M. On fait les hy-
pothéses suivantes :

(i) Ac est soit inversible, soit auto-adjoint;

(i) il existe un pseudo-cone A C C\ 0 ouvert et conneze tel que AN
sp Ac = 0 pour tout e.

On définit alors les puissances complexes de A, au moyen d’un contour
contenu dans A. Alors la fonction TR AZ® est méromorphe pour la topologie
Cl etona

(95) 0e TRA.® = —s TR O (A)AS L.
En particulier,

1 d+2
(96)  OResAF = —bReso(AJAT, k=0, %
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Invariants conforme de sous-laplaciens

Théoréme 5.8 Soit (M?"*1 0) une variété pseudo-hermitienne compacte
et soit f € C°(M). Alors :

1) On a an(Dy2ry)(x) = 2 @a, (Eg) (), ice. an(Car)(x) est un in-
variant conforme local de poids —2.

2) On a l'égalité suivante de fonctions méromorphes
(97) 0y TRE,® =2sTR f g .
Par conséquent (m,(0) est un invariant conforme.

3) Pour tout entier k,

0 a x) =2(n — x)a x).
08 5 [ @)@ =218 [ f@a@)@
Ainsi Apir = [y any1(Ee2rg)(x) est un invariant conforme.

Remarque 5.9 La derniere assertion répond positivement & une conjecture
de Branson-Orsted [BO2].

Géométrie non commutative des variété pseudo-hermitiennes

Soit (M?"*1 9) une variété pseudo-hermitienne compacte. Alors la
proposition 1.22 et le théoreme 5.2 permettent d’exprimer les résidus non-
commutatifs des sous-laplaciens géométriques comme des intégrales de polynomes
universels en les jets des composantes de la courbure et de la torsion de la
connexion de Tanaka-Webster connection. Ainsi :

Proposition 5.10 Soit A, le sous-laplacien pseudo-hermitien sur (M,0).
Alors

(99) Res Ab_(n+1) = an/ (de)" N6, Res A" = /Bn/ R, (dO)" N0,
M M

ot vy, et By, sont des constantes universelles et R,, est la courbure scalaire
de Tanaka-Webster.

Par la remarque 5.3 on a en fait

(100) Cpr i) (x) = an(df)" N b(z), Cazn (x) = BpnRn(dO)" N O(x).
D’ou :

Corollaire 5.11 Pour tout f € C*®(M) on a

(101) ][ FASHD _ / F(d0)" A 6.
M
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Ainsi extrapolant & partir de [Cod] on peut interpréter ds = an" " A2
comme un élément de longueur et définir I’aire de (M, ) comme suit.

Définition 5.12 L’aire de (M,0) est

;1
(102) Areag M = Resds® = a;; "' Res A,

Théoréme 5.13 Pour toute variété pseudo-hermitienne (M,0) de dimen-
sion 8 on a

(103) Areag M = fracl8/2 / Rydf A 6.
M

Par exemple pour la sphere $2 C C? avec la forme de contact 6 = %(zldél +
z9dZy) on a airey = %

Formules d’indices locales

Soit D un ¥y, DO auto-adjoint d’ordre 1 sur une variété de Heisenberg
compacte (M1 V) et agissant sur les sections d'un fibré vectoriel S au-
dessus de M. On suppose que D? est un sous-laplacien elliptique et que D
anti-commute avec une Zo-graduation v sur S. Par rapport a cette gradua-
tion on peut décomposer S en une somme directe

(104) S=8T®s,
et écrire D sous la forme
(105) D:(DO+ DO_>, Di:S: > Se

L’indice de D est par définition
(106) ind D = ind D' = dimker D" — dimker D™,

Comme D? est un sous-laplacien elliptique il admet un développement de la
chaleur

(107) Fi(z,x) ~ 75 Yt (D?)(2),
Jj=0

ot les a;(D?)(z) sont des densités lisses M & valeurs dans END S.

Théoréme 5.14 1) Sid+1 est pair, on a ind D = 0.

2) Sid+1=2n+1 est impair, alors
(108) ind D = / Strs ag(D?)(z).
M
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Maintenant soit £ un fibré hermitien au-dessus de M et V une connection
hermitienne sur &, i.e.

On forme le twist de D by V comme suit. Par [Col, prop. VI.1.4] on définit
un morphisme de C°°(M)-modules 7 : C*®°(M,AT*M) — C*>°(M,EndS)
en posant

(110) m(fodft...df") = fOD, fY]...[D, f"],  fI e C™®(M).

Il en résulte ainsi un morphisme de C*° (M )-modules 7 : C*°(M,SQAT*M) —
C™>(M,EndS). L'opérateur Dy ¢ est alors 'opérateur différentiel agissant
sur C*°(M,S ® &) donné par

(111) Dve=D®1+7V,
ol mV est défini au moyen de la composition
0o 1Y oo * T®1 ~oo
(112) C*(M,S®E) —C¥(M,SRT"M®E) — C*(M,S®¢E).

Théoréme 5.15 1) Il eziste une classe d’homologie paire Ch, D €
H., (M) telle que pour tout fibré hermitien € au-dessus de M avec
un connexion V on ait

(113) ind Dy ¢ = (Ch, D, Ch* &).

2) On définit explicitement un courant de Rham pair C' = (Cay,) représentant

Chy D comme suit. Pour n # 0 on définit Cs, par

(Con, fOIfY AL A dFP™)
(114) = (2n)! Y caResyfO[D, F10 .. [D, f2]o2| D|~2el+n),

[e7

ot et = (=1)™2al (g +1) -+ (a1 + - - -+ gy +2n) et le symbole T*)
dénote le k-éme commutateur itéré avec D?; tandis que for n =0 on
pose

(115) (Co, f) = /M [(2) Strs ao(D?) (@),
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Introduction

In this thesis dissertation we prove various geometric results for pseu-
dohermitian manifolds, and more generally for Heisenberg manifolds, all
coming around with a non-commutative residue within the Heisenberg cal-
culus of [BG] and [Tay]. These include non-commutative geometry, zeta
functions, conformal invariants and local index formulae.

Before presenting the articulation of the dissertation, we shall give a
short overview of non-commutative residue for classical pseudodifferential
operators (U DQO’s). The non-commutative residue ([Wol], [Kass|, [Wo2]) is
a trace on the algebra of WDQO’s on a compact manifold M. If P is a VDO
on M its non-commuatative residue is defined by

(116) Res P = 2res,—o Trace PA™%,

where A is a Laplacian on M.

In dimension 1 it was found by Manin [Ma] and Adler [Ad] in the context
of complete integrable systems. In arbitrary dimension it was discovered by
Wodzicki [Wol] using extensively Seeley’s work [Se], while Guillemin [Gul]
studied independently the restriction of Res on W DO’s with order < — dim M.
Indeed Wodzicki gave in [Wo2| a complete account on the subject using the
formalism of symplectic cones in the spirit of [Gul].

In fact it follows from [KV] and [CM2] that we can construct the non-
commutative residue using only homogeneous distributions and basic prop-
erties of WDO’s (e.g. [Ho3, section 3.2] and [Ho4, sec. 18.1]).

Let M be a compact manifold of dimension n. If P is a YDO with
Rord P < —n, the restriction of the kernel of P on the diagonal is a smooth
density kp(z,z) on M, so that P is traceable and we have

(117) TraceP:/ kp(z,z).

M
In [KV] and [CM2] it is shown that the map P — kp(z,x) with values in
the space of smooth densities on M can be extended to a map P — tp(z)
on Y DQO'’s with non-integral complex order and this map is anlytic in some

sense. Then an integration over M provides us with a continuation of the
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trace,
(118) TRP = / tp(x), ordP ¢ Z,
M

which is also analytic.

The density tp(z) is defined by means of homogeneous extensions as
distributions of the symbols of P. Such extensions exist if the degree of
homogeneity is not an integer. For integral degrees there are obstructions
to such extensions, which in turn imply that the kernel of a DO operator
P with integral order k£ has a logarithmic divergency near the diagonal,

0

(119) kp(z,y) = > aj(x,z—y) - cp(x)log|z — y| + O(1),
—(n+k)

with a;(x, z) homogeneous of degree j in the second variable and cp(x) is
given by

(120) r@) = @0 [ g
where f_,(z,£) is the symbol of degree —n of P. Indeed (119) implies that
cp(x) can be globally defined as a density on M.

Moreover one can show ([KV], [CM2]) that given a WDO operator P
with order k € Z and a holomorphic family (P,) of WDO’s near z = 0 such
that Py = P and ordP, = z + k then the function TR P, has at most a
simple pole singularity at z = 0 with residue

(121) res,—o TR P, = —/ cp(z).
M

Taking P, = PAZ we find

(122) Res P = /M cp(z).

This last equality shows that Res is local and combining with (121) we
deduce that the noncommutative is a trace on the integral VDO algebra.
In fact one can show ([Wol], [BrGe], [FGLS]) that if M is connected it is
the only trace up to constant multiples on the W DO algebra quotiented by
smoothing operators.

Moreover the non-commutative residue has important applications on
mathematics and mathematical physics and play a central role in non-
commutative geometry (see [Col], [CM2], [Ger], [Kast], [KrKh], [KaW]).
One the deepest concerns cyclic cohomology and local index formula ([Col],
[CM2]) and we shall briefly present it now.
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Consider a non-commutative space represented by a spectral triple (A, H, D),

where A is an involutive algebra represented in the Hilbert space H and D
is a selfadjoint operator on ‘H almost commuting with A, in the sense that
[D,a] is a bounded operator on H for any a € A. Then ([At], [Kas]) showed
that the datum of D defined an index map

(123) indp : K,(A) — Z,

where K,(A) is the K-theory of the algebra .A. This index map can be
computed by the Chern character Ch, (D) in cyclic cohomology,

(124) indp([€]) = (Ch.(D), [£]),

where (.,.) denotes the pairing of cyclic cohomology with K-theory.

If the spectral triple has a simple and discrete dimension spectrum
Connes and Moscovici [CM2] derived a local formula for the cyclic cocy-
cle Ch,(D) as a finite universal linear combination of terms of the form

(125) Resa’[D,a']*V) ... [D,a™*n) | D=2kl 6d € A,

where for an operator T on # the symbol T) denotes the k’th iterated com-
mutator with D? and Res is an algebraic analogue of the non-commutative
residue on the WDO algebra generated by A and D. In the case a compact
spin Riemannian manifold M and @ the Dirac operator acting on L?-spinors,
this reduces to the local Atiyah-Singer index theorem ([AS]).

However the computation for the transversally elliptic signature opera-
tor in [CM2, sec. 1.2] is a rather formidable task, even for codimension 1
foliations. This led Connes and Moscovici [CM3] to invent in cyclic cohomol-
ogy for Hopf algebras. Then they showed that the index took place within
the cyclic cohomology of universal Hopf algebras which can be related to
Gel’fand-Fuchs cohomology. Note that the Hopf algebras involved are very
similar to those introduced by D. Kreimer and A. Connes in the context of
quantum fields theories ([CK1], [CK2]).

The dissertation is organized as follows. In the first chapter we give a
thorough overview of Heisenberg calculus, also called Wy, DO calculus, as
presented in [BG] and [BGS]. For sake of clarity and completeness most of
the proofs are given.

In the second chapter we develop a ¥, DO calculus with parameter in
order to study the resolvent of an elliptic sublaplacian in the Heisenberg
calculus. Here the methods Seeley [Se] and Shubin [Sh] cannot be extended
to ¥y, DO operators. So we use a new one built with almost homogeneous
symbols with parameter. We construct then an algebra of Wy, DO with
parameter in which the resolvent of an elliptic sublaplacian takes place as
a parametrix (theorem 2.33). As immediate application we obtain that a
selfadjoint elliptic sublaplacian is necessarily bounded from below.
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In chapter 3 we introduce holomorphic families of ¥y, DQO’s and we con-
struct the complex powers of an elliptic sublaplacian. First in the case of a
positive operator by means of the pseudodifferential construction of the heat
kernel (theorem 3.17). Afterwards using the parametric Wy, DO calculus of
chapter 2 when the operator is invertible or selfadjoint, but not necessarily
positive (theorems 3.21 and 3.22).

In the fourth chapter we construct an analytic continuation of the trace
on ¥y, DO’s with non-integral complex order as in [KV] and [CM2] we show
that gives rise to a residual trace on Wy, DO with integral order which is
an analogue of the non-commutative residue for Wy, DO operators (theo-
rem 4.5 and proposition 4.9). Then we prove that this new non-commutative
residue extends the Dixmier trace on the Uy DO algebra (theorem 4.11)
and is the unique trace up to a constant multiple on this algebra quo-
tiented by the smoothing operators (theorem 4.15). As corollary we obtain
a complete characterization of sums of commutators in the ¥y, DO alge-
bra(corollary 4.16).

In last chapter we give geometric applications of the non-commutative
residue and the regularized trace. In the first section we define the zeta
function of an elliptic sublaplacian and, in the selfadjoint case, we relate its
residues and regular values to the coefficients of the heat kernel asymptotic
(theorems 5.3 and 5.5). In section 5.2 we derive variational formulae for
zeta functions with respect to C' families of sublaplacians. We use them
in section 5.3 to produce conformal invariants associate to sublaplacians
(theorem 5.14) extending then the results of N.K. Stanton [St].

In section 5.4 we look at the non-commutative geometry of pseudoher-
mitian manifolds. In particular we are able to define the area of a compact
three dimensional pseudohermitian manifold and to compute it by an explicit
local formula involving the Tanaka-Webster scalar curvature (theorem 5.20).

In the last section we study the index of a square root of an elliptic
sublaplacian. First we show that in even dimension the index is always zero
and in odd dimension the index is given by the right coefficient of the heat
kernel asymptotics (theorem 5.21).

Next using cyclic cohomology and the above local index formula of
Connes-Moscovici we are able to show the existence of a de Rham’s cur-
rent whose pairing with the Chern character of a vector bundle gives the
index with coeflicients in the bundle and to give a local formula for this
current as a universal finite linear combination of non-commutative residues

of the kind of (125) (theorem 5.27).
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Chapter 1

Hypoelliptic calculus on
Heisenberg manifolds

In this chapter we shall give a thorough overview of Heisenberg calculus,
also called ¥y DO calculus, following [BG| and [BGS] (see [Tay] and [EMM]
for other point of views). For sake of clarity and completeness most of the
proofs are given. In particular the heat kernel asymptotic is detailed.

1.1 Heisenberg manifolds

A Heisenberg manifold (M,V) is a manifold M together with a hy-
perplane bundle V € T M. Since they are different possible definitions for
Heisenberg manifolds (e.g. [Ge3] and [EMM]) we stress the fact that here a
Heisenberg manifold can be given either by an integrable or a non-integrable
subbundle (cf. examples below).

A Heisenberg diffeomorphism ¢ : (M, V) — (M’, V") between two Heisen-
berg manifolds is a diffeomorphism from M onto M’ such that ¢,V =V'.

The local model for a (d+1)-dimensional Heisenberg manifold is an open
subset U of R4 together with a hyperplane bundle V € TU and a V-frame
X0, Xq,...,.Xq0fTU, ie. Xy, Xq,...,X4is aframe of TU and Xq,..., Xy
generate V. Then we define a Heisenberg chart for a Heisenberg manifold
as a local Heisenberg diffeomorphism to such an open. There always exists
locally a V-frame, but globally this not true in general.

We have the following examples of Heisenberg manifolds:
o Heisenberg group. The 2-nilpotent group Ha, 41 is associated to the Lie
algebra generated by X;, Y;, 1 <i < n, and T with relations [X;,Y;] =

T and the other brackets equal to 0. The Heisenberg structure is given
by the hyperplane bundle generated by the Xi,..., X, and Y1,...,Y,.
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o Codimension 1 foliations. The foliation of M is given by an integrable
hyperplane bundle which defines a Heisenberg structure on M.

e Contact manifolds. A contact manifold is a manifold M?"*+! together
with a nowhere vanishing 1-form 6 such that df is non degenerate
on ker §. The Heisenberg structure is given by V = kerf. A generic
example of contact manifold is given by the cosphere bundle S*M =
T*M/R?% of a manifold M. More precisely let w = > dx; A d§; the
canonical symplectic form on T*M and R = ) &;d¢; the generator of
the flow ¢4(x, &) = (z,e%¢) on T*M. Then 6 = 1pw = — > §;dxj is a
contact form on S*M.

e Confoliations [ET]. This is a mixed definition between contact mani-
folds and foliations. A confoliation structure on a manifold M?"*! is
given by a nowhere vanishing one form  on M such that (d)" A0 > 0.

e CR manifolds. A CR manifold is an oriented manifold M?"*! with
a n-dimensional complex subbundle 77 ¢ of the complexified tangent
space Tt M such that 179 N Tio = {0}. The Heisenberg structure is
then given by V = RT} o ®RT} 9. The basic example of a CR manifold
is a real hypersurface M in C" with the CR structure given by the
maximal complex structure of M.

o Pseudohermitian manifolds. A pseudohermitian manifold is a CR
manifold M?"*+! together with a contact form # vanishing on V =
RT1 0@ §RT170 such that the Levi form of 6, i.e. the Hermitian form on
T given by

(1.1) Lo(V,W) = —df(Z, W),

is positive definite. In this case there is a canonical connection asso-
ciated to the pair (M, 0) called the Tanaka-Webster connection (see
[Ta] and [We]).

The reason why the terminology of Heisenberg manifolds is used comes
from the fact that we can at each point of a Heisenberg manifold attach a
group isomorphic to a product Hapqq X Rd—2n (with the convention H; =
{0}). The group structure is invariant by Heisenberg diffeomorphisms and
comes with a family of dilations compatible with the group structure. So the
structure involved is the structure of a Carnot group in the sense of [GrLP)]
and is just one step beyond vectorial spaces. For instance, in the case
contact manifold M?"*! we obtain the Heisenberg group Ha,,1 at each
point, whereas for a codimension 1 foliation on a manifold M+ we always
get the abelian group R4+,

Let us describe the tangent in the case of an open subset U of R¥t! to-
gether with a hyperplane bundle V C TU and with a V-frame Xg, X1,..., Xg
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of TU. Let y € U and let  — £y(x) the unique affine change which put y
on the origin and such that the vector fields X; coincides with 8%]- atz =0
for 7 = 0,1,...,d. We call these new coordinates y-coordinates. In these
coordinates the vector fields X; have the form

d
) )
(1.2) X= gt jz:%%'k(fﬁ)axk: ~j1(0) = 0.

Consider also the anisotropic dilations on R%*! defined by
(1.3) Az = \(20,21,...,2q) = (N20, AT1, ..., Aq), A> 0.

We refer to these dilations as the Heisenberg dilations. For these dilations

the vector fields % is homogeneous of degree —2, and %, 1<j5<d,is
0 Ty

homogenous of degree —1.

The vector fields

0
14 X! = —
( ) 0 8330’
R~ B)
1. X, = — ; —_— 1<5<d
( 5) J axj+§cjk$kawoa _]_ 9

where cji, = cji(y) = a%,ﬂjk (0), are the homogeneous approximations of the
vector fields X;’s. Indeed if we expand by means of Taylor expansions the
coefficients of the vector fields X;’s we get

(1.6) Xo~ XY+ X+ X0+,

(1.7) Xj~ XY+ X0+, 1<j<d,

with X ]k homogenous of degree k with respect to the Heisenberg dilations.

The vector fields X{,..., X generate a 2-step nilpotent Lie algebra.
They are then left-invariant vector fields over a 2-step nilpotent Lie group
with underlying space R%*! and product given by

d

1
(1.8) (J}Z)(] = X0 + Yo + 5 Z cjkmjzk,
Gk=1
(1.9) (x.2)j = zj + yj, 1<j5<d.

This group is called the y-group.

It is actually possible to construct the y-group in terms of Gromov-
Hausdorff limits of metric spaces, so that the y-group is tangent to the
manifold at y (see [Gr| and [Be]). We can also see it as the boundary of a
tangent groupoid as in [Col] using the Heisenberg dilations (1.3) for blowing
up the diagonal of M x M.
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1.2 Sublaplacians and ideas of the W, DO calculus

Let (M1 V) be a Heisenberg manifold. A sublaplacian on M is a
differential operator which can locally be written as

(1.10) ZXQ—M X0+Zuj )X+ v(x),

where )\,ul,...,ud,u are smooth functions and Xg, X1,...,X4 is a local
V-frame of T M.

We can also define sublaplacians acting on the sections of a vector bundle
& over M as follows: they are differential operators acting on the sections
of £ which are locally of the form

(1.11) ZX2®1dg—z)\ Xo—f—z,uj )X +v(x),

J=1
where Xy, X1,...,Xy is a local V-frame of TM7 A is a smooth function
with diagonal matrices values and puq, ..., uq, v are smooth functions with

matrices values.

This kind of operator cannot be elliptic. Nevertheless it can be hypoellip-
tic and in this case the Wy, DO calculus allows us to construct a parametrix.
The basic idea is first, using the dilations (1.3), to consider

d
(1.12) Ay == X7 —iX(x)Xo,

as having order 2. Then developping a suitable symbolic calculus we need
only to find a parametrix for As. Second, we freeze the coefficients of As by
modelizing it at each point y of U by the y-invariant differential operator

d
(1.13) A== (XY —idXY, A=)
j=1

Under some condition on the function A the operator AY is invertible for
any y and the inverses give the principal symbol of a parametrix for A (cf.
section 1.8).

Moreover using a partition of unity and elementary algebra one can
construct a sublaplacian on any Heisenberg manifold and we can do this in
such way the operator is selfadjoint and admits a parametrix (i.e. is elliptic
in the Heisenberg calculus).

Let us now give some examples of sublaplacians on a a pseudohermi-
tian manifold (M?"*1 9). The CR structure is defined by a complex n-
dimensional subbundle of Te M such that

(1.14) TLO N T()71 = {0}, T071 = TLO‘
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The Levi form is the positive definite Hermitian form on 71 ¢ defined by
(1.15) Ly(Z,W) = —id0(Z,W).

There is an unique vector fields X on M such that

(1.16) 0(X) =1, txdf = 0.

The contact form 6 determines a Hermitian metric on M by

(117) X L Tl,O and |X| = 1;
(1.18) Tio L To and complex conjugation is an isometry;
(119) <Z, W> = LQ(Z, W) for Z,W € Tl,O-

This Hermitian metric defines by duality a Hermitian metric on forms and
together with the volume form (df)™ A 6 endows the forms with an inner
product.

The Kohn complex [Ko] is realized as follows. The bundle of covectors
(1,0) is

(1.20) AM = {annihilator of T @ CX} C TgM.
Similarly,
(1.21) A%! = {annihilator of Ty, @ CX} C T¢M.

The bundle of covectors (p, q) is
(1.22) AP9 = (AP A (AT © APTITEM.

A (p,q)-form is a section of AP? and the space of (p,q)-forms is denoted
EP4. Set

(1.23) Oy g EPL— EPITL G =M1 04,

where d is the exterior derivative and m, 441 is the orthogonal projection
onto P41, Then

(1.24) 0y : &7 = P erT — £,
is a chain complex. The Kohn Laplacian on (p,q)-forms is then
(1'25) Db,q = 5;,(155,(1 + 5baq4rlél;k,q+1’

and one can show it is a sublaplacian acting on complex forms (see [BG]).
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We can similarly defines a real sublaplacian. Let H* be the orthogonal
complement of @ in T*M so that H* is the dual of the maximal complex
tangent space H(M) and let 7 be the orthogonal projection onto H*. Set

(1.26) dy=mod:C*(M)— H*.
The pseudohermitian sublaplacian [Le] is defined as
(1.27) Ay = dydp.

In [Le] it is shown that A, = 2RO, where [, is the Kohn Laplacian on
functions. So Ay is also a sublaplacian.

However, the operator A does not transform conformally under con-
formal changes of the contact form 6. So, in order to study the Yamabe
problem on CR manifolds, Jerison and Lee [JL1] introduced the operator

L -

1.28 Ll =A
( ) 0 b+7’L—|—2 7

where R, is the scalar curvature of the Tanaka-Webster connection. Then
(1.29) [erg = e I yef,  fe ™M),

so we shall call [y the conformal (pseudohermitian) sublaplacian.

1.3 Classes of Heisenberg symbols

From now on U is an open subset of R together with a hyperplane
bundle ¥V C TU and a V-frame X, X1,...,Xg of TU. For x € U we denote
by e, the affine map onto the z-coordinates. This the unique affine change
of coordinates which put x at the origin and such that the vector fields X;
coincides with % at x. Also we set

(1.30) o(x,&) = (oo(x,§),01(x,&),...,04(x,8)),

where o;(z,£) is the symbol of 1X;. We refer to o as the (real) symbol of
the frame Xg, X1,..., Xg.

In this section we define the convenient symbols for Heisenberg man-
ifolds. At a local level they are associate to the anisotropic Heisenberg
dilations

(1.31) NE= (N2, M\, . .., &), A >0,

and to the homogeneous pseudo-norm defined by

=

(1.32) €] = (|6 + &) + ... + €D, € e RHHL
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Definition 1.1 S,,,(RT1), m € C, is the space of functions f € C*°(R¥1\
0) which are homogeneous of degree m with respect to the Heisenberg dila-
tions, that is

(1.33) FOLE) =A"F(6),  A>0.

The homogeneity implies that f satisfies to the estimates

(1.34) 02 F(E)] < Callg|*m=0, g0,

where we have let () = ap+ || = 20+ a1 +. ..+ ay. Therefore a smoothed
version of f belongs to the following class of symbols

Definition 1.2 S(f(RdH), k € R, is the Fréchet space of functions f €
C® (R satisfying to the estimates

(1.35) 02 F(€)] < CalL+ € #.

Its topology is defined by means of the semi-norms given by the lower bounds
in the estimates (1.35).

Definition 1.3 S™(R¥!), m € C, is the space of functions f € C(R¥+1)
with an asymptotic expansion

(1.36) FE& ~ > fmy(€),  fu € Sk(RMY,

=20

in the sense that for any integer N we have

(1.37) 108 (F = D fn-i)(@ ) < CanllE*"=O7N, ¢ 2 1.

J<N

We can define smooth families versions of the previous classes of symbols as
follows.

Definition 1.4 S,,(U x R4, m € C, is the space of functions f €
C>®(U x R\ 0) which are homogeneous of degree m in the last variable,
i.€.

(1.38) Fle €)= X" f(2,6),  A>0.

Definition 1.5 S(T(UdeH), k € R, is the space of functions f € C*°(U x
R satisfying to the estimates

(1.39) 10907 F(£)] < Capla)(1 + [1€])9,

with Cop(x) locally bounded on U.
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Definition 1.6 S™(U x R™1), m € C, is the space of functions f €
C®(U x R4YY with an asymptotic expansion

(1.40) F@, &) ~ > fnj(@,8),  fr € Sp(U x RH),

320

in the sense that for any integer N we have

(1.41) 0202 (f = i) (@, &) < Capn (@SN, g > 1.

j<N
where Cogny(x) is a locally bounded function on U.

Remark 1.7 As a(1 + |£|)% < 14 I€|l < b(1+ |&]) it follows from [Hol,
theorem 2.9] that the asymptotic expansion (1.40) is equivalent to the re-
quirement of the following two conditions:

(i) For any multi-orders o and 3 there exists a real 3 such that

(1.42) 050 f(2,€)] < Capl) (1 + €],
with Cyp(x) locally bounded.

(ii) For any integer N if J is large enough we have

(143)  |f(@,8) =Y i@ Ol < COns@)™N, gl >1,

J<J
with Cn(z) locally bounded.

In particular the asymptotic expansion for Heisenberg symbols is the same
as usual.

Proposition 1.8 ([BG]) Let m € C and suppose given for j = 0,1,...
some symbol fr—j in Spm—;(U x R¥L). Then there exists f € S™(U x RI+1)
such that f ~ > fm—j. Moreover f is unique modulo S™>°(U x R4*1) =
NSFHU x R,

Let us now define almost-homogeneous symbols.

Definition 1.9 S7} (U x RN, m € C, is the space of functions f €
C®(U x R4 almost homogeneous of degree m in the last variable, i.e.

(1.44) @, &) = A" f(x,6) € ST®(U xR, A>0.
The interest of the definition relies on the proposition:

Proposition 1.10 ([BG]) Let f € C®(U x R¥1). Then the following are
equivalent:

46



(i) f belongs to ST (U x RI+1).

(i3) f lies in S™(U x R¥1) and has only one term in its asymptotic
expansion, i.e. f ~ fu with fm € Sy (U x R,

Proof. If f belongs to S (U xR%*!) and has only one term in its asymptotic
expansion then f is almost homogeneous of degree m.
Conversely, suppose that f is in ST} (U x R4*1). Then we have

(1.45) [f(x,8.6) =" f(x,€)| < Con(@)(L+ 1IN,

with Cyn () locally bounded. If we replace £ by s.§, s > 0, and if N is large
enough we get

(146)  |s"f(z, st.6) —t" f(x,5.8)| < Con(@)s™ €)™Y, £#0.
Define now the sequence (gx)x>0 C C®(U x (R*1\0)) by

(1.47) gk(@,&) = (25) " f(2,256),  £#0.
Then by (1.46) we have
(1.48) |gks1(2,€) — gr(@, )] < Con ()27 7N, £#0.

As there are estimates similar to (1.45) for the derivatives of f(z,t.£) —
tmf(x,€), the series 3"~ o(gk41 — gk) is convergent in C*°(U x (R1\0)).
This implies that the sequence (g;,) converges in C°(U x (R4F1\0)) to some
g € C®(U x (R¥1\0)) such that for any N we have

(1.49) 9(z,€) — f(z,6)| < Con(@)]€| TN, €#£0.

If we take s = 2% in (1.46) and let k — oo with ¢ fixed we get the
required homogeneity of g. Moreover with k = 0 the estimate (1.49) and
similar estimates for the derivatives show that f lies in S™(U x R%*1) and

f~g N

1.4 The U, DO operators on an open subset of R%+!

The Wy, DO calculus is the pseudodifferential calculus associated to the
quantization of S*(U x R%*1) given by the map

(1.50) f— f(z,0(x,D)).

Here f(z,0(x, D)) denotes the continuous operator from C°(U) into C*°(U)
defined by
(1.51)

f(z,0(z, D))u(z) = (277)(d“)/em'gf(%(f(%f))@(f)dfa ue CE(U).

More precisely:
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Definition 1.11 A Yy, DO operator of order m, m € C, is a continuous
operator from C°(U) into C*(U) of the form

(1.52) P = f(xz,0(z,D)) + R,

with f € S™(U x R™1), called the symbol of P, and R smoothing operator.
The space of Wy, DO'’s of order m is denoted W} (U).

Proposition 1.12 ([BG]) Let m € C. Then:

1) The space WY} (U) does not depend on the choice of the V-frame
Xo, X1, ..., Xy,

2) Any P € W}(U) has a kernel smooth outside the diagonal and ex-
tends to a continuous linear mapping from E'(U) into D'(U). It is

a smoothing operator if, and only if, its symbol belongs to S™°(U x
RdJrl)_

3) Set k=Rm if ®m >0 and k = %ﬂ%m otherwise. We have

(1.53) U C Uh

11
272

)

where W% | (U) is the space of pseudodifferential operators of type (%, %)
272
(see [Hol]).

Combining the last inclusion with the Calderén-Vaillancourt theorem ([CV], [Hw])
we obtain the Sobolev regularity of Wy, DO operators.

Proposition 1.13 Let P € Y{}(U) and set k = Rm if ®m > 0 and k =
%%m otherwise. Then for any real s the operator P extends to a continuous
linear mapping

(1.54) P:HS (U)— H*U).

comp loc

Recall that an operator P given by a kernel kp(z,y) € D'(U x U) is said
properly supported if both projections 7, 7, : supp kp(x,y) — U are proper
maps.

Proposition 1.14 Let m € C. Then:

1) Each Wy, DO operator P can be written as P = Q+ R with Q properly
supported Wy DO and R smoothing operator.

2) If P is a properly supported Wy DO operator, then it induces a con-
tinuous endomorphism of C2°(U) and extends to continuous endomor-
phisms of C®(U), E'(U) and D'(U) respectively.
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1.5 Composition of V), DO operators

Let us look as the composition of ¥y, DO operators. As W3,(U) is con-

tained in W1 1 (U) the classical asymptotic expansion
2

(1.55) 0 #0:(0.6) Y~ Dear (2,020, ©),

for the symbol of the product of two pseudodifferential operators does not
make sense. However, it is possible to show that the composition of two
Wy, DO’s can be a ¥, DO and then to derive an asymptotic formula for the
symbol of the product. But instead of involving the pointwise product of
symbols it is given in terms of Fourier convolution of homogeneous symbols
with respect to the tangent group structure at each point.

Let us first define precisely the convolution for symbols. To this end for
any y € U we denote by ij the left-invariant vector fields with respect to

the y-group which coincides with % at the origin. Then we let o¥(z, &) be
the symbol of the frame X, X7, ..., XJ.

Lemma 1.15 ([BG]) Lety € U. Then:

1) For any f € Sﬁ(RdH) the operator f(o¥(x, D)) maps S(R™1) to
itself.

2) For fi € SH(R¥1Y) and fr € S[*(RT) we have
(1.56) fi(e¥(z, D)) o fa(0¥(x, D)) = (f1 ' f2)(0¥(x, D)),

where y — *Y is a smooth family of continuous bilinear maps from
S (RIY) x Sf2(RHHY) into S (REHY),

Remark 1.16 If X]y = %, j=0,1,....d, then 0¥%(x,&) = £ and we have

(1.57) filo?(z, D)) o fa(o¥(x, D)) = f1(D) o fo(D) = (f1.f2)(D).

So in this case the convolution *¥ reduces to the pointwise product of sym-
bols.

Remark 1.17 In general the convolution symbol fi %Y f5 is given by

(158)  fi Y fole,€) = (2m) (@D / / M £ (6 4 ) fa0¥ (2, €))dzd,

where the integral is taken in the sense of oscillating integrals. Indeed there
exists a differential operator L = L(¢, 2,1, D, D)), independent of y, such
that

(1.59) Li(e7 iy = g=izn)
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and for N large enough the integral

(1.60) <2w>-‘d+1>J(/°e—“2”ﬂzﬂV<fa<s-+-n>fa<ay<z,a>>>dzdn,

is absolutely convergent.

As y — ¥ is a smooth family we get a continuous bilinear map
(1.61) 0 SP(U x RT) x Sf2(U x R — §fth (7 x REF),
by setting

(1.62)  fi+ oy, 8) = (fi(y, ) # oy, ))(E),  f; €87 (U x RHY),

This applies in particular if f; and fo are almost homogeneous symbols
of degree m; and mo. But for any ¢t > 0 we have

S fo(w, 0.6) — ™2 f1 x fo(x, &) =
(F163)t.8) —t"™ f1(x, ) * fo(x, t.8) + ™ f1(z,§) * (fo(z,t.§) — 1™ fa(w,€)).

So using the fact that S™°°(U x R9*1) is a two-side ideal for * we see
that fi; * fo is almost-homogeneous of degree m; + ms and its principal
symbol depends only on the principal symbol of f; and fo. Then identifying
Sy (U x RT1) with the quotient S™ (U x R4T1)/S=°(U x R4T) we obtain
a bilinear map

(1.64) % : Sy, (U x R % S, (U x RTFY) — S, 1, (U x REFY),

This gives the needed convolution for homogeneous symbols.
We can now state the composition formula for ¥y, DO operators using
the notations which follow. If f(z,&) is a symbol let

(1.65) (2,6) =000, f(x,€)  and  fO(x,€) = Dif(x,€).

Next denote by 0¥ (z,£) = (g4)«0(2,€) the V-frame symbol in the -
coordinates and set

(1.66)
1 1y
haﬁ’yﬁ(x) = aaghoz,b”y(x70)v hoz,B’y(x7Z) = w(gx 1(Z>) 6,37(.%', Z)a

where the functions eg, are defined by the equality

(1.67) (0(2,6) =0"(2,6))" = Y epy(@,2)0" ().
IvI=I8]
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Proposition 1.18 ([BG]) Let Py € W' (U) with symbol fi ~ > fim,—j
and Py € W?(U) with symbol fo ~ >~ fom,—j and suppose either Q1 or Q3
properly supported. Then PPy is a Wy DO of order mi+mg and has symbol

[~ fnitma—j with

(1.68) Fnstma—i () =Y haps(@) £y Fomy 102, 6),
where the summation is taken over the indices such that
(1.69) vl =18, B +lal <O +B-)=7—k—L

In particular, the principal symbol of P1Pa is fim, * fo,m,(x,§) is the con-
volution of the principal symbols of Py and Ps.

By proposition 1.14 the composition P; P, is well defined as a continuous
mapping from C2°(U) into C*°(U) and up to a smoothing operator we have

(1.70) PPy =) ¢ifi(z, oz, D)) falx, o(x, D)),

where (;) and (¢;) are families of smooth compactly supported functions
on U such that (¢;) is a locally finite partition of unity and v; = 1 near
supp ;. So the proposition follows from the lemma:

Lemma 1.19 ([BG]) Let ¢ € CX(U) and let fi € Si'(U x R™) and
fo € S[2(U x R¥1Y). Then

(171) fl(l‘,O'(ZL',D))¢f2($,0(l’,D)) = fl#lﬁfQ(xao-(:L‘aD))a
with fi#ty f2 in ST (U x R such that

(1.72) Fi#tu f2(2,€) ~ > haprs(@)p(@) £ % (Uf)5n (@, ),
where the summation is taken over the indices such that |y| = |8| and |5] +
ol =@+ 8 -0

Remark 1.20 In the expansion (1.72) the symbol f{ * (z/;f)gz has order
ki+ke—©) — @)+ ). So there are only finitely many terms of a given order
and this asymptotic expansion does make sense.

Remark 1.21 Suppose V is the trivial hyperplane bundle generated by £1
. ax . Then the convolution * is the pointwise product for functions and

we have e,(y) = y — z and 0@ (2,£) = 0%(2,£) = €. This implies that
haooa = é and hoz,@v(s =0 if (Ba77 ) 7é (Oa Oa Oé). Thus
(1.73)

Fity fol@, &) ~ Z 1 x (0 F2.0) (@, ) ~ Z 108 f1(, D (¢ f2) (. ),

which gives back the asymptotic expansion for the symbol of the product of
two standard pseudo-differential operators.
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Remark 1.22 The symbol fi1#, f2 is given by the oscillating integral
(1.74)

fritfolz, €) = (2m) @D / / e ) (a2, )b (2) Fales (2), 0@ (2, €) ) dan.

This integral can be regularized as the integral (1.58) and by taking suitable
Taylor expansions inside one can obtain the asymptotic expansion (1.72).
In fact, for N integer let ©(N) the summation over the indices such that
|v| = |B] and |B] + |a| = @) + ® — &) < N. Then it follows from the closed
graph theorem that the bilinear map

(N)

(L75)  (f1,f2) — fittofe — > hapys(@)(@) [ = (0 )50 (2,€),

is continuous from S(Tl (U xRIH1) x S(TQ(U x R%*1) into S(fﬁkQ*N(U x R,

1.6 Kernels of V,D0O operators

Let K(x) € S'(R™1). For A > 0 we denote by K (\.x) the distribution
defined by

(1.76)  (K(\.x),u(z)) = A"2D(K(2),u(A 2)),  ueSRHMY).
Then K is said to be homogeneous of degree m, m € C, if
(1.77) K(Az)=\"K(z) for any A > 0.

The starting point here is the problem of the extension of a homogeneous
symbol on R™1\0 into a homogeneous distribution on R4*!,

Lemma 1.23 ([BG]) Let f € C®(RT1\0) homogeneous of degree m.

1) If m is not an integer < —(d+2), then f has an unique homogeneous
extension as a tempered distribution on R*H1.

2) If m is an integer < —(d + 2), the only obstructions to such an
extension are given by the non vanishing of

L78)  ealf) = & / CF(©)ipde, )= —(m+d+2),
lI€]1=1

al

where E is the generator of the flow ¢s(€) = (e*3&g, e5¢’).

Proof. If Rm > —(d + 2) then f is integrable near the origin and defines a
tempered distribution which is its unique homogeneous extension.
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If Rm < —(d + 2) an extension of f as a tempered distribution on R !
is provided by
(1.79)

(7(6), u(8)) = / (w(©) (el 3 S u @) e, e SE,

@<k

with & > —(Rm+d+2) and ¢ € C°(Ry) such that ¢ = 1 near 0. One can
check that

(180) 708 = N"TO =X 3 pa [ € f©indes A0,

<k lell=1

with pa(X) = [ p@FmTd+2(y(p) — w()\,u))%“. Let A = e® and write ¢ in
the form

(1.81) ¥ () = h(log )

with h € C*°(R) such that h = 1 near —oo and h = 0 near +o0o0. Then

d Foo
(1.82) gpa(es) = —eas/ e n! (t)dt, a=@+m+d+2.

—0o0

As po(1) = 0 it follows that 7 is homogeneous of degree m if, and only if,
we have

(1.83) /e“sh’(s)ds:o fora=m+d+2,....m+d+2+k.

Suppose now that m ¢ Z. Then (1.83) is satisfied by

m+d+2+k

(1.8) W)= TI G+ g,

a=m+d+2

with g € C°(R?!) such that [g(t)dt = 1. So 7 defined by (1.79) with
() = flzZuh/ (s)ds is a homogeneous extension of f. Moreover, if 71 €
S'(R¥1) is another homogeneous extension of f then 7 — 7y is supported at
0 and we have 7 = 71+ | 1400, a, € C. Asboth 7 and 71 are homogeneous,
it follows

(1.85) D (AT _ Am)a,60) = 0,

Thus a, = 0 for any o and 7 = 7.
It remains to treat the case m integer < —(d + 2). In this case we can
set k = —(m + d + 2) and take h of the form

(1.86) W)= ] (é%ﬂ)g(sx
a=m+d+2
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with ¢ € C(R¥1) such that [g(t)dt = 1. Then p,(\) = 0 for @) <
—(m+d+2). For @ = —(m =d+2) we have

d
(1.87) £pa(es) = —/h’(s)ds =1.
Thus pa(A) = log A and we have

(1.88) 7ML —A"7(&) =A"logh > alf)FE,  A>o0.

Oy=—(m+d+2)

Hence 7 is homogeneous if ¢, (f) =0 for @) = —(m = d + 2).
Conversely, suppose there exists 7, € S'(R%!) homogeneous of degree
m agreeing with f on R¥1\0. Then 7 — 7y is supported at 0 and 7 =
143 a0, aq € C. Thus
(1.89)
TAE-ATT(E) = Y (AT AMaa 5 = A" log A T ealf)V(E),

@)=—(m+d+2)

which implies that c¢o(f) =0 for @ = —(m+d+2). R

Remark 1.24 If we take the inverse Fourier transform of the distribution
T constructed above we obtain a tempered distribution smooth away from
zero. If m is not an integer < —(m + d + 2) it is homogeneous of degree
m=—(m+d+2). If m is an integer < —(m + d + 2) we have

(1.90) (7)(Az) = A7 (x) — (21) " TFIATlog A Y ez, A>0.

o=
This leads to define the following spaces of distributions:

Definition 1.25 K,,(U xR, m € C, is the space of distributions K (z,y) €
C®(U)®S' (R which are smooth on U x (R4T1N\0) and such that for any
A > 0 we have

(1.91) K(z,\y) = \"K(z,y), if m &N,

(1.92)  K(z,A\y)=A"K(z,y) + X" log A Z calT)y”, if m € N.

=m

Remark 1.26 If m is not a positive integer the restriction of K to U X
(R4+1\0) is smooth and homogeneous of degree m. If m is a positive integer
the equality (1.92) for A = [|y|| =1, y # 0, gives

(1.93)  K(z,y) = [yl K (z, |yl y) = D cal@)y“log iyl y#0.
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Definition 1.27 K™(U x R*™1), m € C, is the space of distributions K €
D'(U x R with an asymptotic expansion

(1.94) K(x,y) ~ Y Kmyj(z,y), K €K(U xR,
Jj=0

in the sense that for integer N if J is sufficiently large we have

(1.95) K=Y Kpyj € CN(U xR,
J<J

Combining the definition with remark 1.26 we obtain:
Proposition 1.28 Let K € K™(U x R4*). Then:

1) The distribution K lies in C®°(U)QD' (R¥1L) and it is smooth on
U x (R™1\0).

2) Near y =0 we have
(1.96)

K(@y)= Y amyj(z,y) —cx(x)logly| +0(1),  ifmeN,
0<j<—Rm

(1.97)  K(z,y)= Y ami(z,y)+0(1),  ifm¢N.
0<j<—%m

In both cases ay(x,y) is a smooth function on U x (R1\0) homoge-
neous of degree k in the variable y.

Proposition 1.29 ([BG]) Let P be a continuous operator from C°(U)
into C°(U). Then P is a ¥y DO of order m if, and only if, its kernel is of
the form

(1.98) kp(z,y) = |3 K (2, —e2(y)) + R(z,y)
with K € K™(U x R, i = —(m+d+2), and R € C®(U x U).

Proof. Let f € S*(U x R*1). By definition the kernel of the operator
f(z,o(z, D)) is

(1.99) k(z,y) = (2m)~(@+D) / V) F(2. oz, €))de.

As o(z,6) = ()¢ we have
(1.100)

/ @8 f(x,0(x,€))de = |} / e @) f (g €)de = (2m) 7D fe, (2, —ea(y)).
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Therefore the proof reduces to show that a distribution K on U x R4*! lies
in K™(U x R4*TYY if, and only if, it is of the form

(1101) K(:E,y) :ffﬁy(xvy)—*_R(way%

with f € S™(U x R¥!) and R € C®(U x R+,

However if f € S, (U x R4 then by lemma 1.23 we can extend it into
a distribution 7 € C®°(U)®S'(R1) such that e, lies in s (U x REFL).
Conversely if the distribution K lies in K (U x R4 then 7 = IA(y_>5 is
smooth outside on U x R¥*! and satisfies

(1.102) (2, A8 = A7 (2,€) + A log A Y cad®, A >0.

)=m

Hence the restriction of 7 to U x (RT1\0) lies in S,, (U x R4,

As by remark 1.7 the Fourier transform induces an equivalence be-
tween the asymptotic expansion for symbols and the asymptotic expansion
for kernels, it follows that the form (1.101) characterizes the elements of
K™(U x R¥*1) among the distributions on U x R4*+!. W

Corollary 1.30 Let P be a VyDO of integral order m. Then near the
diagonal its kernel kp(z,y) has the following behavior

(1.103)  kp(z,y) = Z aj(z,e5(y)) — cp(x)log [lex(y)[ + O(1),
— (m+d+2)<j<0

with a;(x, z) homogeneous of degree j in the variable z and cp(z) given by

(1.104) cp(z) = (2m)D) /||§|1 f(a+2)(z,§)ipdE,

where f_(4.9) is the homogeneous symbol of degree —(d + 2) of P.

We can also define almost homogeneous distributions in the following
way.

Definition 1.31 K7} (U x RI*TYY, m € C, is the space of distributions K €
C=(U)&D' (R which are smooth on U x (R1\0) and almost homoge-
neous in the second variable, i.e.

(1.105) K(z,ty) —t"K(z,y) € C®(U x R4, t>0.
Lemma 1.32 Let m € C. Then we have

(1.106) Km (U x R = I, (U x RETL) 4 (U x RITY).
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Proof. As K,,(U x R C Kup(U x R¥1) we need only to prove the
inclusion

(1.107) (U x R € K (U x RITY) 4 0°(U x R,

Let K € Kon(U x R¥1) and ¢ € C°(R¥1!) such that ¢ = 1 near zero.
Then the distribution ¢(y) K (z,y) lies in C=(U)®E'(R¥1) and we define a
smooth function on U x R4*+! by setting

(1.108) F(,8) = (pK)yy¢(2,6).

Moreover if we set m = —(m + d + 2) then for any ¢ > 0 the symbol
t42(f(z,t.6) —t™ f(x,€)) lies in S™°(U x R4*1) for it is the Fourier trans-
form in the second variable of

p(t.y)K(z,t.y) —t"p(y) K (z,y)

(1109) = (ty)(K(w,ty) — K (z,1)) + (p(ty) — o(5) K (2 1).

Thus f is almost homogeneous of degree m and by lemma 1.10 there exists
g € Spa(U x R¥+1) such that f — g has rapid decay at infinity. Then by
lemma 1.23 we can extend g into a distribution 7 € C*(U)®S’'(R1) such
that 7¢_,, belongs to I, (U X RI1). As femsy — Tesy is smooth we can
conclude that K coincides with an element of K, (U x R¥1) up to a smooth
function. W

1.7 Invariance by Heisenberg diffeomorphisms

Proposition 1.33 ([BG]) Let¢: U — U be a Heisenberg diffeomorphism,
where U 1is another open subset of R equipped with a hyperplane bundle
YV C TU and a V-frame of TU. Then for any P € q)g(U) the pullback

operator P = ¢*P is a W,DO of order m on U. Moreover,
(1.110) cp(z) = ¢/ (z)|ep(o(x)), z e,

where cp(x) and cz(T) are the coefficients of the logarithmic divergencies of
the kernels of P and P given by corollary 1.30.

The proof requires the following analysis of the action of smooth functions
on K*(U x R,

Lemma 1.34 ([BG]) Let K € K™(U x R and f € C°(U x R,
Then:

1) The distribution f(x,y)K(z,y) lies in K™(U x RI+1).
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2) If for some integer k we have f(x,y) = O(||y||F) near y = 0, then
fK is in K™TF(U x R,

Proof. By Taylor formula there exist smooth functions g, such that
(1.111)
o

fa K@y = Y LoefO w0k @y + S L@ k().
<N © =N~

The distribution %a;f@ (z,0)K (x,y) lies in K™t (U x RH1) and the
remainder term

1
(1.112) Ry (2,y) =) —y%0aK (2,y),

is smooth outside U x 0.
However by proposition 1.28 there exists a real y such that for any multi-
order 3 we have

(1.113) 07K (,9)] = O(llyl ") mear y =0.

It follows that Ry(x,y) is smoother and smoother as N — oco. Thus

Y 5o pla
which implies that fK lies in K™ (U x R¥+1).
Finally if near y = 0 we have f(z,y) = O(||y/|*) or some integer k, then
99 f(x,0) =0 for @ <k and fK is actually in KU x R¥*1). W

Proof of proposition 1.33. By proposition 1.29 the kernel of P is of the
form

(1.115) kp(%,9) = 2| K (%, £:(7)) + R(Z, 7),

with K € K™(U x R41) and Re C°°(~U x U). Here &; is the #-coordinates
map with respect to the V-frame of TU. So P has kernel

(1.116)  kp(x,y) = 1¢'(y)|kp(d(2), 6(y)) = |eo| K (2,e2(y))| + R(,y),
with R € C°(U x U) and K given by
(L117)  K(z,y) = [0, WIK(0(2), (), bo = Epmy0Po, -

Note that ¢, is the diffeomorphism ¢ expressed in the x-coordinates and
Z-coordinates for & = ¢(z).
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However as ¢'(z) maps V, into Vy(,) the tangent map ¢,,(0) should map

span{a%l, e 6%1} into itself. Thus ¢/,(0) is necessarily of form
ano o --- 0
aio
(1.118) o= |
: I
ado

with ago # 0 and A)) € GL4(R). Tt follows that we can write ¢, as

(1.119) $2(y) = Gu(y) + 0:(y),

where @C and 0, depends smoothly on z, (Ex is polynomial and homogeneous
in y in the sense that

(1.120) "6, (00(Ay) = A, (0)y,  A>0,

and 6, is such that near y = 0 we have
(1.121)

02(y) = (O(lyol*+ lyolly'[+1y'1*), Olyo*+4'1%)) = (Ollyl*), O(llyl*))-

Then pick a smooth family (xu)zey C C°(R¥H1) such that

(1.122) suppXe C U, Ixa(Ex ()0 ()| < [ 02(w)]l-

As ch + Xz(€2(y))0.(y) vanishes nowhere and coincides with ¢, near y = 0,
we have

(1.123)  K(2,y) = [5(0)| K (6(2), 6r + Xa(e2(®))00(y)  mod C.

So we may suppose that ¢, and 0, are defined on the whole R and we
have ||0(y)|| < ||¢z||. Then by proposition 1.29 it is enough to check that

K lies in K™(U x R4+,
Now the Taylor expansion for K(z,y) gives

0z

W (0(),82) + B (2.),

(1.124) K(zy)= Y W)
Q<N

with the remainder term given by

Oz

(y;)a /01 OK (p(x), o + t0,(y))dt.

«

(1.125)  Ry(z,y) = Y [¥5(y)]
=N

As 0,()2| = O(||y||Pxo*2l'l) = O(HyH%@) the lemma 1.34 implies that
(1.126) 00102 ()20 K (6(2), &) € K7 (U x R,
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Moreover Ry is smooth on U x (R*1\0) and by proposition 1.28 for N
large enough we have

(1127) [Bav(, )] = Oyl ) = O(*+ )

Hence Ry is smoother and smoother as N — oo. We can then conclude
that K lies in ™ and P is a Uy, DO on U of order 7.

Finally working out the Taylor expansions (1.111) and (1.124) we obtain
(1.128)

K(z,y) = 6, (0)[K(¢(x), )+ y; KD (w,y), KUY e K1(UxR).

As y; KU)(z,y) cannot have a logarithmic divergency, the logarithmic diver-
gency of K is

(1.129)  —[¢,(0)]cg (¢(x)) log [|du]| = =|6(0)[cg (¢()) log [yl| + O(1).

Hence cp(z) = |¢(z)|cp(o(x)) and the proof is complete. W

1.8 Ellipticity and parametrices
Definition 1.35 Let P € U7 (U) with principal symbol fr, € Sp,(UxRIT).

Then P s said to be elliptic in the Heisenberg calculus if there exists some
Gom € S_m(U x RH1) such that

(1.130) fm*g—m =1=g_m * fm.
Proposition 1.36 Let P € W} (U). Then:

1) The Wy, DO operator P is elliptic if, and only if, there exists Q €
W™ (U) such that

(1.131) PQ=1=QP mod U™>(U).

2) If P is elliptic in the Heisenberg calculus then it is a hypoelliptic
operator, i.e. for any u € E'(U) we have

(1.132) Pu smooth near xg = u smooth near xy.

Remark 1.37 Set k£ = %%m if ®m > 0 and & = Rm otherwise. If P €
U(U) is elliptic it follows from proposition 1.13 that for any u € £(U)" we
have Pu € HE (U) = u e HITFU).

loc
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Let us now give an ellipticity condition for a sublaplacian A on U in the
form

(1.133) ZXQ—Z/\ X0+Zuj )X +v(z),

where A, p1,...,uq and v are smooth functions. Let y € U. In the y-
coordinates the vector fields X; take the form

o
(1.134) Xj=55+5 Zﬂﬂ axk"" =1,....,d,

with 3;;(0) = 0. Then the y-invariant vector fields are given by
1.1 XY= 0 b =1 d
( : 35) 0 _@7 ] 85[7] + 3 Z jkx $0 J=4...,a

where bjj, = a%k,@jo(()).
Consider now the 1-form # annihilating V such that 6(Xy) = 1 and let
L be the 2-form
(1.136) L=-di(X,Y)=06([X,Y]) X, Y eV
Thus for any X, Y in )V we have
(1.137) [X,Y]=L(X,Y)Xo mod V.

In particular at y we have L,(X;, Xi) = bji, — by;.

Let ai(y),...,aq(y) be the eigenvalues of the skew-symmetric matrix
with entries ¢ = bji — by listed so that a;(y) > 0 and an4;(y) = —a;(y)
for j =1,...n, and ag,yx(y) =0 for k =1,...,d — 2n. Then the singular
set AY C C is defined by

(1.138) A ={NeR; A=) ai(y)} if2n<d,

(1.139) AV ={£> (205 + Da(y); « €N} if 2n=d.

Note that by (1.137) the definition of AY does not depend on the choice of
the V-frame.

Proposition 1.38 ([BG]) Let A be the sublaplacian (1.133) and define the
singular sets AY as above. Then the following conditions are equivalent:

(i) For any y € U the coefficient A(y) does not lie in the singular set
AY.
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(ii) For anyy € U the left-invariant operator AY is invertible.
(iii) A is elliptic in the Heisenberg calculus.

Furthermore if one these conditions holds the principal symbol of a parametriz

for A is

(1.140) f-2(y,€) = £5(8),
where fY,(€) is the symbol of the inverse of AY.

Remark 1.39 Since the singular sets are contained in R, the above theorem
implies in the Heisenberg calculus setting the Hormander theorem [Ho2|.
The latter asserts that given real vector fields Xg, X1, ..., X,, generating
T M together with their brackets the differential operator A = — Z;”Zl XJZ +
Xy is hypoelliptic.

Remark 1.40 In the rest of the dissertation we will used only the weaker
ellipticity condition:

d
1
(1.141) RAW) < 5D law).  yEU,
j=1

and for technical reasons we shall refer to it as being precisely the ellipticity
condition for A given by the proposition 1.38.

1.9 The ¥V, DO operators on manifolds

Let (M, V) be a Heisenberg manifold and £ be a vector bundle over M.
Then proposition 1.33 allows us to define ¥y, DO operators on M acting on
the sections of €.

Definition 1.41 V}(M), m € C, is the space of continuous operators P
from C(M) into C*°(M) such that:

(i) the distribution kernel of P is smooth outside the diagonal of M x M ;

(ii) on any Heisenberg chart P is given by a ¥y DO of order m on an
open subset of R4T! equipped with a V-frame.

Definition 1.42 V}(M, &), m € C, is the space of continuous operators P
from C(M,E) into C*°(M,E) such that:

(i) the distribution kernel of P is smooth outside the diagonal of M x M.

(ii) on any trivializing Heisenberg chart P is given by a matriz of
Uy, DO operators of order m on an open subset of R*L equipped with
a V-frame.
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All the preceding results in the case an open subset of R4*! hold for ¥, DO’s
on M. Moreover it follows from proposition 1.33 that the coefficient cp(x)
of the logarithmic divergency of Wy, DO with integral order can be globally
defined as a density.

Proposition 1.43 Let P € W} (M,E), m € Z. Then:

1) On a trivializing Heisenberg chart the kernel kp(x,y) of P has the
following behavior near the diagonal

0

(1.142) kp(z,y)= Y aj(z.2(y)) - ep(@)log llea(y)] +O(D),
—(m+d+2)

where €, is the x-coordinates map related to the chart, aj(x, z) is ho-
mogeneous of degree j in the variable z and cp(x) is a globally defined
density on M with values in END E£.

2) Let ¢ : (M,V) — (M,f/) be a Heisenberg diffeomorphism. Then we
have the equality

(1.143) ¢y P(T) = ¢u(cp)(T).

Proposition 1.44 ([BG]) Suppose M is compact. Then:
1) The class W3,(M, E) is stable under the composition of operators.

2) Any P € W} (M,E) with Rm < 0 extends to a continuous endo-
morphism of L*(M,&). If furthermore ®m < 0 this endomorphism is
compact.

3) Any P € W} (M,E), elliptic with ®m > 0, is Fredholm and has its
kernel contained in C*°(M,E).

For our examples of sublaplacians on a pseudohermitian manifold we
obtain:

Proposition 1.45 ([BG]) Let (M?"*! 0) be a pseudohermitian manifold
and let V = ker 0. The following operators are elliptic in the VDO calculus:

(i) the Kohn Laplacian Oy acting on (p, q)-forms with 0 < g < n;
(ii) the pseudohermitian sublaplacian Ay;

(iii) the conformal sublaplacian Clg.
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1.10 Heat kernel of an elliptic sublaplacian

Let (M d+1,V) be a compact Heisenberg manifold equipped with a
smooth non-negative density and let A be an elliptic sublaplacian on M
bounded from below. We can then define the heat semi-group e *2, ¢t > 0.
It is defined on L?(M), strongly differentiable and for ¢ > 0 the operator

e '™ maps to the domain of A,
d__n A A 2
(1.144) Pl —Ae™ "7 e U — o+ U, u € L*(M).

The point here is that the heat operator e *2 provides an inverse for the
differential operator % + A on M x R. Indeed through the isomorphism
C(M x R) ~ C(R,C°°(M)) the inverse is given by

(1.145) Qu(t) = /t e~ =98y (s)ds, u € CP(R,C®(M)).

—0o0

Therefore one could derive an asymptotic expansion for the kernel k;(z, y) of
et by constructing a pseudodifferential inverse for %—I—A. This is precisely
what is done in [BGS] and what we shall present in this section.

Let C_ be the half-plane {im7 < 0} with closure C_ = {im7 < 0}.
The relevant class of symbols for studying A + J, is associate to dilations
on R¥2 = R4 x R defined by

(1.146)  A(z,t) = (Aa, M%) = (N2xg, Axq, ..o, dag, A%), A >0,
Definition 1.46 S} ,,(U x R*2), m € Z, consists in functions f(x,€,7) €
C>®(U x (R+2\ 0)) which extend to a function in C=(U x (R x C_)\ 0)
i such way as to be holomorphic with respect to T and to be homogeneous
of degree m in the two last variables, i.e.

(1.147) fz, Az, N21) = X" f (2, €, 7), A > 0.

Definition 1.47 S;*(U x R*2), m € Z, is the space of functions f €
C°°(U xR¥*2) which admit an asymptotic expansion of symbols f ~ > fm—j
with fi, € Sp (U x Rd+2).

Definition 1.48 For m € Z, ¥{}, (U x R) is the space of operators P from
CX(U x R) into C*(U x R) of the form

(1.148) P = f(x,0(z,D;), D) + R,
with f € ST(U x R¥*2) and R € U=°(U x R).
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Now, all the preceding results concerning ¥y, DO operators continue to
hold in this context: convolution for homogeneous symbols, composition
formula, kernel characterization, invariance by Heisenberg diffeomorphism
and parametrix construction. In particular we can define such operators on
any Heisenberg manifold.

However, there is an important specificity here due to the analyticity
with respect to 7.

Lemma 1.49 ([BGS]) Let f(&,7) € C°(R¥2\ 0) be homogeneous of de-
gree m, m € Z, which extends to an element of C®° (R4 x C_\ 0) in such
way as to be holomorphic in the variable 7. Then f can be extended into a
homogeneous distribution g on R2 such that k(x,t) = §(x,t) vanishes for
t <O0.

As the converse follows from Paley-Wiener-Schwartz theorem we obtain a
kernel characterization in terms of the following space of distributions:

Definition 1.50 Ky, ,, (U x ]R‘H'Q), m € Z, is the space of distributions K €
C>®(U)@S'(RH2) such that

(i) K(z,y,t) is smooth on U x (R™2\ 0) and vanishes for t < 0.

(ii) K(x, Ay, \t) = \™K (x,y,t) for A > 0.

Definition 1.51 K}*(U x R*2), m € Z, is the space of distributions K €
D'(U x R™2) with an asymptotic expansion of kernels K ~ Y Ky, with
K e IC[(U X Rd+2).

Using this calculus one can prove:

Proposition 1.52 ([BGS]) Let (M9t V) be a compact Heisenberg man-
ifold equipped with a smooth nmon-negative density and let A be an elliptic
positive sublaplacian on M.

1) The operator A + % is invertible on C°(M x R) and its inverse
belongs to W), (U x R).

2) Let k(x,y,s —t) be the kernel of (A + %)*1. Then k(x,y,t) is the
kernel of et fort >0 and k(z,y,t) =0 fort < 0.

A

3) The operator e*2 is smoothing for t > 0.

Proof. We refer to [BGS] for an explicit construction of a parametrix for
(A + %) in \II;Qh(U x R). We can anyway exhibit an inverse. Consider the
operator on C°(M x R) ~ C(R,C>°(M)) defined by

(1.149) Qu(t) = / t e =98 y(s)ds,  we CX(R,C®(M)).

— 00
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By (1.144) we have

0 0

(1.150) QA + 8t) (A + 875)

Q=1.

Now let @ € \IJ‘_,%L(U x R) be a parametrix for A 4+ %, i.e.

(1.151) (A + gt)Q =1—R, R e U™°(M x R).
Then we have
(1.15) QI =Q(a+ )@ =Q - QR

As QR is smoothing we see that Q lies in \II;Qh(U x R). Let k(z,y,t —s) be
the kernel of (). Then

(1.153) Qu(z,t) = /M/RkQ(J:,y)u(yjs)ds, u € C(M x R).

Identifying (1.149) and (1.153) we see that k(z,y,t) is the kernel of e =2 for
t > 0and k(x,y,t) =0fort < 0. As k(x,y,t) is smooth on M x M x (0, +00)
it follows that e ** is smoothing for t > 0. W

Proposition 1.53 ([BGS]) Let (M1, V) be a compact Heisenberg man-
ifold equipped with a smooth mon-negative density and let A be an elliptic
positive sublaplacian on M.

1) Fort small the kernel of e™*2 has an asymptotic on the diagonal

—dy2
(1.154) ki(z, ) ~ 2 Y aj(x)t!,
j>0

where the aj(z)’s are smooth densities on M with ag(x) non-negative.

2) Fort small we have

(1.155) Trace(e™ t_MZt]/ aj(z

j=>0

3) Let \(A) be the k’th eigenvalue of A counted with multiplicity.
Then for k large

(1.156)  M(A) ~ (Ak)S, A= r(1+¥) /ao(x).
M
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Proof. By proposition 1.52 the operator A+ % is invertible on C°(M x R)
and its inverse @ = (A + %)_1 lies U},% (U x R). Moreover if we denote by

kg(x,y,s —t) the kernel of (A + %)_1 then kg(z,y,t) is the kernel of e 74
for ¢ > 0 and we have kg(z,y,t) = 0 for t < 0. Anyway, locally we have

(1.157) kg(z,y,t) = K(x, —e2(y),t) + R(z,y,1),

with K a K;, (2 (U x R*?)-kernel, R smooth and U an open subset of
R+ together with a V-frame. Let K(z,y) ~ > K _(g49)4j, Ki € Kpa(U x
R9*+2), be the asymptotic expansion for K. Then if .J is large enough
(1.158)

Ry(z,t) = kqla,z,t) — |eh] > K_(442)4;(2,0,t) € C(U)RCN (R).
J<J

As Rj(z,t) =0 for t < 0 this implies
(1.159) |Ry(z,t)| < Cynt,

since we can take the constant uniform by shrinking U if necessary. There-
fore letting

(1.160) a%(:c) = |eh | K_(a42)+(2,0,1), j=0,1,...,
we obtain

_(d+2) i
(1.161) ky(x,x) ~t™ 2 Zma%(x).

Jj=0

This asymptotic holds on the whole M since we can globally define the
a;j(x)’s as densities on M using the equalities

. )=y _(@+2) L
(1.162) a%(x) :t1_1>r51+t 2 (ky(z,z) —t 2 ;waé(m)).
j

Let us now show that a; (z) = 0 if j is odd. We work on U and we let
2

p2(x,&,7) + i be the principal symbol of A + 9;. This symbol is invariant
under the dilation by —1, i.e.

(1163) (_1)-(£Oa£1> cee 7§d77_) = (507 _517 R _fda T)'

As the other symbols pi(z,&) and po(x) don’t depend on 7 they are —1-
homogeneous of degrees 1 and 0 respectively. On the other hand the prin-
cipal symbol of (A + d;)~! is the solution of the equations

(1.164) foox(p2a+iT)=1= (p2+iT) * f_o.

So f_9 must be homogeneous of degree —2. By construction the symbol
f—a—j of (A +8;)~! with degree —2 — j is a homogeneous polynomial, with
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respect to the convolution %, in f_o(z,&,7) and the symbols of A + 9. So
it has to be —1-homogeneous of degree —2 — j = j mod 2. As the jacobian
of the dilation by —1 is equal to 1 we see that K;_(449) = foo _j is also —1-
homogeneous of degree j. Hence K;_(449)(7,0,1) = (— 1Y K; i—(d+2)(7,0,1),
which finally implies a; (z) = 0 for j odd.

Therefore for ¢ sma211 we have

_ (d+2) 3
(1.165) kp(z, ) ~ 7 2 ;tm;(fﬂ)-
J=

Integrating over M we obtain
(1.166) Trace(e "8) ~ ¢~ Ztﬂ/ aj(z
3>0

It remains to prove that ag(x) is non-negative. In [BGS, theorem 5.22]
an explicit formula is given for K_ 4 9y(7,y,t). For x fixed K (z, ., .) is given
up to a change of coordinates by the inverse Fourier transform of a symbol
in the form

(1.167) 76 T) = / TG (e s)ds, A= Aa),
0

where G(&, s) is a non-negative function even in the variable s. Using the
parity of G we get t

/
(1.168) K_(g42)(2,0,1) = "b;‘@w)“d*” / e MOG(E,1)dE > 0,

where ¢, is the issued change of coordinates. It follows that ag is a non-
negative density:.

Finally, the asymptotic (1.166) together with the Tauberian theorem of
Hardy-Littlewood show that for k large we have

(1.169) Me(A) ~ (AR, A=T(1+ d;Q)‘l/ ao(z),
M

which completes the proof. B

Remark 1.54 We will show in chapter 2 that any selfadjoint elliptic sub-
laplacian on a compact Heisenberg manifold is bounded from below. So
proposition 1.53 continue to hold in this case.

In the case of a pseudohermitian manifold we obtain:

Proposition 1.55 ([BGS]) Let (M?"*1 0) be a compact pseudohermitian
manifold. Then proposition 1.53 hold for the following operators:
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(i) the Kohn Laplacian Oy acting on (p,q)-forms, 0 < g < n,
(ii) the pseudohermitian sublaplacian Ay,
(iii) the conformal pseudohermitian sublaplacian [g.

Moreover for each of these operators the coefficient aj(x) in the asymp-
totic (1.154) takes the form

(1.170) aj(x) = Aj(x)(do)" N6, Jj <0,

where Aj(x) is a universal polynomial in the jets of the components of the
curvature and torsion forms of the Tanaka- Webster connection. In the case
j=0and j =1 we have

(1.171) AO = Op, A = Bana

where oy, Bn are universal constants and R, is the Tanaka- Webster scalar
curvature.
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Chapter 2

Parametric V), DO operators
and resolvent of an elliptic
sublaplacian on a Heisenberg
manifold

In this chapter we develop a suitable calculus for ¥y, DO’s with pa-
rameter which enables us to construct an asymptotic resolvent and to show
the existence of rays of minimal growth for an elliptic sublaplacian. The
situation is more complicated than for classical DO operators. Roughly
speaking the composition for homogeneous symbols in the Heisenberg cal-
culus is not microlocal whereas it is just the pointwise product for functions
for standard symbols of W DO operators.

To see this in more details let us first briefly recall the construction
by Seeley [Se] of the complex powers of an elliptic operator with a ray of
minimal growth, in the special case of the Laplacian A on a Riemannian
manifold M. The powers A® are defined by the integral

o
o

(2.1) A® / MA =N\, Rs <0,
r

where I' is a curve starting at oo, passing along the negative real axis to a
small circle about the origin, then clockwise about the circle and back to
oo along the negative real axis. If we suppose that 0 is not an eigenvalue
for A then the negative real axis is a ray of minimal growth. This means
that for any X in this axis A — X is invertible on L*(M) and the norm of the
resolvent ||(A — \)~| is O(1/|)]).

The idea for showing the above complex powers are WDQO’s is to intro-
duce a suitable class of continuous operators on C*°(M ) parametrized by an
open subset A of C containing the curve I'. This class contains the resolvent
(A — X)~! and possesses a symbolic calculus. The corresponding symbols
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are of the form

(22) f()\)(x¢£) = Zf(A),m—j($7£)a f(t2,\),k($7t£) = tkf(A),k(xagvA)'
Jj=0

Whereas f,) is a family of smooth functions on C'*°(U xR"™) parametrized by

A, the homogeneous symbols fi(y)(z,§) cannot be defined on the whole set

U xR"xA. For instance the principal symbol of (A—X)~!is fou,—2(x,&,0) =

(J€]> = A)~1 and is not defined for |A| = |£|?. The solution is then to define

the homogenous symbols on

(2.3) UxO={(z,6&,\) e UxR"x A; RA<0or |\ <[

As the pointwise product of two functions defined on U x O is still defined
on U x © we have a nice calculus for these symbols.

However, in the context of Heisenberg calculus the product of two ho-
mogenous symbols is obtained by means of oscillating integrals of the form
(2.4)

Fron * fan (2. €) = (2m) (@) / / e 0 (2, E4) fagn (@ 0 (2 €)dzdn.

Thereby it is not obvious if fi\) and fy(\) are defined on U X © then
o is fi(n) * fa(n). This difficulty can be avoid if we consider instead al-
most homogenous symbols: they are defined on the whole U x R™ x A and
fezay k(@ t6) — tkf(,\)’k(x, ¢) has rapid decay with respect to €.

The symbols and ¥y DO operators with parameter are introduced in
section 2.1 and section 2.2. In section 2.3 the kernels of ¥y, DO’s with pa-
rameter are studied. This leads to a characterization which enables us to
prove the invariance by Heisenberg diffeomorphism in section 2.4 and to
define in section 2.5 ¥y, DO’s with parameter on any Heisenberg manifold

The section 2.6 is devoted to the construction of asymptotic resolvent
for elliptic sublaplacians as a parametrix in the parametric ¥y, DO-calculus.
This is used in section 2.7 to show the existence of rays of minimal growth
for an elliptic sublaplacian (theorem 2.33). As corollary we obtain that any
Heisenberg-elliptic selfadjoint sublaplacian on a compact Heisenberg mani-
fold is actually bounded from below and thus has a heat kernel asymptotic
as in [BGS] and proposition 1.53.

In all this chapter A C C\O0 is an open pseudocone (cf. definition 2.1
below) and U is an open subset of R*! together with a hyperplane bundle
VY C TU and a V-frame Xg, X1,...,X4. Then o(z,&) and ¢, denote the
(real) symbol of the V-frame and the affine change onto the z-coordinates.

2.1 Spaces of symbols with parameter

Definition 2.1 1) A subset A of C\O is a pseudocone if for any t €
(0,1) we have tA C A and there exist a conical subset © and a bounded
subset D such that A = © U D.
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2) If A and A" are two pseudocones in C\0 the notation A’ CC A means
that up to the origin the closure of A’ is contained in the interior of

A.

The space of parameters is the following Fréchet space.

Definition 2.2 Hol?(A), p € Z, is the space of holomorphic functions h :
A — C such that for any pseudocone A’ CC A we have

(2.5) )] < Cu(L+ AP, Aed.

Its topology is defined by means of the seminorms given by the lower bounds
on the constants in these estimates.

We define Hol?(A)-families with values in a topological vector space as fol-
lows.

Definition 2.3 If E a locally convez topological vector space HolP’(A, E),
p € Z, is the space of Hol?(A)-families with values in E, i.e. holomorphic
maps h : A — E such that, for any continuous seminorm q on E and any
pseudocone ' CC A, we have

(2.6) (A < Conr L+ AP, A e N

IfE = S(f(U x R or B = S7°(U x R¥1) we use instead the notations
SPFU x RHTA) and SP=°(U x R4+ A).

Definition 2.4 S5, (U x R4Y A), m,p € Z, consists in Hol?(A)-families
Joy of smooth functions on U x R such that

2.7)  fuen (@t —t"fy(@,€) € SPTX(U xR A, 0<t< 1

Remark 2.5 Interchanging the role of A and 2\ we see that fen (@, t.8) —
t" foy (@, §) lies in ST(U x R4*1) whenever t2)\ € A. In particular if © is
any open cone contained in A the family f2y)(z,t.8) — ™ fy) (2, ) lies in
SP=(U x R4 ©) for any t > 0.

Lemma 2.6 Let m,p € Z and set ¢ = 2max(0,—p). Then we have the
inclusion

(2.8) SP(U x RTA) € SPHI(U x R A).
Proof. We need to prove that for any pseudo-cone A’ CC A we have

(2.9) 1050¢ fiay (@, )] < Capl@)(L+ NP1+ €)™ 9, Xen,
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with Cprqp(2) locally bounded on U. Set A = © U D with © conic and D
bounded. We shall prove the estimates (2.9) separately for A € © and for
AreD.

As © is conic for any ¢ > 0 we have

(2.10) Fon) (3, £6) = 7 fr) (@, €) € SP72(U x RY1, )

By the arguments in the proof of lemma 1.10 there exists some g (7, §) €
Hol? (@, C*°(R¥+1\0)) such that:

(i) g(») is homogeneous of degree m, i.e.
(2.11) g (@, 1.8) =t"goy(x,€),  £#0, Ae€O,

(ii) for any cone © CC © and any integer N we have
(2.12)

10202 (fy=90)) (@, €)| < Capner (@) AFAIIEITN,  €£0, Aed
The homogeneity of g(y) implies that for any cone ©’ CC © we have
920 90 (@, )1 = €™ Plgia -2 (€1 76)]
(2.13) < Capor @11+ (€172 AP,
for £ £ 0 and \ € ©’. Since
214)  JEIPA+ ) S THEITPA <AL fEl > 1, Aee,

the estimates (2.9) for A € © follow from (2.12) and (2.13).
Now, let us prove (2.9) for A € D. Since D is bounded it is enough to
show that we have

(2.15) 0507 fo (2, )] < Caple, VA +[IEH™ @, xeD,

with Cyg(z, ) locally bounded on U x D. The definition of Sh, (U x R4+1 A)
implies that for any integer N we have
(2.16)

277 fon (2, 2.6) = framin (@,6)] < Cun(@, NIEITY, €#0, Ae D.

If N is taken sufficiently large for £ # 0 and A\ € D’ we get
|27kmf(A)(33 2k.¢) — fa—rn(@,8)

(2.17) Z 27727 fgger-nny (2, 27F1.6)) = frai-iy (2,277M.8)))|

< Cnl el
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Let T'= {¢ € RTL 1 < ||¢€]| < 2}. As T is compact we obtain
(2.18) fon@R9I < Oz, 2™k, ¢eT, XeD.

Since each ¢ € R with ||€]| > 1 is of the form ¢ = 2Fy with n € T and
1€l < 2% < [|€]|, we conclude that

(2.19) fo @ < Cl@Nlel™, gl >1, AeD.

This gives the estimate (2.9) for A € D in the case o = § = 0. The estimates
for v # 0 and B # 0 are obtained similarly. B

It is then possible to make the following definition:
Definition 2.7 SP™(U x R¥1 A), m,p € Z, is the space of Hol?(A)- fam-

ilies f(x) of smooth functions on U x R with an asymptotic expansion

(2.20) foy ~ Z foym—js foyk € SE(U x RTT A,
>0

in the sense that, for any integer N, if Jis large enough we have

(2.21) F=Y " fogm—j €SIV (U x RELA).
<7

Note that the asymptotic expansion 2.20 determines f(y) up to an element
of SP~°(U x R, A). Conversely by [Hol, theorem 2.7] we have

Proposition 2.8 Suppose given forj =0,1,... some f(\)m—j € SPm=J (U x
R A).  Then there exists f(y) in SP™(U x R A) such that fi) ~
> fo)m—j-

2.2 Parametric ¥, DO operators on an open subset
of Rd—i—l

Definition 2.9 For p € Z we denote by WY~ (U, A) the space consisting
in the families of operators given by a HolP(A)-family of smooth kernels.

Definition 2.10 For m,p € Z the space W3 (U, A) consists in families
Py with values in L(C°(U), C>(U)) of the form

(2.22) Poy = foy(@,0(z, D)) + Ry,

where fyy is in SP™(U X R A), called the symbol of Py, and Ry is a
Hol?(A)-family of smoothing operators.
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Proposition 2.11 Let m,p € Z and set k = m+q if m+q > 0 and
k= 1(m+q) otherwise.

a) The class W™ (U, A) does not depend on the choice of the V-frame
Xo, X1,...,Xq4.

b) Each Py € V" (U,A) extends to a Hol?(A)-family of continuous
operators from E'(U) into D'(U).

c) The kernel of any Py € WY (U, A) is given outside the diagonal A
of U x U by a Hol?(A)-family of smooth functions.

d) For any s € R, each Py € W™ (U, A) defines a Hol?(A)-family of
continuous operators from Hg,,,(U) into Hl‘f);k(U)
Proof. 1) The proof of the independence with respect to the V-frame follows
along the same lines of the proof in the non parameter case (see [BG, propo-
sition 10.46]). It will be also a consequence of the proof of the invariance by
Heisenberg diffeomorphisms (proposition 2.21).

2) By [BG, proposition 10.22] and the closed graph theorem the map

f(z,&) — f(z,0(x, D)) is continuous from Sﬂnﬂ(U x R 1) into S¥ | (U x
272
R*+1). Moreover it follows from [Hol, theorem 2.2] that the quantization
map ¢ — q(z, D) is continuous from S% , (U x R™1) into £(&'(U), D'(V)).
272

Therefore each Py € U4 (U, A) extends to a Hol?(A)-family of continuous
operators from &'(U) into D'(U).

3) The continuity of the above quantization map and the closed graph
theorem implies that the map which assigns to ¢ € S¥ , (U x R¥*1) the
272

restriction of the kernel of g(z, D) on U x U \ A is continuous from S¥ , (U x
272

R4 into C°(UxU\A). It follows that the kernel of any Py € W™ (U, A)
is given outside the diagonal by a Hol?(A)-family of smooth functions.

4) Let s € R and Py € ¥);"(U,A). By [Hw, theorem 3] the map
q — q(z, D) is continuous from S¥ , (U x R¥*1) into E(Hcsomp,Hfo;k). So
27

the the same arguments as above Shogw that Py defines a Hol?(A)-family of

continuous operators from Hg,,, (U) into Hlsozk(U) [

Definition 2.12 A parametric operator from Py : E'(U) — D'(U) is said
uniformly properly supported if its kernel is properly supported uniformly
with respect to .

Proposition 2.13 Let P,y € W)™ (U, A). Then:

75



1) We can write Py as Py = Qo + Ry with Qyy € W™ (U, A)
uniformly properly supported and Ry a Hol?(A)-family of smoothing
operators.

2) If P is uniformly properly supported, it defines Hol?(A)-family of
continuous endomorphisms of respectively C(U), C>(U), £'(U) and
D'(U).

Proof. 1) Pick some x € C.(U—U) such that x = 1 near 0 and let k() (z, y)
be the kernel of P(y). Then the property is satisfied by Q) and R(y) with
respective kernels x(x — y)k(y)(z,y) and (1 — x(z — )k (7, ).

2) If Py is uniformly properly supported it is clear that it defines a
Hol?(A)-family of continuous endomorphisms of C°(U) and £'(U). As the
same is true for the transpose P(t)\) the remainder of the assertion follows by
duality. W

Let us now look at the composition of Wy, DO operators with param-
eter. By continuity the convolution * for symbols gives rise to a bilinear
map
(2.23)

SR x R A) x S22 (U x R A) — SHFP2ithe (o RAHL Q).

As SP°(U x R4 A) is a two-sided ideal we get a convolution on S¥(U x
R*+1A) as a bilinear map

(2.24)  x: SPL(U x R¥Y) x P2 (U x RUFTY) — SPIFP2 (7 x ROHY).

mi1+ma

To state the composition formula we keep the notations of proposition 1.18.

Proposition 2.14 Let Py € WU, N), i = 1,2, with symbol fioy ~

> fi(\),mi—j and suppose either Py or Py(y) uniformly properly supported.
Th;n Py(n) Poyy lies in \I/%erz’mﬁmQ(U, A) and has symbol f(xy ~ D f(x)mi+ma—;
wit

(225)  foyamitma—i = O Papas @) ) e * Foh) gt €);

where the summation is taken over the indices such that |B| + |a| < ) +
@G- =j—k—1and |y =18
Proof. As either Py or Py, is uniformly properly supported the propo-

sition 2.13 allows us to suppose both Py, and Fy) uniformly properly
supported. Then up to a Hol?(A)-family of smoothing operators we have

(2.26) PioyPapy = D eiPintiPaoy = D ifio)#e fo (@, 0 (2, D)),
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where (¢;) is a locally finite partition of unity and (¢;) C C°(U) is such
that ¢; = 1 near supp ;.

However it follows from lemma 1.19 and remark 1.22 that for a given
Y € CZ(U) the family fi\))#yfor) is a Hol?(A)-family of smooth func-

tions with an asymptotic expansion fi(\))#y o) ~ Zhocﬁvéff@) * QB(Y\),a
in the sense of Hol?(A)-families of symbols. Therefore Py(y) Py lies in
\Il‘?,lﬂ’g’mlwn2 (U, A) and has symbol fx) ~ > f(x)mi+ma—j WIith f(x) m14ma—j
given by (2.25). B

2.3 Kernels of V), D0 operators with parameter

Let us now study the kernels of Wy, DO operators with parameter.

Definition 2.15 K, (U x R A), m,p € Z, consists in Hol?(A)-families
K\ with values in C*°(U)QD'(R™) such that:

(i) restricted to U x (RT1\0) the family Ky is given by Hol?(A)-family
of smooth functions;

(i4) for anyt > 1 the family K2y (x,t.y) —t"™ Ky (z,y) is a Hol’(A)-
family of smooth functions.

The arguments in the proof of lemma 1.32 show that we have the following
characterization of almost homogeneous kernels with parameter.

Lemma 2.16 Let m,p € Z and set m = —(m +d +2).

a) If foy(x, &) € SH(UXRTA) then fv(/\)g_w(a:,y) belongs to K& (U x
RHL A).

b) If Koy(z,y) € KL (U x R A) is compactly supported in y uni-
formly with respect to A, then IA((A)y_%(x, €) belongs to Sh, (U xR A).

Definition 2.17 KP™(U x R A), m,p € Z, is the space of families K
of distributions on U x R4 with an asymptotic expansion

(227) K()\) ~ ZK(A),T'H-]" K()\)7m+j € Kfn+](U X Rd+1a A),
§>0

where ~ means that for any integer N if J is large enough we have

(2.28) Ky = > Ky mj € HP(A,CN(U x RH).
J<J

Remark 2.18 The definition implies that Ky lies in HolP(A, C*°(U)&@D(R* 1Y)
and is given on U x (R4T1\0) by a Hol?(A)-family of smooth functions.
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We can now characterize Wy, DO’s with parameter.
Proposition 2.19 Let Py be a family of continuous operators from C2°(U)

into C*°(U). Then Py lies in WY"(U, A) if, and only if, its kernel is of the
form

(2.29) koo (x,y) = |eb| Koy (2, —e2(y) + Ry (),

Jor some Ky € KP(U x R A), i = —(m+d+2), and some Hol’(A)-
Jamily Ry of smoothing operators.

Proof. As in the proof of proposition 1.29 we need only to check that a

family Ky of distributions on U x R*™! lies in KP™(U x R4 A) if | and
only if, it is of the form

(2.30) Koy(@,y) = foemsy(@,y) + Roy(@,y),

for some f(y) € S™P(U x R4 A) and some Hol?(A)-family R(y) of smooth
functions. However the Fourier transform draws equivalences between:

(i) the classes Sh(U x R4 A) and KE (U x R4 A) up to Hol?(A)-
families of smooth functions;

(ii) the asymptotic expansions for Hol? (A)-families of symbols and Hol? (A)-
families of kernels.

Then arguing as in the proof of proposition 1.29 we reach the conclusion. H

2.4 Invariance by Heisenberg diffeomorphisms

Before proving the invariance by Heisenberg diffeomorphism we need
the following lemma.

Lemma 2.20 Let k € R and let p be the smallest positive integer > %(k‘ +
d+2). Then for any f € SF(U x R) we have

(2.31) 102 femsy (2, 9)| < Cralz, Hllyl ™, 0<lyl <1,

with Cia(x, f) locally bounded on U x SF(U x R*).

Proof. Let f € SF(U x R41). In the case k < —(d + 2) we have
(2.32) 08 feons(0.9)| < Cralir ) = [ 170l
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Suppose now k > —(d+2). Applying the above inequality to 32‘0 f and 852]“ f,
1<j5<d, we get

d
(2.33) (ol + Y 1) 109 fe sy (2, y)| < Chala, f),
j=1

with Cia(z, f) locally bounded on U x Sk(U x R¥1). This completes the
proof. H

Proposition 2.21 Let ¢ : U — U be a Heisenberg diffeomorphism where U
is another subset of R¥T1 equipped with a hyperplane bundle VYV CTU and a
V-frame. Then for any P( ) € \Ilp’ (U, A) the pullback Py = ¢* P lies in

WU, A).

Proof. Let K, € K™(U x R¥1). By lemma 2.20 there exists an integer
g > 0 such that for any pseudocone A’ CC A and (8 large enough we have

(2:34) 0207 Kl < Capn(@)lyl™#79, 0<yll <1, Aen,

with Cypas(x) locally bounded on U. This remark enables the arguments of
the proof of proposition 1.33 to work mutatis standis for kernels with param-
eter and therefore to prove the invariance by Heisenberg diffeomorphisms. Wl

Remark 2.22 In the special case U = U, V =V and ¢ = gg we obtain the
independence with respect to the V-frame.

2.5 Parametric ¥, D0’s on manifolds

The proposition 2.21 enables us to define ¥y, DO’s with parameter on
any Heisenberg manifold.

Definition 2.23 Let (M,V) be a Heisenberg manifold. Then W™ (M, A),
m,p € Z, is the space of families Py € Hol?(A, L(C (M), C>*(M)) such
that:

(i) for @, ¥ in C°°(M) the family Py is a Hol?(A) of smoothing
operators;

(i) on any Heisenberg chart Py is given by a parametric ¥y, DO in
Y™ (U, A) where U is an open subset of R with a V-frame.

Remark 2.24 There is a similar definition for Wy, DQO’s with parameter
acting on sections of a vector bundle over a Heisenberg manifold.
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All the results of the previous sections continue to hold on a general
Heisenberg manifold. In particular for a compact Heisenberg manifold we
get:

Proposition 2.25 Let (M,V) be a compact Heisenberg manifold.

1) Let my,ma,p1,p2 € Z. Then for any Py € W9"™ (M, A) and
Py(y) € U522 (M, A) the family Py Py(y) lies in U TP2MTM2 (AL A).

2) Let m,p € Z. Then any P € WY (M, N) extends to a family in
Hol? (A, L(H*(M), H¥=*(M))), s € R, where, with ¢ = 2max(0, —p),
k is equal to m +q if m+q >0 and to %(m + q) otherwise.

2.6 Asymptotic resolvent for sublaplacians

Let us now construct an asymptotic resolvent for an elliptic sublaplacian
A as a parametrix for A— X in the parametric ¥y, DO calculus. For achieving
that we shall set

(2.35) Ao = {)\ € C\0; R\ < 0},

(2.36) Ar={A € C\0; RA < 0or |\ <R}, R >0.

Proposition 2.26 Let A be an elliptic sublaplacian on U in the form
(2.37) ZX2—W XO"‘ZMJ )X +n(x),

where v, p1,. .., tq, n are smooth functions. Let ps(x,§) = 2?21 5?—1—1’1/(:6)50
be the principal symbol of A. Then for any R > 0 there exists f(\) €

S (U x R¥1 AR) such that
(238) (pg—)\) *f()\) =1= f()\) * (pQ—)\) mod S—oo,—oo(U XRd—H,AR).

Proof. The proof follows closely [BG, chapters 1-2] and the proof of the-
orem 5.22 in [BGS]. Let us first precise the subellipticity condition for A.
Consider the 1-form 6 annihilating V such that 6(Xo) = 1 and let L be the
Hermitian function-valued form on V defined by

(2.39) L(X,Y)=—idf(X,Y) =140([X,Y]), X, Y e
Note that L(X,Y) is characterized by

(2.40) [X,Y] = —iL(X,Y)  modV.

80



At y € U the Hermitian function-valued form L defines a Hermitian form
L, which is purely imaginary and has real eigenvalues a1 = a1(y),...,aq =
aq(y) so that a; > 0 and an4; = —a; for j = 1,...,n, and a; = 0 for
j=2n+1,...,d. The ellipticity condition for A is

d
(241) Ro(w) < 5 3 las(w)]
j=1

For y € U denote by p} and f(y)\) the symbols pa(y,.) and f(»)(y,.). Then we
need only to find for each y € U a symbol f(y)\) € S"3 (R Ag) such that

(242) (= N) ¥ fI) = 1= f% ¥ (Y —A)  mod ™ X (RM1, Ap),
and in such way that everything is smooth with respect to y, i.e.
(i) the symbol fu(y. &) = 4, (€) lies in STH(U x R, Ag);
(ii) the remainder terms ry(y(y,&) =1 — (p§ — \) *Y f(y/\) and ro(x)(y, &) =
1-— f(y)\) Y (p§ — \) belong to S7°~°(U x R4 Ap).
This will be achieved in 3 steps:

1) Find for each y € U coordinates called the normal y-coordinates in
which the equations (2.42) take a simple form.

2) Resolution of (2.42) in the normal y-coordinates.

3) Return to the original y-coordinates and show that the resulting sym-
bol satisfies to the above conditions (i) and (ii).

Step 1: construction of the normal y-coordinates (cf. §1 of [BG]). In the
y-coordinates relatively to this V-frame we have

R~ )
(2.43) Xj= g+ ]Z:gm(x)a:%, 7jk(0) = 0.

The y-invariant vector fields are

0
2.44 X! = —
( ) 0 81‘07
R~ B
2.45 X,i=— X —— 1<53<d
( ) J am] +jzgc‘7kxka$07 — ] = 9



with ¢, = cjp(y) = %fyjk(()). The change of coordinates

d

1
(2.46) (20, 7") — (20 — 1 Z (cjk + crj)zjzr, z'),
j?kzl

brings the matrix (cj;) into anti-symmetric form. Namely the vector fields
X]‘y have the same expression with c; replaced by

1
(247) ajk = §(cjlc — ij).

We refer to these coordinates as the anti-symmetric y-coordinates.
However we have

(2.48) Ly(Xj, Xi) = 0y ([X5, X)) = 5 (cnj — ejp) = —iajp.

Thus there exists an orthogonal matrix @ which brings the matrix A = (a;,)
into the normal form

0 -A" 0
(2.49) QLAQ=1| 4 0 0], A" = diag(ay, - ,an),
0 0 0
where aq,--- ,a, are the nonnegative eigenvalues of L,. Then making the

orthogonal change of coordinates
(2.50) (2%, 2") — (20, Q'z)

we put the vector fields X7 into the form

0 0 1 .0
Yy _ . Yy _ _ .t
(2.51) X5 = 50 X = 507~ 29T 5507
0 1 .0 .
2.53 Xy*—a k=2 k<d
(2.53) E= gk =2n < k <d.

We refer to these coordinates as normal y-coordinates.

To end up with this step note that we can define the anti-symmetric and
normal y-groups as the 2-step nilpotent groups associated to the y-invariant
vector fields X]y in the anti-symmetric and normal y-coordinates. Then the
changes of coordinates (2.46) and (2.50) becomes isomorphisms from the
original y-group onto the anti-symmetric one and from the anti-symmetric
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y-group onto the normal one.

Step 2: resolution in the normal y-coordinates. Let

M&

(2.54) AY = p4(o¥(z, D)) —iv X, v=uv(y).

J=1

By the very definition of ¥ the symbol (p§ — \) *¥ fon) is characterized by
the equality

(2.55) (pz = A) ' fon (0¥ (2, D)) = (A3 = N foy (0¥ (z, D)).

In other words (p§ — \) ¥ fo 1s the symbol at z = 0 of the y-invariant
operator

(2.56) (AY = \) o (0¥, D)).
In the normal y-coordinates Aj has standard symbol
(2.57)
= 1
a3(x.€) = D (& — 52" as&0)* + Z Enti + x”ajfo + Z £2 + véo.

Jj=1 j=n+1

As AY is a differential operator the standard symbol of the left-hand side
in (2.55) can be explicitly calculated. Letting q (ac §) = foy(y,0¥(x,€)) it
yields

(5 =N # f(€) = > ‘gq2<0 )D3aly (0,€) = Afn) (©),

|a\<2
(2.58) = Z@ +v =M\ + £o > (i — &06,.,) oy (©)
7j=1
- Zaiféaafw(&).
j=1

Similarly we can compute f(»)(&) *¥ (py — A) and find

n

foo(6) ¥ (ph Zé} +v =N fon()+ §0 Z(fjagnﬂ —&nti0¢; ) fn (6)
1
1 2n -
(2.59) — 7 D 4802, fn (€).
j=1

However the form of AY in the normal y-coordinates shows that it is
invariant under rotations in the (x;,2,;) plane. We can require the same
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to hold for gy (x, D) which is equivalent to the invariance of f(y) under
rotations in the (&;,&,+;) plane, i.e.

0 0 .
Sj@f@)(&)\)—€n+ja?jf(,\)(§,)\) J=1...n

Therefore we need only to find a solution invariant under rotations in the
(&j,&n+j) planes, j =1,...,n, of the single equation
(2.61)
d 1
> - 1a§§88§j)fm + (o — N fy =0 mod S~ °(R™!, Ap).
j=1

(2.60)

This yields the formal solution:

(2.62) fool) = [ etrrGie.s)as,
where G(&, s) satisfies 2?21(5]2 - %a%gﬁgj)G(ﬁ, s) = —0,G(&, s) and is given
by

d 2 tanh(a £0s)

(2.63) G(&, s) = H(cosh(ajfos))_%e P ,

j=1

with the convention b= !tanhb =1 for b = 0.
We let

1
(2.64) foyl€) = /O O G(e, ) ds.

Then fy) is a Hol(C)-family of smooth functions invariant under rotations
in the (&, &n+;) planes, j =1,...,n. Moreover we have

(2.65) el q(e s)| < 2™ PO p<s <1

where we have set
tanh(a,; fo
(2.66) Z\aﬂ—r%v\ [ |+Z e

Indeed for any multi-order « there exists C, > 0 independent of y such that
(267) (98 (eNTOPG(E,5)) < Call+ [E)®™ O, 0<s <1,
A key point in this proof is then the following lemma.

Lemma 2.27 There exists ¢ = c(y) > 0 depending continuously on y such
that

(2.68) p(&§) = clgl  for €] = 1.
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Proof of the lemma. Let [{| > 1. Then set ¢ = max |¢;| and @ = max |a;|.
If |&| = € we have

d d

1
(; laj| — |Rv|)|&| > 2(d+1)(; la;| — [Rv])€].

N | =

(2.60)  p6) >

Remember (remark 1.39) that the ellipticity condition implies (2?21 laj| —
Rv|) > 0. If € = |¢;]| for some j, 1 < j < d, then

tanh aé

ag
for |¢| > 1 implies £ < (d + 1)~!. Thus in both cases the inequality (2.68)
holds with

> ¢

_tanh(———),

1
(2.70) p(&) > & d+Da ™Mt

Q

a

d+1)'

1 ) 1
(2.71) c=cly) = T mln(z; jaj] = [Rv], = tanh(
j:
Moreover ¢ depends continuously on y since Z?zl la;j| = Trace |A| and a is
equal to the spectral radius of the anti-symmetric matrix A and coincides
then with its operator norm. B

Let us go back to the proof of the proposition. The estimates (2.65)
and (2.67) imply

(2.72) 108 fon ()] < Ca(L+ [IEIN® (RA = p(&)) "

As =R\ ~ |)A| on any angle sector © CC Ag we deduce that f(,) lies in
Hol ' (Ag, C*®(R41)). On the other hand we have

1
(273) e (tE) — fo€) = / OESG (e s)ds,  0<t <1,

2

and

(2.74) (& - ia?&%%)f@) + (V€ — A fpy = 1— G D).

d
=1

J

Therefore (2.65) and (2.67) together with lemma 2.27 show that f(y)(§) lies
in S”1(R™1 AR) and satisfies (2.61). Hence foy is a solution of (2.42) in
the normal y-coordinates

Step 3: return to the original y-coordinates and smoothness with respect

to y. Let us first go back to the anti-symmetric y-coordinates. This is
done by means of the change of coordinates (zg,z’) — (29, Qz’) where Q
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is the orthogonal matrix which brings the matrix A into normal form. As
it is a linear change of coordinates the expression of the symbol f(y) in the
anti-symmetric y-coordinates is obtained from its expression in the normal
y-coordinates by means of the change (£y,&") — (&, Q'¢’). So in the anti-
symmetric y-coordinates it is given by

1
(2.75) fo© = [ O p(e sy
0
By (2.49) we have
(2.76) F(¢,5) = G(&, Q¢ s) = det cosh(s{oA)*%e*3<§,’(550‘4)71tanh550A>.

In particular f() depends smoothly on y, i.e. lies in C®(UxR1)& Hol(AR).
Moreover the estimates (2.65) and (2.67) hold uniformly with respect to y
and the coefficients of the matrix ) are bounded independently of y, for @
is an orthogonal matrix. So for 0 < s < 1 we have

(2.77) 05 (OO P(E, )| < Ca(1 + [l o™ 019,

with C, independent of y.
However we can identify the space of real anti-symmetric d x d matrices
. d(d—1) . . .
with R™ 2 . Then as functions in this space

(2.78)
det(cosh A)~! € My(S(R

d(d—1) d(d—1)
—z —z

), A~ tanh A € My(C5°(R ),

where C}° (RM{ 1)) denotes the space of smooth functions which together

with all their derivatives are bounded. Therefore differentiations with re-
spect to y harm the estimates (2.77) only by factors dominated by C(y)(1+
[€])™. Hence
(2.79)

0207 (€A (¢, 5))| < Caply)(1+ €)™ PO 0 <s <1,

for some integer mqs and some locally bounded function Cus(y). These
estimates together with lemma 2.27 and (2.73)- (2.74) show that in the
anti-symmetric coordinates f(y) lies in S:%(U x R AR) and satisfies to
the equalities

(2.80) (pg—)\)*yf(yA) =1= f(y)\) Y (py—N) mod S (U xR Ap).

Let us finally return to the original y-coordinates. The change of coor-

dinates involved is

d

(2.81) ¢y($) == (CCQ + i Z (Cjk + ij)x]wk,x/).
J,k=1
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As ¢y(x) is an isomorphism from the anti-symmetric y-group onto the orig-
inal y-group, f(y) transforms into

(2.82) (dys )" = (fony 0 by D™

Since ¢, depends smoothly on y and is homogenous of degree 1 with respect
to the Heisenberg dilations, it maps S™5 (U x R Ag) and S~°~=(U x
R4 AR) into themselves. Hence in the original y-coordinates Joy lies in
S:%(U x R AR) and satisfies

(2:83) (Py—N)+/f5) = 1= fH = (p§—A)  mod ST X (UxRH!, Ap),

which means that f(»)(y,§) = f(yA) (&) inverts pa(y, £)—A modulo ST~ (U x
R AR). B

Proposition 2.28 Let (M,V) be a Heisenberg manifold and A an elliptic
sublaplacian on M. Then for any R > 0 there exists Q) € \I/]_,l’_z(M, AR)
such that

(2.84) (A=NQu =1=Qu(A-)) mod U, (M, Ag).

Proof. Let us first work on an open subset of R%*! on which we have
d
(2.85) A=— Z:XJ2 +iv(z)Xo + lower terms,
j=1

where Xo, X1,...,Xy is a V-frame for TU. Let pa(x,§) be the principal
symbol of A. By proposition 2.26 there exists fy) _ in STa(U x R Ap)
such that

(2.86)

(P2 = A) x foy,—2= 1= fin),—2% (P2 = A) mod 577 (U x R Ag).

Let Q) € \P;I’_2(U, AR) be uniformly properly supported with symbol
fov- By proposition 2.14 the symbol of AQ(y) lies in SO—H(U x R, AR)
and its principal symbol is equal to
(2.87) P2 * fo),—2 = (P2 = A) * fn),—2 + Af),—2 = 14+ Ay, -2
As Af(y) is the symbol of AQ ) it follows that
(2.88) (A=XNQun =1 Ry

with Ry) € \11;1’_1(U, AR) uniformly properly supported.
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For k& > 0 denote by TEI;\; the symbol of Ré“)\). It follows from propo-

sition 2.8 that there exists r(y) in S®~HU x R9*1 Ag) such that T ™~
> k<0 rgig Then we have

(2.89) (1 - Royroy(a,o(e, D)) =1 mod ¥, (U, Ag).
So setting Q’()\) = Quyroy(x,o(x, D)) we get
(2.90) (A=NQ =1 mod ¥,""*(U,Ag).

Now, let (p;) be a locally finite partition of unity subordinated to a
locally finite open cover (U;) on which A takes the form (2.85). Then for
each index 7 there exists Q) € \Il;l’_Q(Ui, AR) such that
(2.91) (A=NQin =1 mod W), (U;, AR).

Pick then some 1; € C2°(U;) such that ¢; = 1 near supp ¢; and set
(2.92) Quy = >_hiQinpi € W, (M, AR),

Then we have

(A=NQu = D (A=NiQinei
(2.93) = D A GQiei + Y i(A = NQin i,
= 1 mod ¥," (M, Ag).

Similarly we can construct Q’(A) € ‘11;1’72(M, AR) such that
(2.94) QA —-X =1 mod ¥ (M, Ap).
Necessarily Q(y) — Q’(A) € \Ilijl’foo(M, AR), so Q) is a two-side parametrix

for A — X modulo W, (M, Ag) and the proof is complete. B

Remark 2.29 The parametrix constructed above is a parametrix modulo
\Il;l’_oo(M, AR) and not modulo \I/;(X”O(M, AR), as we could have expected
since (A — ) lies in \P%;Q(M, Ag) and Q) in W;1’2(M, Agr). This is an
essential point for showing the existence of rays of minimal growth for A.
In fact if we let R(y) =1 — (A — X\)Q(») and we replace Q) by

-1
(2.95) Q()\)(l—i—R()\) +...+RI())\) ),
then for any integer p we get a parametrix modulo W;p’_oo(M, AR).
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2.7 Rays of minimal growth for sublaplacians

In this section we show the existence of rays of minimal growth for an
elliptic sublaplacian A on a compact Heisenberg manifold (M, V).

Definition 2.30 A ray L C C is a ray of minimal growth for A if A — X\
is invertible for any A\ € L and the norm of the resolvent ||(A — \)71|| is
O(1/|A]) on L.

For r > 0 and © an open angle sector we set
(2.96) O, ={A € O;|\| > r}.

Theorem 2.31 On any angle sector © CC Aqg there only finitely many
eigenvalues for © moreover on © \ sp A we have

(2.97) I(A =27 < ColAI™.

Therefore each ray contained in ©, except maybe a finite number, is a ray
of minimal growth for A.

Proof. By proposition 2.28 there exists Q(\) € \I»';l’_Q(U, Ao) such that
(298) R(/\) = 1—Q(/\)(A—)\), A€ Ay,

is a Hol~*(A;)-family of smoothing operators. As we have © CC Ag propo-
sition 2.25 implies

(2.99) IRyl <Co(1+[A)~Y,  Xee.

Thus there exists r > 0 such that ||| < $on O, ={\€ ;A >r}

Then 1 — Ry is invertible on L*(M) and [(1 — R(y))~'|| < 2. Hence
(2100) (1 —R()\))_lQ()\)(A — A) = (1 —R(/\))_l(l —R()\)) =1, A€ O,

However by (2.25) the family Q) lies in Hol™(Ay, £(L?*(M)). Thus for
any X € O, the operator (1—R(y)) Q) is a left inverse of A—X on L?(M)
and

(2.101) I(1 = Roy) ' Qull < CerA™!, A€ 0,

Similarly enlarging r if necessary we can construct a right inverse on
L?(M) satisfying the above estimates. Then A — ) is invertible on L?(M)
for any A in ©, with a resolvent satisfying to (2.97). B

Corollary 2.32 Any selfadjoint elliptic sublaplacian on a compact Heisen-
berg manifold is bounded from below and thus has a heat kernel asymptotic
as in [BGS] and proposition 1.53.
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We can now prove the main result of this chapter.

Theorem 2.33 Let (M,V) a compact Heisenberg manifold and A an ellip-
tic sublaplacian A on M .Then there exist R > 0 and an open pseudocone A
containing D(0, R) \ 0, contained in

(2.102) Ar={A € C\0; RA <0 or |\ < R},

such that:
(i) for any A € A the operator A — X is invertible on L?*(M);
(ii) the family (A — X)L, X € A, lies in \I/;l’_2(M, A);
(111) for any pseudocone A" CC A,

(2.103) (A =N < Ca(1+ M), Ae N,

In particular each ray contained in A is a ray of minimal growth for A.

Proof. Consider an open angle sector © CC Ag. By proposition 2.31 there
exists r > 0 such that sp AN O, = 0. As spA is discrete sp AN D(0,r) is
finite and there are only finitely many rays Lq,..., Ly contained in © and
intersecting sp A.

On the other hand as 0 is at most an isolated point in the spectrum of
A there exists R > 0 such that sp AN D(0, R) C {0}. Therefore the set

(2.104) A= (D(0,R)\{0})U(O\ (L U...UL)).

is an open pseudocone contained in Ag, and for any A\ € A the operator
A — )\ is invertible on L?(M).

However the proposition 2.28 yields Q(y) in \Il;l’_Q(U, AR) and R(y) in
\If;l’foo(U, AR) such that

(2.105) Q()\)(A —A)=1- Ry
Then we have
(2.106) (A=N""=Qu +Ruy(A—N"L

Since (A —\)~! is an analytic family of bounded operators, proposition 2.31
the family (A — A)~! shows that it is a Hol™*(A)-family with values in
L(L*(M)). Therefore R (A—X)""is a Hol ™! (A)-family of smoothing op-
erators, which implies that (A — \)~! lies in \I/;L_2(U, A1). Then (2.103) is
a consequence of proposition 2.25. B
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Chapter 3

Holomorphic families of
Uy, DO operators and complex
powers of sublaplacians

The aim of this chapter is to introduce holomorphic families of ¥y, DO
operators and to construct the complex powers of an elliptic sublaplacian
as a holomorphic 1-parameter group of Wy, DO’s. In section 3.1 we define
holomorphic families of W), DO operators and study their main properties.
In section 3.2 we can study in terms of holomorphic families the complex
powers of a non-negative elliptic sublaplacian with the help of the pseudodif-
ferential construction of heat-kernels given in [BGS] (theorem 3.17). Finally
in section 3.3 we follow [Se] to define the complex powers of an elliptic sub-
laplacian by means of the parametric ¥y, DO calculus developed in chapter 2
(theorems 3.21 and 3.22).

3.1 Holomorphic families of ¥,,D0O operators

In all this section ) is an open domain in C and U is an open sub-
set of R equipped with a hyperplane bundle V C TU and V-frame
X0, X1,...,Xgq of TU. Then o(x,§) and ¢, denotes the (real) symbol of
the V-frame and the affine change onto the z-coordinates.

Definition 3.1 A family (f.) C S*(U x R**1) indexed by Q is holomorphic
if the following conditions hold:

(i) the order m, of the symbol f, depends holomorphically on z;

(ii) for (x,€) € U xR fized the function z — f.(x,€) is holomorphic
on €
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(iii) the bounds of the asymptotic expansion
(3.1) Fo(@,8) ~ > fome—j(@,8),  for € Sy(U x RH),
j=0
are locally uniform with respect to z.

The space of holomorphic families of symbols is denoted Hol(€2, S*(U x
RdJrl)‘

Remark 3.2 The axiom (iii) requires that for any integer N we have
(3.2)
0907 (f: = 3 Fome—i)(@.6)| < Capn(, 2) €™V 0 ¢ > 1,

<N

where Cyp, (2, 2) is a locally bounded function on U x Q. By [Hol, theorem
2.9] this equivalent to the condition: for any Q' CC € and any integer N if
J large enough we have

(33) (0007 (f2 =D fom.—) (@, < Capnyar (@), Jg[ > 1,
i<J

with Cypnjar () locally bounded function on U.

Remark 3.3 It follows from the above axioms that the homogeneous sym-
bols f; .(x, &) depends holomorphically on z. Indeed for the principal symbol
we have pointwise

(3.4) foz(z,6) = )\li}rfoo AT (2, NG, £#0.

By the axioms (i) and (ii) the right-hand side is holomorphic in z and by
the last axiom this family is bounded in Hol(Q, C°(U x (R4+1\0)). Hence
the above limit converges in Hol(2, C®°(U x (R4T1\0)) and fo. depends
holomorphically on z. Similarly for any j > 0 we have

(85) fiz(2,€) = lim N7 (fow,A&) = Y A" iz(2,€),  €#£0.

I<j

So by induction we can show that all the symbols f; . are holomorphic with
respect to z.

Definition 3.4 A family (f.) C S5, (U x R¥Y) over Q is holomorphic if it
fulfills the following conditions:

(i) the order m, of the symbol f, depends holomorphically on z;

(ii) for (x,€) € U xR fized the function z — f.(x, &) is holomorphic
on §;
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(iii) for any t > 0 the family

(3.6) fo(z, t.8) —t"= f(z,8), z €,

is a holomorphic family with values in S~ (U x R4+1),
The space of holomorphic S¥, -valued families is denoted Hol(Q, S’ (U x
RdJrl).

Lemma 3.5 A holomorphic family of almost homogeneous symbols is a
holomorphic family of symbols.

Proof. Let (f.) be a holomorphic S, -valued family and let us show it is a
holomorphic family of symbols. As the first two conditions of definition 3.1
are fulfilled we need only to check the last one. In fact it follows from
lemma 1.10 and the property (iii) of definition 3.4 there exists a family
(g.) € C=(U x (R¥*+1\0)) such that g, is homogeneous of degree m, and
for any integer N we have

(3.7) 10207 (f2(2,€) — g:(2, )| < Capn (@, 2) €], €#0,

with Cogn (2, 2) locally bounded on U x €. This means that (f,) satisfies
the last condition and completes the proof. B

Therefore we have the following characterization of holomorphic families
of symbols.

Proposition 3.6 A family (f.) of symbols over Q with order m, is a holo-
morphic family of symbols if, and only if, it fulfills the following properties:

(i) the order m, depends holomorphically on z;

(ii) for (z,€) € UxRIT! fized the function z — f.(x,€) is holomorphic

on §;
(ii1) there exist a holomorphic families (f;.), j = 0,1,..., of almost
homogeneous symbols with ordf;. = m, — j such that we have an

asymptotic expansion f, ~ > f; . with locally uniform bounds in z.

Definition 3.7 A family (P.) C ¥3,(U) is holomorphic if, and only if, P,
is in the form

(3'8) P, :fz(xvo-(va))+Rza

with (f,) and (R,) holomorphic families of symbols and smoothing oper-
ators. The space of holomorphic families of Wy, DO operators is denoted
Hol(2, ¥3,(U)).
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Proposition 3.8 Let (P,) be a holomorphic family of WyDO’s over §).
Then:

1) (P,) defines a holomorphic family with values in L(C°(U),C*>(U))
and L(E'(U)), D' (U)).

2) The kernel of P, is given outside the diagonal of U x U by a holo-
morphic family of smooth functions.

3) We can write P, as P, = Q.+ R, where (Q,) is a holomorphic fam-
ily of uniformly properly supported Wy, DO’s and (R.) is a holomorphic
family of smoothing operators.

4) If the family (P,) is uniformly properly supported, it gives rise to
holomorphic families of continuous operators from C°(U), C*(U),

E'"(U) and D'(U) to themselves.

Proof. To prove 1) and 2) it is enough to consider the case P, = f,(x,o(x, D))
with (f,) holomorphic family of symbols. Shrinking € if necessary we can
suppose the order m, of f, stays bounded. Then there exists a real k such
that the family (f,) is holomorphic with values in Sﬁ(U x R+,

As noted in the proof of proposition 2.11 the map f — f(x,o(z, D)) is
continuous from SF(U x R*1) into L(E'(U)), D'(U)). So by the closed graph
theorem it is also continuous from SF(U x R¥1) into £L(CZ°(U),C®(U)). As
these maps are C-linear it follows that the family of operators f.(z,o(x, D))
is holomorphic with values in L(C°(U),C>*(U)) and L(E'(UV)),D'(U)).

Similarly the map which assigns to the symbol f € S{T (U x R the
restriction of the kernel of f(z,o(x, D)) to U x U\ A is a continuous C-linear
map from SF(U x R4*1) into C*°(U x U\ A). So the kernel of f.(z,0(z, D))
is given outside A by a holomorphic family of smooth functions.

Finally the proofs of the assertions 3) and 4) follow along the same lines
of the proof of proposition 2.13. B

Proposition 3.9 Let (P ;) and (P, ) be two holomorphic families of ¥y DO
operators, one of them being uniformly properly supported. Then the family
P, = P, P, is a holomorphic family of ¥y DO operators over (2.

Proof. By definition of a holomorphic family of ¥y, DO’s we have
(3.9) Pi.= fiz(z,0(x,D))+ Ry ., Py, = fo.(x,0(x,D))+ R,

with (f12), (f2,2) holomorphic families of symbols and (R; ;), (Rz) holo-
morphic families of smoothing operators. So by proposition 3.8 up to a
holomorphic family of smoothing operators we have

(310) Pz - Pl,zPZ,z = Z ¢i<f1,2#¢¢f2,z)(x7 0—(337 D))7
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where (¢;) C C°(U) is a locally finite partition of unity and (¢;) C C°(U)
is such that 1; = 1 near supp ;. Therefore it is enough to show that given
Y € CX(U) the family

(3.11) fi S22, z € Q,

is a holomorphic family of symbols.

However shrinking €2 if necessary, we can suppose the orders of fi , and
fa,~ stay bounded. Thereby the families fi . and fo. are holomorphic with
values in S’(T(U x R4 for some real k. Then it follows from the lemma 1.19
and the remark 1.22 that the axioms (ii) and (iii) of the definition 3.1 are
satisfied by the family fi.#f2.. As the first axiom is obviously satisfied
f1.:# 4 f2.» is a holomorphic family with values in S*(U x R4T) and the
proof is achieved. W

Let us now define holomorphic families of kernels and obtain a charac-
terization of holomorphic families of Wy, DO operators.

There is a technical difficulty for defining holomorphic families with val-
ues in K, (U x R4*1) since when the order crosses positive integers the ho-
mogeneity of the distributions breaks down and logarithmic terms appear.
As with ¥y, DO’s with parameter this can be avoided if we consider instead
holomorphic families of almost homogenous distributions.

Definition 3.10 A family (K.) C KX, (U x R™Y) over Q is holomorphic if
it satisfies the following properties:

(i) the order m, of K, is a holomorphic function on €2;

(ii) the family (K.) is holomorphic with values in C®(U)&D'(R!)
and K, is given on U x (R¥1\0) by a holomorphic family of smooth
functions;

(iii) for anyt > 0 the family
(3.12) K, (z,ty) —t"™ K,(x,y), z €,

is holomorphic with values in C*®(U x R¥+1),

The space of holomorphic ICZh(UX]RdH)—Ualued families is denoted Hol(§2, IC%, (U x
Rd+1)).

Definition 3.11 A family (K.) C K*(U x R¥1) over Q is holomorphic if
the following conditions hold:

(i) the order m, of K, depends holomorphically on z;
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(ii) there exist holomorphic families of almost homogeneous kernels
(Kj.), j = 0,1,..., with ordKj, = m. + j such that we have an
asymptotic erpansion

(3.13) K.~> Kj.,

in the sense that for any open Q' CC Q and any integer N if J is large
enough we have

(3.14) K. =) K.m.4; € Hl(Q,CN(U x R*)).
i<J

The space of holomorphic K*(U xR 1) -valued families is denoted Hol(£2, K*(U x
Rd—i—l)).

Remark 3.12 This definition implies that such a family is actually a holo-
morphic family with values in C*(U)®D'(R¥*!) and it is given on U x
(R41\0) by a holomorphic family of smooth functions.

This leads to the following characterization of holomorphic families of ¥y, DO
operators:

Proposition 3.13 Let (P,) be a family of Yy, DO'’s over Q. Then it is a
holomorphic family of ¥y, DO'’s if, and only if, the kernel of P, is in the
form

(3.15) ki(z,y) = K.(z,64(y)) + R:(2,y),

with (K.) and (R.) holomorphic families with values in K*(U x R and
C>®(U x U).

Proof. The arguments of the proof of proposition 1.29 apply to holomorphic
families if, as in the proof of proposition 2.19, we replace the homogeneity
of symbols and kernels by almost homogeneity. B

Using the above kernel characterization we can obtain the invariance by
Heisenberg diffeomorphisms of holomorphic families of ¥y, DO operators.

Proposition 3.14 Let ¢ : U — U be a Heisenberg diffeomorphism from U
onto U where U is an open subset of R equipped with a hyperplane bundle
V C TU and a V-frame. For any holomorphic family P, of W3, DO operators
on U the family P, = ¢*P, is a holomorphic family of Uy, DO operators on

U.
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Proof. Let (K.) be a holomorphic family with values in K*(U x R%*1) over
Q. By shrinking €2 if necessary we can suppose that the order of K, stays
bounded. Then it follows from lemma 2.20 and proposition 3.13 there exists
a real k > 0 such that for (§) large enough we have

(3.16) 1050) K= (2,9)] < Cras(a, 2)|ly| 79, 0<|yl <1,

with Ciap(z, 2) locally bounded on U x . Together with proposition 3.13
these estimates allow the arguments of the proof of proposition 1.33 to work
verbatim with holomorphic families of ¥y, DO operators, thereby proving the
invariance by Heisenberg diffeomorphism. W

We can now define holomorphic families of ¥y, DO’s on any Heisenberg
manifold.

Definition 3.15 Let (M,V) be a Heisenberg manifold. A family (P,) C
U3,(M) over Q is a holomorphic it satisfies to the following:

(i) the order m, of P, depends holomorphically on z;

(ii) for ¢, ¥ in C°(M) with disjoint supports p P, is given by a holo-
morphic family of smooth kernels.

(iii) On any local Heisenberg chart P, is given by a holomorphic family
of Uy DO’s on an open subset of R equipped with a V-frame.

All the preceding properties of holomorphic families of ¥y, DO’s on an
open subset of R4 continue to hold in the case of manifolds. In a case of
a compact manifold we have:

Proposition 3.16 Let (M,V) be a compact Heisenberg manifold. Let Py ,
and P, , be two holomorphic families of U\, DO’s on M. Then P, = Py . P> .
is also a holomorphic family of Wy DO operators.

3.2 Complex powers of an elliptic sublaplacian (pos-
itive case)

Let A be a formally selfdajoint elliptic sublaplacian on a compact
Heisenberg manifold (M1 V). We assume here that we have A > ¢ > 0
with respect to the inner product induced by a smooth non-negative density
on M.

In this section we shall study the complex powers A® s € C, of A
from the point of view of holomorphic families of ¥y, DO operators. These
operators are well defined by functional calculus as unbounded operators on
L?(M) and they give rise to a 1-parameter group.
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Theorem 3.17 The family (A®%)sec of the complex powers of A is a holo-
morphic family of Wy DO operators.

Proof. As A? is a 1-parameter group and the product of ¥, DO operators
is holomorphic by proposition 3.16, we need only to show that the family
(A®) is a holomorphic family of Uy, DO’s over the left half-plane {fs < 0}.
By Mellin formula for $ts > 0 we have

(3.17) A~ = 1/ pre—tadt
0 t

As [T tsetAdl = e_%A(fOOO tse*m%)e_%A is a holomorphic family of smooth-
ing operators, it is enough to check that

L Adt
(3.18) Ds:/ tSet - Rs > 0.
0

is a holomorphic family of Wy, DO operators.

However by proposition 1.52 the operator A+% is invertible on CZ°(M x
R) and its inverse Q = (A + %)_1 belongs to W;?h(U xR). If kg(x,y,u—t)
denotes its kernel then kg (z,y,t) is the kernel of e® for ¢ > 0. Thus the
kernel of Dy is

1
(3.19) ks(x,y) = / t°ko(z,y, t)%, Rs > 0.
0

For ¢ and ¢ in C°°(M) with disjoint supports the operator Q1 is smooth-
ing, so that ¢(z)kg(x,y,t)Y(y) is smooth and ¢(x)ks(x,y)y(y) is a holo-
morphic family of smooth kernels.

Moreover we locally have

(3.20) kQ(x,y, 1) = le ()| K (2, €2(y), ) + R(w,y, 1),
where K is in IC,:((HQ)(U x R4 x R), the kernel R is smooth and U is

an open subset of R*! together with a V-frame. As fol tSR(x,y,t)% is a
holomorphic family of smooth functions, it remains to prove that

! dt
(3.21) K(z,y) = / tsK(x,y,t)T, Rs > 0,
0

is a holomorphic family with values in K*(U x R+1).
Consider now the asymptotic expansion for K in Kj (U x R4 x R), i.e.

(322) K(:U7y7t) ~ ZKj—(d+2)(x7y7t)7 K € K:h,l(U X Rd+l X R)a
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Since for j = 0,1,... the kernel K_(4,9) has integrable order on R x R,
hence lies in C*®(U)® L (R¥"2), we define holomorphic families with values

in C®(U)®S'(R™1) by setting

dt

—, Rs > 0.
t

1
B2 Kulow) = [ EK @)
As Kj_(442) is smooth on U x (R¥1\0) x R the family Kj, is given on
U x (R¥1\0) by a holomorphic family of smooth functions. Moreover the
homogeneity of K;_ 440y implies
(3.24)
. A2 dt
)‘d+27(2z+])KJ,S(‘x7 A'y)_KJ}S(‘/an) = / tSKjf(dJrQ)(xvyut)?? A > 0.
1

As the right-hand side is a holomorphic family of smooth functions we con-
clude that Kjs(z,y) is holomorphic family of almost homogeneous kernels
with order mg + j.

Finally the asymptotic expansion (3.22) implies that we have an asymp-
totic expansion Ky ~ > K s in the sense of holomorphic K*-valued families.
So K is a holomorphic family of kernels and the proof is complete. l

3.3 Complex powers of elliptic sublaplacians (gen-
eral case)

Let (M1,V) be a compact Heisenberg manifold and let A be an el-
liptic sublaplacian on M. In this section we use the Uy, DO calculus with
parameter of chapter 2 in order to construct as in [Se] the complex pow-
ers of A in such way to obtain a holomorphic 1-parameter group of ¥y, DO
operators.

By theorem 2.33 there exists R > 0 and an open pseudo-cone A contain-
ing D(0, R) \ 0, contained in Ap = {A € C\0; X <0 or |\| < R} and such
that:

(i) for any A € A the operator A — \ is invertible on L?(M);
(i) the family (A —\)~1, X € A, lies in \11131’72(M, A);
(iii) for any pseudocone A’ CC A there exists Cyy > 0 such that
(3.25) (A =X < Ca(1+ A7 AeN.
In particular each ray contained in A is a ray of minimal growth for A.

Suppose for simplicity that such a ray is the negative real axis. Then
there exists a curve I' C A beginning at oo, passing along the ray A < 0 to a
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small circle about the origin with radius p < R, then clockwise around the
circle and back to co along the ray. For s < 0 we set

1 s -1
(3.26) Ag = i F)\ (A —X)"dA.
To define A\* we choose a continuous determination of the logarithm on
C\R_. This gives a determination of the argument which has shifted of 27
once A has turned around the circle.
The above integral is convergent for the L?-norm and yields a holomor-
phic family of bounded operators on L?(M). Indeed we have:

Lemma 3.18 The family (As)ns<o s a holomorphic family of ¥y DO ’s and
ordAg = 2s.

Proof. Let ¢, ¢ be in C*°(M) and with disjoint supports. As the family
(A — \)7! lies in \Il;l’_2(M, A) proposition 2.11 implies that p(A — \)~1y
is a Hol™*(A)-family of smoothing operators. Thus @A) is a holomorphic
family of smoothing operators.

On the other hand we locally have

(3.27) (A =N = foy(@ 0@, D) + Ry,

where f(y) is in S™L=2(UxR¥ ! A) and Ry isa Hol ! (A)-family of smooth-
ing operators on the open U C R4 equipped with a V-frame. So on U we
have

(3.28) P, = fy(z,0(x,D)) + Ry,  Rs <0,

where Ry is a holomorphic family of smoothing operators and (fs) is the
holomorphic family of smooth functions on U x R4! given by

(3.20) fe.O) = [ No@Odn  Rs<o,

Thus it is enough to show that (fs) is a holomorphic family of symbols.
Now we have an asymptotic expansion

(3.30) foo ~ D foy—a—gs  foy—2—j € STy (U x R A,
Jj=0
in the sense of symbols with parameters. For j = 0,1,... we define a holo-

morphic C'*-valued family by setting
(3.31) fs,j = / )\Sf()\%_g_jd)\, Rs < 0.
r

101



Let t € (0,1). As we don’t change the value of the integral (3.31) by replacing
I" by t’I" we have
(3.32)

fsj(w,t.8) = /2r N foy,—2—j (@, t.§)dN = t_(s+2)/F)‘Sf(tQ)\),—Q—j(x7t-§)d)‘
t
So by almost homogeneity of f(y) _o_; the family
(3.33) fsj(z, t.8) — t*7 f, i(z,8), Rs <0,

is a holomorphic family with values in S=>°(U x R%*1). Hence (fs;) is a
holomorphic S7; -valued family.

Finally the asymptotic expansion (3.30) implies that fs ~ > fj in the
sense of holomorphic family of symbols. Thus (fs) is a holomorphic family
of symbols and the proof is complete. B

Lemma 3.19 ([Se]) Suppose A invertible. Then the family (As)ps<o has
the following properties:

1) It contains the negative integer powers of A, that is

(3.34) A =AF k integer > 0.

2) It is a semi-group, i.e.

(335) ASAt = Aert Rs < 0, Rt < 0.

Proof. We have
1
(3.36) Ay =— [ XFA=X)"ta),
um I
where I is the circle of radius p traversed in the reverse, for the two integral
along A\ < —p cancel each other. Then setting u = A~ yields

1 1 ke 1
Ay = % A 1,Uk 1(N_A 1) 1d,“7
-1
(3.37) = Al (ATHEL=AF

This follows from the Cauchy formula since the spectrum of A~ lies inside
IR

Now let I'” be a curve contained in A and enlacing I'. As we don’t change
the value of the integral (3.26) by replacing I" by I we get

~1
AN, = 2/ /us)\t(A—u)_l(A—A)_ldudA,
1“//

(3.38) — 47r2 // 8)‘t — )7t = (A = X)"Hdpd),

A\ 1 widu
= A — dp— — [ XA =N~ —d),
471' I H ( #) / A 1% H 47'('2 /F ( ) /F” on— /\
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By Cauchy formula the second integral in the last side vanishes and the first
one is equal to

1
(3.39) — [ A =)A= Ay
207 ™

So AsAy = Agyy and the proof is achieved. B

We can now define the complex powers of A in the invertible case.

Definition 3.20 Suppose A invertible. Then the complexr power A® for
s € C is defined by

(3.40) A* = AFA, .,
where k is any integer > RNs whose value is irrelevant.
Combining lemma 3.18 and lemma 3.19 we obtain

Theorem 3.21 Suppose A invertible. Then the family (A®) of the complex
powers of A given by definition 3.20 is a holomorphic 1-parameter group of
Uy, DO operators containing A° =1 and A' = A.

Suppose now that A is selfadjoint and not invertible. Then the semi-
group property (3.35) of Ag continue to hold and the equality (3.34) remains
true if we replace the inverse by the partial inverse of A, i.e. the operator
annihilating ker A which is the inverse of A on im A = (ker A)+. As (A~1H)¥
is the partial inverse of AF the definition 3.20 still makes sense and we
obtain:

Theorem 3.22 Suppose A selfadjoint. Then the family (A®) of the complex
powers of A is a holomorphic 1-parameter group of ¥y DO’s such that A' =
A and A° =1 — Ty, where Iy is the orthogonal projection onto ker A.

Remark 3.23 Suppose that A is selfadjoint and let Ag(A) be the k’th
eigenvalue of A counted with multiplicity. By corollary 2.32 and proposi-
tion 1.53 for k large we have A\p(A) ~ ak= 2. So it is possible to char-
acterize the Sobolev spaces of M in terms of Fourier series associate to an
orthonormal basis of eigenvectors for A as in [Sh]. This enables us to relate
the Sobolev regularity of f(A) to the polynomial growth of f. In particular
if f has slow growth then f(A) maps continuously C*°(M) to itself and if
f has rapid decay then f(A) is a smoothing operator.

Remark 3.24 In the case of a pseudohermitian manifold (M, 6) the theo-
rem 3.22 holds for the sublaplacian A and the conformal sublaplacian [y.
As the construction of the complex powers can as well be carried out for a
sublaplacian acting on sections of a bundle, the theorem holds also for the
Kohn Laplacian [, acting on forms with elliptic bidegree.
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Chapter 4

Non-commutative residue for
Heisenberg manifolds

In this chapter we extend the trace on Wy, DO’s with non-integral com-
plex order as in [KV] and [CM2]. This new functionnal is holomorphic in
the sense that the evaluation on any holomorphic family of ¥y, DO’s of non-
integral order defines a holomorphic function, and we show that it gives rise
to a residue trace on ¥y, DO with integral order which is an analogue of the
non-commutative residue for Wy, DO operators (section 4.1, theorem 4.5 and
proposition 4.9). Then we prove that this new non-commutative residue
extends the Dixmier trace on the ¥y DO algebra (section 4.2, theorem 4.11)
and is the unique trace up to a constant multiple on this algebra quotiented
by the smoothing operators(section 4.3, theorem 4.15). As corollary we
obtain a complete characterization of sums of commutators in the ¥y, DO
algebra (corollary 4.16).

4.1 'Trace regularization and non-commutative residue

Let (M®*1)V) be a compact Heisenberg manifold and € a vector bundle
over M. If P is a ¥y DO of integrable order, i.e. RordP < —(d + 2), its
kernel is continuous so that P is traceable and its trace is given by

(4.1) Trace(P):/Mtrg kp(z,x)dz.

Following closely [KV] and [CM2] we shall show that the functional Trace a
priori defined on

(4.2) (M, E) = {P € U}(M, E); RordP < —(d + 2)},
can be holomorphically extended to a trace functional TR to

(4.3) V¥ — (P e U}(M, £);ordP € C\Z}.
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Moreover this trace gives rise to a residue trace on W%(M) which turns out
to be the complete analogue of the non-commutative residue for Heisenberg
manifolds.

The starting point is to reinterpret the lemma 1.23 in terms of holomor-
phic maps.

Lemma 4.1 For f € S(C\Z(Rd“) denote by Ty its unique homogeneous ex-
tension as a tempered distribution on R given by lemma 1.23. Then:

1) The map f — T is holomorphic from SC\Z(Rd+1) into S'(RH1), i.e.
for any holomorphic S@\Z(Rd“)—valued family (f.) the family (14,) is
a holomorphic family of tempered distributions.

2) Let (f.) be a holomorphic family of homogeneous symbols defined
near the integer m and such that ordf, = z. Then for anyu € S(R*1)
the function z — (Tf_,u) has only meromorphic singularities near m
with at most simple poles with residues

1
(4.4) res,—(Tf,,u) = Z aca(fm)u(o‘) (0),
<a>=—(m+d+2)

where, as in lemma 1.23, the constants co(fr) are given by

(4.5) calfi) = = / €0 i (€)ipde.
llglI=1

al

Proof. Let f, be a holomorphic family of symbols on R%*! with non integral
order m, and let 7, be the unique homogeneous extension of f, as a tempered
distribution on R+,

For ®m, > —(d 4+ 2) the symbol f, is integrable near the origin and
defines a distribution which is its unique homogeneous extension. Then (7,)
is a holomorphic family of tempered distributions. Thus, shrinking € if
necessary, we can suppose that m; stays in some stripe {|Rz —m/| < 1} with
m integer < —(d + 2). Then in the definition (1.79) of 7, we maay take
k=—(m+d+2) and get
(4.6)

= [wo- X SO0l usE,

<a><—(m+d+2)

with ¢, € C2°([0,00)) equals to 1 near zero and satisfying

d
(4.7) /,ﬂw;(u)::o fora=m,—(m+d+2),...,m, —m.

For instance we can take 1, (u) of the form

+oo
(48)  u(w) = /1 ho(s)ds,  ha()= [] (

og i
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where g is some compactly supported function on R such that [ g(t)dt = 1.
Remember that since m, is not an integer the distribution 7, is uniquely
defined and independent of the above choices. Then the family (¢.(]|.]|)) is
a holomorphic family of smooth functions supported in a fixed compact set
and identically equal to 1 in a fixed neighborhood of the origin. Thus the
formula (4.6) shows that (7, is a holomorphic family of tempered distribu-
tions.

Suppose now that the family (f,) is holomorphic around m with order
m, = z and let us investigate the singularity of (7,,u) near z = m. This
singularity comes only from the appearance of the term ﬁ in the equal-
ity (4.8). We can isolate it if we write h, in the form

1 d A
(49) holt) = —— Lk () + o), hat) = j]}ﬂ(z 5+ el
Then
-1 +o0
@10) ) = o kogm) o) wal) = [ kbt
zZ—m log

and (4.6) becomes

mw = [wo- X Lu0een e

<a><—(m+d+2)

1 ul(0) [ 4
(4.11) - z_m<a>§%+d+2) . /5 k= (log [|€]]) f= (€)dg.

As (p.(]].]])) is near z = m a holomorphic family of smooth functions
supported in a fixed compact set and identically equal to 1 in a fixed neigh-
borhood of the origin, the first integral in the above right-hand side defines
a holomorphic function near z = m.

Similarly, the family (k,) is a holomorphic family of smooth functions on
R supported on a fixed compact set and the integrals [ £k (log [|€]|) f2(£)dE
defines holomorphic functions. It follows then that (7,,u) has at most a
simple singularity near z = m with residue

(@)
> [ekatos e

<a><—(m+d+2)

(a) 0 0 d
U (0% m M

(4.12) = S a,( )/ psoz M2 (log ) —calfm)-
<a><—(m+d+2) ’ 0 p

However it follows from (4.9) that k,, satisfies

d
(4.13) /,u“km(logu)::O, a=1,...,—(m+d+2),
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o7} (o) +oo
(4.14) /O km(logu)cjf:/Jr km(t)dt:/ g(t)dt = 1.

—00 —00

Therefore res;—m (72, u) = = X 05— (mtd+2) %ca(fm) and the proof is

complete. W

Following [CM2] we consider the functional

(4.15) L(f) = / fO)de,  fe SR,
defined on
(4.16) SR = {f € §*(RIT); Rordf < —(d+2)}.

Lemma 4.2 Let L be the above functional on S™(R¥Y). Then:

1) L has an unique holomorphic extension L on S®¥(R1), in the
sense that for any holomorphic family of symbols (f,) with values in
SCZL(RMYY the function L(f.) is holomorphic. The value of L on a
symbol f ~ " fim—; with non integral order is given by

(417 L) = / FE) - 3 1w g(©)de,  N>Rm+d+2,

J<N

where Tp,—j s the unique homogeneous extension of f,—; provided by
lemma 1.23.

2) Let (f:) be a holomorphic S*(RH1)-valued family such that ordf, =
z. Then L(f,) has at most simple pole singularities near Z with
residues

(4.18)

ves.— L(f.) = —co(fr,—(ar2)) = — /”5_1 fr,—(ar2)(§)ipdé, keZ.

Proof. First the extension is necessarily unique since the functional L is
holomorphic on S™ (R*1) and each f € SC%(R% 1) can be connected to
Sint(R4+1) by a holomorphic path within SO (R,

Let f ~ > fm—; be a symbol with non-integral order and denote by
Tm—; the unique homogeneous extension of f,,_; given by lemma 1.23. For
N > R®m + d+ 2 the distribution f — Zj<N Tm—j agrees with an integrable
function near co and we can set

(4.19) L) = (f— 3 mm ) (0) = / (F= 3 mmos)(E)de.

JEN JEN

In fact if j > Rm + d + 2 then 7,,_; is also integrable near co and we can
define 7,,—;(0). By homogeneity the value must be 0, so the value of the
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integer N is irrelevant and (4.19) defines a functional on S®%(R%*!) which
agrees with L on symbols of integrable non-integral order.

Let us show that L is holomorphic and let f.(&) ~ 3 fom.—;(€) be a
holomorphic family of symbols with non-integral order m,. As L agrees
with L on S™(R4T1) N SOZ(RU*1) we can suppose that m, lies in some
stripe {|Rz — k| < 1} with k integer > —(d 4 2). Then in (4.19) we can set
N = k+d+2, and if we pick some function ¢ € C°(R%*1) such that ¢ = 1
near the origin we obtain

BE) = [(O - 1= 0O X Lems e = 3 (7)),

JEN J<N

(4.20) = L(f:—(1—-9) Z fz,mz*j) - Z(Tz,mzfjﬂ@'

J<N J<N
The functions (7., —j,¢) are holomorphic by lemma 4.1 and f, — (1 —
©)>. j<htd+2 f2,m.—; is a holomorphic family of integrable symbols. There-

fore L( f») is a holomorphic map and we have shown that L is a holomorphic
functional.

Finally suppose that (f,) is a holomorphic family of symbols near z = k
such that ordf, = z Then L(f. — (1 — ¢) > ;< f»,;) is holomorphic near
z = k and by lemma 4.1 the function ) (7. ;,¢) has at most a simple pole
singularity at z = k with a residue equal to co( fr,—(d+2))- This concludes
the proof. B

Remark 4.3 Let (f.) be a holomorphic family of symbols around z = 0
such that ordf, = 2. If co(fo—(44+2)) = 0 the function L(f.) is regular at
zero, but by (4.11) and (4.11) the regular value depends on both the values

of fo,—(a+2) and 0 fo —(a+2)-
As the proof works as well with smooth families of symbols we obtain:

Lemma 4.4 Let U be an open subset of RIT1.

1) The map f — L(f(x,.)) is holomorphic from SO*(U x R*1) into
c>*(U).

2) Let (f.) be a holomorphic S*(U x RV -valued family such that
ordf, = z. Then L(f.(x,.)) is meromorphic for the C*°-topology.

Theorem 4.5 Let (M1, V) be a compact Heisenberg manifold and let €
be a vector bundle over M.

1) The functional Trace on \Ifiﬁlt(M,E) has an unique holomorphic ex-
tension on \II(S\Z(M,E) defined by

(4.21) TRP = /M tretp(z), P e U P(M,E),
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where tp(x) is a END E-valued density on M invariant by Heisenberg
diffeomorphisms.

2) Let Py and Py be in WgZ(M,g) and such that ordPy + ord P, & Z.
Then

(4.22) TR PP, =TR P P;.

3) Let P € W4 (M, &) and let (P.) be a holomorphic family of ¥, DO'’s
such that Py = P and ordP, = z + ordP. Then TR P, has at most a
simple pole at z =0 and we have

(4.23) res,—o TR P, = —/ tre cp(z),
M

where cp(x) is the density on M which occurs as the coefficient of
the logarithmic singularity of the kernel of P near the diagonal (cf.
proposition 1.43).

Proof. First a holomorphic extension of Trace is necessarily unique as any
Pe \II(SZ(M, &) can be connected to \Ifi‘?t (M, &) by means of the holomorphic
path z — A*/2P where A is an elliptic selfdajoint sublaplacian on M.

If Pis a ¥y DO acting on C*°(M, £) with integrable order, the restriction
of its kernel on the diagonal kp(z,x) is a smooth density with values in
END £ and we have

(4.24) Trace P = /M kp(z,z).

The map P — kp(z, ) is holomorphic from Wi}*(M, €) into the space of
END &-valued densities. The strategy of the proof is to construct an analytic

extension of this map on ‘II;S\Z(M ,€). Then an integration over M would
give the required holomorphic extension of Trace.

Actually, using a partition of unity it is enough to proceed locally and
we can restrict ourselves to the case of scalar ¥y, DO’s on an open subset U
of R4*! with a V-frame. Such an operator is of the form

(4.25) P = f(z,0(z,D)) + R,

with f € S*(U x R¥1) and R smoothing. So lemma 4.4 provides us with
an analytic continuation of P — kp(z,x) on Wg\Z(U) by letting

(4.26) tp(x) = 2m) "D |L(f(x,.) + kr(z, ).

Note that the definition is independent of the choice of f and R. Moreover,
as kp(x,z) is a density and by proposition 3.14 the action of a Heisenberg
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diffeomorphism on Wy DO’s is holomorphic, we get a holomorphic exten-
sion at the level of END &-valued densities on M. Then the holomorphic
extension of Trace on \I/;C)\Z(M , &) is given by

(4.27) TRP = /Mtrgtp(x), Pe \Ilg\Z(M, 5)

Now, let P € U5(U) and let (P.) be a holomorphic family of ¥),DO’s
such that Py = P and ordP, = z + ordP. It follows also from lemma 4.4
that locally tp, (z) has at most a simple pole at z = 0 with a residue equal
to

(4.28) —(2m) "D oo (f-(gs2) (2, ) = —cp(a),

where fi;2 is the symbol of degree —(d + 2) of P. Thus TR P, has at most
a simple pole with a residue equal to — [}, trg cp(x).

Finally, to see that TR is a trace let P; and P be in ¥3,(M,E) such
that m = ordP; + ordP, is not an integer. If A is an elliptic selfadjoint
sublaplacian we have

(4.29) Trace P, P,A~%/? = Trace PQA*Z/2P1, z4+m ¢ 7,

for this is true for Rz +m < —(d + 2). Setting z = 0 we obtain TR P, P, =
TRPP. R

Remark 4.6 As we worked at the level of densities the theorem rephrased
only in terms of densities continues to hold for non-compact manifolds.

Remark 4.7 Let P € U4(M, &) be such that cp(z) = 0. For any holo-
morphic family (P,) of ¥y, DO’s near z = 0 such that Py = P and ordP, =
z 4 ord P the function TR P, is regular at z = 0. By remark 4.3 the regular
value depends on the choice of the family (P,), but if (P ;) and (P .) are
two such families satisfying furthermore ordP; . — ord /% . < ordP then the
regular values at zero of TR P; . and TR P, coincides.

We define the non-commutative residue for Heisenberg manifolds as fol-
lows:

Definition 4.8 Let (M,V) be a compact Heisenberg manifold. The non-
commutative residue on W%(M,E) is the linear functional defined by

(4.30) Res P = /M cp(z),  PeWi(M,E),

where cp(x) is the density on M which occurs as the coefficient of the loga-
rithmic singularity of the kernel of P near the diagonal.
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Proposition 4.9 Let (M,V) be a compact Heisenberg manifold.

1) Let P € VE(M, E) and let (P,) be a holomorphic family of U3,(M, E)
such that Py = P and ordP, = z 4+ ordP. Then

(4.31) Res P = —res,—g TR P,.
In particular if A is an elliptic sublaplacian on M we have

(4.32) Res P =res,_o TR PA™*/2, P e W5(M,E).

2) The functional Res is a trace on W4(M,E) vanishing on ¥y, DO
operators with integral order < —(d + 2).

3) Let ¢ : (M,V) — (M,V) be a Heisenberg diffeomorphism. Then

(4.33) Res¢.P =ResP, P e U4(M,E).

Proof. The first assertion is just a restatement of the last assertion in
theorem 4.5, and by definition Res vanishes on ¥y, DO’s with integral order
< —(d+2).

Moreover if P, P, are in W%(M ,€) we can pick an elliptic sublaplacian
A on M and obtain
(4.34)
Res PPy = —res,—o TR PLP,A™%/? = —res,_o TR P,LA™*/?P; = Res P, P,.

So Res is a trace on W& (M, £).

Finally let ¢ : (M,V) — (M, V) be a Heisenberg diffeomorphism and let
P € W4(M,€E). By proposition 1.43 ¢, P lies in ®y;(M, ¢.€) and we have
¢4, P(T) = ¢«(cp(x)). Hence Res P = Res P. B

4.2 The Dixmier trace of ¥, DO operators

Let (M9%2,V) be a compact Heisenberg manifold. In this section we
shall prove that the non-commutative residue agrees with the Dixmier trace
on Uy, DO operators of order < —(d 4 2). Then we will get an analogue of
the following theorem for classical pseudodifferential operators.

Theorem 4.10 ([Co3]) Let M% be a compact manifold and £ a vector bun-
dle over M.

1) For any P € U*(M, &) with integral order —k < 0 we have
(4.35) tn(P)=0(n"4d) as n — oo,

where p,(P) is the (n+ 1) th characteristic value of P.
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2) If P has integral order < —d, it is measurable for the Dizmier trace
and we have

1
(4.36) ][ P = ResP,

where Res denotes the non-commutative residue on W*(M, ).

Before enouncing the corresponding theorem for Heisenberg manifolds,
let us briefly recall the definition and the main properties of the Dixmier
trace (for more details see [Col] and [CM2]).

Suppose H is a separable Hilbert space and let K be its ideal of compact
operators. If T' is a compact operator the characteristic value p,(T") is the
(n + 1)’th eigenvalue of |T| = (T*T)'/2. Then one can show that

pn(T) = inf{| T | dim E = n},
(4.37) = dist(T, Rn,), R, = {operators of rank < n},

the first equality being the max-min principle. This implies
(4.38) pn(ATB) < || A||un(T)| B|| for A, B € L(H).

The compact operator T lies in £, i.e. T is traceable, if and only if we have
[o¢]

(4.39) TN = pa(T) < 0.
n=0

Then the trace of T is given by

(4.40) TraceT = Z(Tfn\§n>, (&) orthonormal basis,
n=0

the value of the sum being independent of the choice of the orthonormal
basis.

The Dixmier trace arises in the study of the divergency of the trace of a
positive operator only satisfying

(4.41) pn(T) = 0(1/n) as n — o0o.

Define the partial sums

(4.42) on(T) =Y m(T), TeK.

If 11,(T) = O(1/n) then on(T) = O(log N). The domain of the Dixmier
trace is the two-sided ideal

on(T)
log N~

(443) LU ={T € K| Tll,00) <00}, 1 Tll(1,00) = sup
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We can define o (7)) for non integer values of N by means of the interpo-
lation formula

(444) o) =if{flalli + Alylsz +y =T},  A>0,

which in turn shows that £(1°°) is the (real) interpolated space of £ and
K. We define the Cesaro mean of o(T") by setting

1 [ ou(T)du
4.45 T) = — A>e.
( ) ™ (T) log)\/e logu u’ =€

The functionals 7, have the asymptotic additivity property
(4.46)

log log A
[T (T +12) —7a(T1) —7a(T2) ] < 3(I1 71l (1,00) T 172l (1,00))

—_— T. > 0.
log\ ’ 20

It follows that any limit point lim,, 7 of this functional gives rise to a positive
continuous trace on £:°) denoted Tr, such that

(4.47) Tr, T = lmn\(T), Tel£h® T>0.

Moreover, if S is a (topological) isomorphism from # onto another Hilbert
space H', then we have

(4.48) Trp (STS™Y) = Teun T, T € LEO(H).

So Tr,, does not depend on the choice of an inner product on H.

In fact the choice of the limit procedure lim,, is not important because in
most examples the value Tr,, T is independent of the choice of the limit pro-
cedure. An operator for which this property occurs is said to be measurable
and then we let

(4.49) ][ T ="Tr,T.

If T e £(1) ig positive, T is measurable if, and only if,

(4.50) lim 7)(T") exists,

A—00

and then the Dixmier trace of T is equal to the value of this limit. So if T’
is a positive compact operator such that

1

4.51
( ) log N

N-1
Z,un(T)—>L as N — oo
n=0

then T is measurable and T = L. In particular the Dixmier trace vanishes
on finite rank operators. Hence it vanishes on their closure in £1:°°) the
ideal

(4.52) £ = (T € K;on(T) = o(log N)},
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which contains the ideal £ of trace-class operators.

An important example of measurable operator for which the Dixmier
trace can be computed is provided by an application the Tauberian theorem
of Hardy-Littlewood [Ha]. If T is a compact operator such that p,(T) =
O(%) and
(4.53) (s—1) Z,un(T)S — L as s — 17,

n>0

then 7' is measurable and {7 = L.

For instance, if A is an elliptic selfadjoint sublaplacian on a compact
Heisenberg manifold (M9*!, V) then using theorem 4.5 we see that A
is measurable and

1
(4.54) ][Adf = res A=%".

Indeed the following holds:

Theorem 4.11 Let (M*1 V) be a compact Heisenberg manifold and let £
be a vector bundle over M.

1) Let P € W1} (M,E) with —k = Rm < 0. Then we have
(4.55) pn(P) = O(n_%ﬁ) as m — oo.

2) Each P € \Il;(d”)(M, E) is measurable for the Dizmier trace and
we have

1

where Res s the non-commutative residue on ‘I/{Z,(M,S).

Proof. First let A be a selfadjoint elliptic sublaplacian on M and let A\, (A)
be the (n + 1)’th eigenvalue of A counted with multiplicity. By proposi-
tion 1.53 for n large we have

(4.57) An(A) ~ (An) S, A>0.
As PA~*/2 is bounded the inequality (4.38) implies
(458)  pn(P) = pn(PATF2AR2) < | A2 0, (A)H2 = O(n~752),

In particular if P has order < —(d+2) then p,,(P) = O(n~') and P belongs
to L) (L2(M)), i.e. it is in the domain of the Dixmier trace.
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Let us now show that for any limit procedure lim,, as before we have

1
(459) Trw P = m Res P.

In fact both sides vanish on smoothing operators and it follows from the
equality (4.48) and proposition 1.43 that they are both invariant by Heisen-
berg diffeomorphisms. So it is enough to check (4.59) locally, and we can
restrict ourselves to the case of scalar W DO’s compactly supported in a trivi-
alizing Heisenberg chart which is diffeomorphic to R%!. Then R%**! inherits
a V-frame and we can identify compactly supported ¥y, DO’s on R with
Wy, DO’s on M. This will allow to perform a yoga between Wy, DO’s M and
those in R4+,
However each P € Uy comp(R¥T1) can be written P as

(4.60) P=P.,+P +P,
where P,

CcCp»

P’, and P" are compactly supported ¥y, DO’s such that
e P, has kernel —cplog |lez(v)]’,

e P’ has a kernel |¢/|a(x, —e,(y)) with a € Ko(RT! x R4*1) homoge-
neous of degree 0 in the last variable,

e P” has order < —(d + 3).

Obviously Tr,, P = Res P” = Res P’ = 0. Moreover the holomorphic family
(P,) of ¥, DO’s given around z = 0 by the kernels

(4.61) ko(2,y) = lebla(e, e (W) le=) %, -1 <Rz <1,

is such that Py = P’ and ordP, = z — (d + 2).

By (4.58) the map f — f(x,c(x, D)) is continuous from S| comp (R x
R4*1) into £(1°°), Hence P’ is the limit in £:°°) as z — 0 of the trace class
operators P,, —1 < Rz < 0. Hence P’ lies in 5(()1’00) and Tr, P’ vanishes.
Thereby Tr,, P depends only on P and Tr,, P = Tr,, P.,.

However the linear functional

(4.62) 7(c) = Try, P, c e ORI,

1

L(%2)

is positive. Indeed as C - dgz = ap(z) > 0 we have

_d+2
2

(4.63) 7(c?) = Trw(c2(cA7%)_1A ) > 0.

So 7 must be a measure. As translations are Heisenberg diffeomorphisms
with jacobian 1, this measure is translation invariant and thus proportional
to the Lebesgue measure. Hence

(4.64) Tr, P=r71(cp)= cw/CP(x) = ¢y Res P, ordP = —(d + 2).
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It follows that Tr, is proportional to Res on each connected component of
M. By (4.54) the constant of proportionality is always equal to (d + 2)~*
Thus each P € WS\ Z(M,E) of order < —(d + 2) is measurable and its
Dixmier trace is equal to (d + 2)~! times its non-commutative residue. B

4.3 Traces and sum of commutators on the ¥, DO
algebra

Let (M9t V) be a compact Heisenberg manifold and &£ a vector bun-
dle over M. By proposition 4.9 the non-commutative residue is a trace on
WL (M, E) vanishing on U~>°(M, &). In this section we shall show it is es-
sentially the only one. This is proved independently in [EMM] using the
homological techniques of [BrGe|. Here we give an elementary proof based
on the ideas of [FGLS].

First we need some lemmas giving criteria for a ¥, DO on an open subset
U of R with a V-frame to be a sum of commutators.

Lemma 4.12 Any P € \I/{Z,(U) whose symbol is a sum of £-derivatives is a
sum of commutators up to a smoothing operator.

Proof. Let f € SZ(UxR¥) and set q(z,€) = f(x,0(x,€)). As[q(x, D), z;] =
O¢;q(z, D) the Heisenberg symbol of [f(z,o(x, D)), z;] is equal to

d
(4.65) vi#f — [H#r; =) 0010, [
k=0

Let c¢(x) = (c¢ij(x)) be the inverse matrix of the linear map o(z,.) and set

fij(z,&) = cij(x)f(x,€). Since the symbol of Zgzo[mj,fij(x,a(:c,D))] is
equal to

d
(4.66) > cij(@)0¢,on(x,§)0g, f(2,6) = O, f(,6),
J,k=0

we see that Og, f(x, D) is a sum of commutators. The lemma follows at once.
It follows that any P € \I/]Z,(U ) whose symbol is a sum of {-derivatives is a
sum of commutators up to a smoothing operator.

Lemma 4.13 Let P € V4(U) with a zero symbol in degree —(d +2). Then
P is a sum of commutators up to a smoothing operator.
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Proof. Let f € S, (U x R, m # —(d +2). As f(z,£) is homogeneous
in £ we have

d
(4.67) 2800, (1, 8) + > &0, f(w,£) = mf(x,€).
j=1
Hence
d
(4.65) f = s (0 60) + 3 06 (&),

j=1

Now, let f ~ _ fm—; be the symbol of P. By hypothesis f_(4,9) = 0.
So for j =0,...,d there exists f) € §*(U x R*1) such that

; 1
(4.69) D Dy S A
k>0

Then (4.67) implies

d
(4.70) f(2,&) = 20¢, f O (2, &)+ 0¢, fV (2,€) mod §™°(U x R*1),

J=1

Hence by lemma 4.12 the Wy, DO operator P is a sum of commutators up to
a smoothing one. W

Lemma 4.14 Let P € V5(U) be such that cp(z) is a sum of derivatives.
Then P is a sum of commutators up to a smoothing operator.

Proof. First suppose cp = 0. Then we have P = Py + P, where P; has no
symbol of degree —(d + 2) and P, is given by a kernel of the form

(4.71) kpy(z,y) = lezla(z, —ex(y)),

with ag € Ko(U x R*1) homogeneous of degree 0 in the last variable. By
lemma 4.13 we know that P; is a sum of of commutators up to a smoothing
operator. Set

y v;
(472 a(ey) =g oga@y)., ooy gy, 1<j<d

Denote by ¢(x) = (cj(z)) the matrix of €/, so that £,(y) = ¢(x)(xz —y), and
let Pj be the ¥y DO with kernel

(4.73) kik(x,y) = |ezleje(@)a;(z, —€2(v)).
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Then ) [z, Pj| has kernel

d
(4.74) 51 D (o — yi)eg(@)aj (@, —e2(y)) = lella(e, —x(y))-
3,k=0

Thus Py, and a fortiori P, is a sum of commutators up to smoothing oper-
ators.
Suppose now that cp = ) d;;c; and let P; be the W), DO with kernel

(4.75) kj(,y) = —¢j(x)loglex(y)l]-

d .
As Clon, . Py] = Oy;cj we have P = 30 [0y, Pj] + R with cg = 0. Thus by
the first part of the proof P is a sum of commutators up to a smoothing
operator. l

Theorem 4.15 Let (M1, V) be a compact Heisenberg manifold and £ be a
vector bundle over M. If M is connected each trace on W5(M, E)/U=°(M, €)
18 proportional to the non-commutative residue.

Proof. Let 7 be a trace on W%4(M, ) /U ~°(M, E). We shall see it as a trace
on WE(M, &) vanishing on U~°(M,E) and we want to show the existence
of some constant \ such that

(4.76) 7(P)=AResP VP € V5(M,¢E).

As M is connected and both sides vanish on smoothing operators, it is
enough to prove (4.76) locally for scalar operators on a trivializing Heisen-
berg chart which is diffeomorphic to R, Then Rt is equipped with a
V-frame and 7 induces a trace on the algebra ¥% (R4*1) vanishing on

V,comp
W, (RH).
Now if P € W}, . (R¥1) then we have P = P.,, + Q, where P, is the
Uy, DO with kernel —cp(z)log|lex(y)]| and Q@ € \I/]Zj7comp(Rd+1) such that

cg = 0. By lemma 4.14 the W, DO operator () is a sum of commutators
up to a smoothing one. Actually it follows from the proof of the previous
lemmas that we can build this construct by means of compactly supported
Uy, DO operators. Then 7(Q) vanishes and we have 7(P) = 7(P.).

However, again by lemma 4.14, the functional ¢ — 7(P.) on C°(R+1)
vanishes on sum of derivatives. Therefore it is proportional to the Lebesgue
measure and there is a constant A\ such that

(4.77)  1(P)=7(P,:p) = )\/Cp(x) =AResP, PeUj (R
Going back to M we conclude that 7 as a trace on \If%(M , &) is proportional

to the non-commutative residue. W
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As a smoothing operator is a sum of smoothing commutators if, and only
if, its trace vanishes (see [Gu2, appendix|) we get the following corallary.

Corollary 4.16 Let (MdH,V) be a compact Heisenberg manifold and & be
a vector bundle over M. Then P € \Il%(M, £) is a sum of commutators if,
and only if, it is of the form

(4.78) P=Q+R,
with @ € VE(M,E) and R € V=°(M, &) such that

(4.79) Res Q) = Trace R = 0.
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Chapter 5

Spectral geometry of
Heisenberg and
pseudohermitian manifolds

In this last chapter we give geometric applications of the non-commutative
residue and the TR-trace. In the first section we define the zeta function of
an elliptic sublaplacian and, in the selfadjoint case, we relate its residues and
regular values to the coefficients of the heat kernel asymptotics (theorems 5.3
and 5.5).

In section 5.2 we derive variational formulae for zeta functions with re-
spect to C'! families of sublaplacians. We use them in section 5.3 to produce
conformal invariants associate to sublaplacians (theorem 5.14) extending
then the results of N.K. Stanton [St].

In section 5.4 we look at the non-commutative geometry of pseudoher-
mitian manifolds. In particular we are able to define the area of a compact
three dimensional pseudohermitian manifold and to compute it by an explicit
local formula involving the Tanaka-Webster scalar curvature (theorem 5.20).

In the last section we study the index of a square root of an elliptic
sublaplacian. First we show that in even dimension the index is always zero
and in odd dimension the index is given by the right coefficient of the heat
kernel asymptotics (theorem 5.21).

Next using cyclic cohomology and the local index formula of Connes-
Moscovici we are able to show the existence of an even homology class
whose pairing with the Chern character of a vector bundle gives the in-
dex with coefficients in the bundle and we give a local formula for currents
represented the components of this homology class as a universal finite linear
combination of non-commutative residues (theorem 5.27).
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5.1 The zeta function of an elliptic sublaplacian

Let (M1 V) be a compact Heisenberg manifold and let A be an elliptic
sublaplacian on M. We assume here that A is either invertible or selfadjoint.
Then we can construct its complex powers as in chapter 3 and define the
zeta function of A as the meromorphic function

(5.1) ((s)=TRA™®,  seC.

Since the non-commutative residue of a differential operator is zero theo-
rem 4.5 gives

Proposition 5.1 Let $ = {3k; k=0,1,...,d+2}U(—3 +Z_). Then the
zeta function (5.1) is holomorphic on C\ ¥ and has at worst simple pole
singularities on X with residues

(5.2) ress—s, ((s) = 2Res A™%0 = 2/ Ca-so (), 50 € 2.
M

Suppose now that A is selfadjoint and let us relate the residues and the
regular values of the zeta function to the heat kernel asymptotics of A for ¢
small,

_d+t2 ;
(53) i, 2) ~ 5 S Hay(A) (@),
Jj=0
where the a;(A)(z)’s are smooth densities on M.
The idea here is to introduce an auxiliary meromorphic function, directly

related to the heat kernel, and which is very much like the zeta function at
integer points. This function is

1t Adt
(5.4) J(s) = TR D_j, Ds:/ the iR —,
I'(s) Jo t

Lemma 5.2 The family (D_s) given by (5.4) is holomorphic on the right
half-plane {Rs > 0}. It extends to a holomorphic family on the whole C
such that the family

(5.5) Rs=A"°—D_g, s €C,
is a holomorphic family of smoothing operators satisfying
(5.6) Ry = —Il, R_; =0, k integer > 0.

Proof. That (D_;) is a holomorphic family of ¥y, DO’s on the right half-
plane follows from the proof of theorem 3.17. Moreover an integration by
parts yields

1ot adt =1t A dt

A= = F(s)/o P = r(s)/o fae T
1 A s=1 1y adl
' - t =
(5.7) F(s)e + I'0s) /0 e ;
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Since I'(s) = (s — 1)I'(s — 1) we obtain the equality
(5.8) D (1) =AD_;+I(s) te ™.

As T'(s)~! is a holomorphic function on C it follows that the family (D_;)
extends to a holomorphic family on the whole complex plane.

Now let II; (resp. II_) be the orthogonal projection onto the span of
the eigenvectors with non-negative (resp. non-positive) eigenvalues. Then
the families

L
sI'(s)

are all holomorphic family of smoothing operators over C. Moreover the
Mellin formula gives

(5.9) II_D_,, TI_A™%  TyD_, = My, IoA_, =0,

L[ dt 1 [ dt
510) LA = — | #Le™% _m.p_ / N
(3100 T r<s>/o SR e Y AR
So using the equalities
> dt o0 dt
(5.11) / tse—m7 — 1‘[+6—A/4/ tse—tA7e—A/4’
1 :

-5 _ —s 1 1 > s ftA@
(5.12) A —D_,=TI_(A D_s)+SF(S)HOJFF(S)/1 te A

we see that Ry = A™% — D_g is a holomorphic family of smoothing operators
on C.

Finally as I'(s) has simple poles at negative integers with residue 1 at
zero, the equality (5.12) shows that Ry = —IIp and R_; = 0 if k is a non-
negative integer. W

Theorem 5.3 Suppose d + 1 odd, d+ 1 = 2n + 1, and assume that A is
selfadjoint. Then:

1) Fork=1,...,n+ 1 we have

(5.13) ress— C(s) = %Res AR = = /M ant1-k(A)(x).

2) At s = 0 the regular value is
(5.14) ¢(0) = / an+1(A)(z) — dimker A.
M
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3) For any non-positive integer —k we have

615 )= (D! ans(@)(a),

M

Proof. By lemma 5.2 the family Ry = A™® — D_; is a holomorphic family
of smoothing operators on C. So by remark 4.7 we need only to look at the
auxiliary function

(5.16) ¥(s) = TR D_j, seC.

Moreover the asymptotic (5.3) implies that for any integer N we have
d+2 N .
(5.17) ki(wo) =t > ta;(A)(x) + " ey (a,1),
j=0

with 7y (x,t) bounded for ¢ small. Thus

L it & 1 |
(5.18) /0 ke, a) S = ;) )@ (),

where hy s(x) is a holomorphic family of densities for ®s > n + 1 — N.
Integrating over M we obtain

1 Y 1 1
(5:10) Teace Doy = = > s /Maj(A)(m)+F(s)hN(s),

where hy(s) is a holomorphic function for Rs > n+ 1 — N. The conclusion
follows from this last equality and the properties of the Gamma function,
noting that Trace R, is equal to —dimker A at s = 0 and vanishes at non-
positive integers. B

Remark 5.4 The above computations are local and (5.18) shows that we
can calculate explicitly the densities cp—+(x) and the regular values of tA-s
at negative integers. We get

(5.20) cpn(x) = (k_ll)!anﬂk(A)(x), k=1, n+1,

(5.21) tar(@) = (=1 Mk = Dlags (D) (2),  keN.
Arguing similarly in the even dimensional case we obtain:

Theorem 5.5 Suppose d + 1 = 2n even and assume A selfadjoint. Then:
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1) Fork=—n,—n+1,... we have

1
(5.22) res_1 ), = Res A~z 1k — — /M a1k ().

2) The regular value at s = 0 is given by

(5.23) ¢(0) = —dimker A.

3) The regular values at non-positive integers all vanish.

5.2 Variational formulae and homotopy invariance

In this section we shall derive variational formulae for the zeta functions
associate to a C'-family of elliptic sublaplacians on a compact Heisenberg
manifold. The first step is to justify the switching over of the trace and
the derivation with respect of the parameter. This follows from a more
general variational formula for the TR-trace which is an almost immediate
consequence of the procedure carried out to construct it.

Before achieving that let us first define C'-family of WUy, DO operators
over an open interval I of R.

Definition 5.6 For m € C a family (f.)ccr with values S™(R1) s C1 if:

(i) for & fived f.(&) is C function of ¢;

(i1) for any j the homogeneous symbols fem—; of degree m — j of fe
depends in a C' way on €;

(it) the bounds of the asymptotic fe ~ > fem—; are uniform with re-
spect to the C'-topology.

If U is an open subset of R4t we can as well define C'!-families of symbols
of order m on U x R¥! obtaining C'&C>-families of symbols of order m
on RA+1,

If U is equipped with a hyperplane bundle ¥V C TU and a V-frame, we
define a C'-family of WUy, DO operators on U as a family (P.) of Uy, DO’s of
the form

(5.24) P. = f(z,0(x,D)) + R,

with (f.) a Cl-family of symbols on U x R™! and (R.) a C'-family of
smoothing operators.

The notion of C'-family of ¥y, DO’s is stable under the composition of
operators and invariant by Heisenberg diffeomorphisms. So we can define
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them on any Heisenberg manifold. Moreover if A, is a C'-family of sub-
laplacians then the parametrix construction of [BG] can be carried out so
that to obtain a C'-family of parametrices.

If @ ¢ Cis an open and A C C\0 is a pseudocone we can similarly
define C'*(I)® Hol(Q)-families and C(I)& Hol?(A)-families of ¥y, DO oper-
ators using the same procedures as in chapters 2 and 3.

The notion of C''& Hol-family is very relevant for our purpose. Remem-
ber that theorem 4.5 followed from lemma 4.4 which was itself a straight-
forward extension to smooth families of symbols of lemma 4.2. In the same
way we have an extension of lemma 4.2 to C'®C>-families.

Lemma 5.7 Let (f..) be a C(I)® Hol(Q)-family of symbols on U x R+,

1) Ifordf., € Z then L(f. s(x,.)) is holomorphic from Q into C*(I)&C>(U)

and we have
(5.25) OeL(fes(x,.)) = LD fes(x,.)).

2) If ordf.. = z around some integer m then L(f.s(x,.)) has a simple
pole singularity near z = m and the equality (5.25) continues to hold
as an equality of meromorphic function near z = m.

Combining this lemma with the proof of theorem 4.5 we obtain:

Proposition 5.8 Let (M,V) be a compact Heisenberg manifold and let (P s)
be a C'® Hol-family of ¥, DO operators on M.

1) If ordP. s & Z then TR P, 5 is holomorphic for the Ct-topology and
we have

(5.26) 8. TR P., = TRO.P.

2) Suppose that ordP. s = z around some integer m then TR P. s has
a simple pole singularity for the C'-topology near z = m and (5.26)
holds as an equality of meromorphic functions near z = m.

Proposition 5.9 Let (M1, V) be a compact Heisenberg manifold and let
(Ac) be a Ct-family of elliptic sublaplacians on M. We make the following
assumptions:

(i) the operator A, is either invertible or selfadjoint;

(ii) there exists a connected open pseudocone A C C\ 0 such that AN
spAc =0 for any e.
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We can the define the complex powers for A. as in chapter 8 by means
of an integration contour contained in A. Then the function TRAZ® is
meromorphic for the C'-topology and we have

(5.27) 0 TRA;® = —s TRO(AJA .
In particular,

1 2
(5.28) Ok ReSAE_k = —k:Res@E(Ae)Ae_k_l k= 0757---,%'

Proof. The construction of an asymptotic resolvent for A, — A\, A € A,
in chapter 2 can be carried out smoothly with respect to the parameter
€. As the domain of A, doesn’t depend on € and for any e there is no
spectrum of A, in A, it follows that (A — \)~! is a C'-family of parametric
Wy, DO operators. Then the construction of the complex powers of A, of
section 3.3 gives a C''&® Hol-family of ¥y, DO operators. So by proposition 5.8
the function TR AZ® is meromorphic for the C'-topology and we have the
equality of meromorphic functions

(5.29) 0 TRA® =TRO(A®).
Therefore it is enough to show that for s >> 0 we have
(5.30) TRO(A;?) = —sTROA A ?

Now let m be an integer > —#. Then (A-™) is a Cl-family of trace
class operators and for s < 0 we have

0. Trace A_™T* = Z/)\Sae Trace A7™(Ac — A)dA,
2T T

(5.31) = —mTrace QA A ™1 1 / AS(Ac — A)~LdA
2 T

— Trace@eAeA;m_l;/)\S(AE—)\)_QCZ)\.
r

™

As an integration by parts yields

s ™

(5.32) — / A (A — N2\ = ——= / A A= A)ldd = —sATSL
2 T 2 r

we conclude that
(5.33) de Trace A" = (5 — m) Trace DA A1 Rs < 0.

Hence (5.27) holds for Rs > m. As both sides of this equality are meromor-
phic functions, it holds on the whole C. B

Corollary 5.10 Let Ay and Ay be two elliptic sublaplacians on M which
can be connected to each other by means of a C'-family satisfying the as-
sumptions of proposition 5.9. Then the reqular values at zero of the zeta
functions associated to Ay and Ay coincide.
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5.3 Conformal invariants of sublaplacians

Let (M",g) be a compact Riemannian manifold and let O, be the
conformal Laplacian on M,
1n—2

(5.34) Oy =d'd+ ;——sn,

where s, is the scalar curvature. This operator, also called Yamabe oper-
ator, was studied in order to solve the Yamabe problem of finding within
the conformal class of g a metric with constant scalar curvature (see [Au]
and [Sc]). It transforms conformally under a conformal change g — €*/g of
metrics, i.e.

(5.35) Oe2rg = e 2 I0gle=DI 0 f e 0(M).

For t small the kernel of e~*™s admits on the diagonal an asymptotics of the
form

(5.36) k(o) ~t72 Y thag(0y)(x),

where the a;(0g)(z)’s are densities on M given by local invariants in the
jets of the metric [Gi].

If F(g) is a function of the metric g, or of the contact form 6 below, we
set

8 € o0
(5.37) O = o F(e*Tg),, [ ECT(M).
In [BO1] and [PR] the following theorem is proved.

Theorem 5.11 ([BA1], [PR]) Let (M?",g) be an even dimensional com-
pact Riemannian manifold and let f € C*°(M). Then:

1) We have
(5.38) anfl(Dleg)(x) = €2f(m)anfl(mg)($),
i.e. an—1(0g, ) is a local conformal invariant of weight —2.

2) For any integer k,

639 5 [ a@)@ =201 [ f@a,)e),
M M
In particular Ay, = [, an(0g, ) is a conformal invariant.
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There is an analogous result for pseudohermitian manifolds proved by
N.K. Stanton [St]. Let (M?"1 §) be a compact pseudohermitian manifold
and let [y be the conformal sublaplacian,

n
5.40 Clg = A —R
( ) 0 b+n+2 s

where R, is the Tanaka-Webster scalar curvature. The operator was intro-
duced in [Le] in order to solve the corresponding Yamabe problem on CR
manifolds [JL1]. Under a conformal change of contact form 6 — €2/ the
operator [y transforms into

(5.41) [o2r = e~ M2 [y e

By proposition 1.53 the heat kernel of [:Jy admits on the diagonal an asymp-
totics for ¢ small in the form

(5.42) ky(w, ) ~ =T "t (Eg) ().
Jj>0

Then N.K. Stanton proved:

Theorem 5.12 ([St]) Let (M*"*1 0) be a compact pseudohermitian man-
ifold. Then

1) For any f € C>*(M) we have
(5.43) an(De2rg)(z) = e @a,, () (2).

In other words a,(E.279)(z) is a local conformal invariant of weight
—2.

2) We define a global conformal invariant by setting
(5.44) Auss = [ enir(@ar)@)
M

We shall give here a shorter proof of the first assertion and goes a little
bit further with the second one. To this end we need the following lemma.

Lemma 5.13 Let (M?"*! 0) be a compact pseudohermitian manifold. For
f € C(M) define the C*-family of sublaplacians

(5.45) Llge = [ezerg, —1l<e<?2.

Then the family () satisfies to the assumptions of the proposition 5.9.
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Proof. Let ug,...,u; be an orthonormal basis of ker [Jy. The kernel of the
projection Iy onto ker [y is then given by

l

(5.46) mo(w,y) = Y uj(@)a;(y)(do)" Ad(y).

§=0
As e ™fug, ..., e "fy; is a basis for ker A, a Gram-Schmidt orthonormal-
isation produces an orthonormal basis vo, ..., v, with respect the inner-

product induced by the volume form e2("+2)<f(df)™ A 0, such that vj is C
with respect to e. Then it follows from (5.46) that the orthogonal projection
II; onto ker [y, is a C'-family of smoothing operators. Then the equality

(547) D;i = (\:‘976 + HC)_l _ He,

shows that De_: is a C'-family of bounded operators and there exists C' > 0
such that

(5.48) 15 1<c,  —1<e<2.
This implies that [y has no eigenvalue, except maybe 0, in the interval

] — C~1,C~![. Hence the family of sublaplacians Ele_i satisfies to the as-
sumptions of proposition 5.9. B

Theorem 5.14 Let (M?"1 0) be a compact pseudohermitian manifold and
let f € C®(M).

1) We have

(5.49) an(Beas) (x) = €Wy (Eg) (),

i.e. an(B.2rg)(x) is a local conformal invariant of weight —2.
2) We have the equality of meromorphic functions

(5.50) 5 TRE,* = 2s TR f [;*.

Hence (q,(0) is a conformal invariant.

3) For any integer k,

(5.51) & /M ax(To) () = 2(n + 1 — k) /M f(@)ax(Eo) ).
Thus Ant1 = [y any1(Ee2rg)(x) is a conformal invariant.
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Proof. Let Il be the orthogonal projection onto ker [-ly. Then
(5.52) e o, eI oyp = e 0,1 [ee™ =1 — e M TIpe .

So e~f D;l e("+2)f is a parametrix for [,274 and differs from 5;2%”6 only by
a smoothing operator. Therefore it follows from theorem 5.3 that

(5.53)

1n(E0) (@) = e1 (&) = €,y 1 sy (@) = Pt = Wy () ).

On the other hand, by lemma 5.13 the family [y, = [y satisfies
to the assumptions of proposition 5.9. So TR, ? is meromorphic for the
C'-topology and we have the equality of meromorphic functions

(5.54) 5 TRE,® = —sTR(O:Lg,c)emo, 51 = 2s TR f [, ° .

Hence the second assertion.
Finally the last assertion follows from the second one and theorem 5.3,
noting that dim ker [y is a conformal invariant. ll

Remark 5.15 The last assertion answers positively to a conjecture raised
by Branson-Orsted [BO2].

5.4 Non-commutative geometry of pseudohermi-
tian manifolds

Let (M?"*1 0) be a compact pseudohermitian manifold. Then propo-

sition 1.55 and theorem 5.3 express the non-commutative residues of the

geometric sublaplacians as integrals of universal polynomials in the Tanaka-
Webster connection. For instance:

Proposition 5.16 Let A, be the pseudohermitian sublaplacian on (M,0).
Then

(5.55) ResA, ") = an/ (dO)* NG,  ResA;™ = /Bn/ R, (dO)™ A0,
M M

where oy and B, are universal constants and R, is the Tanaka-Webster
scalar curvature.

Remark 5.17 These equalities are pseudohermitian analogues of the cor-
responding results in Riemannian geometry (see [Col], [Kast], [KaW]).

By remark 5.4 we actually have

Combining with theorem 4.11 we obtain:
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Corollary 5.18 For any f € C*°(M) we have

(5.57) ][fAb‘("“) - an/ £(do)™ A 6.
M
-1 1
So extrapolating [Co4] we can interpret ds = a, """ A, ? as a length element

and define the area of (M, ) as follows.

Definition 5.19 The area of (M, 0) is

—1
(5.58) areag M = Resds® = a,y""" Res A, .

Theorem 5.20 For any 3-dimensional pseudohermitian manifold (M3, 0)
we have

1
5.59 areag M = —— R1dONG.
(559 M= [ m

Proof. By proposition 5.16 there exists a constant 7 such that for any
3-dimensional pseudohermitian manifold (M3, ) we have

b1 /
— Rsdf N 6.
Va1 Jp s
B1

To compute the ratio Jar We need only to look at the specific example of

the unit sphere 53 of C? with contact form 6 = %(z1dz; + 20dz>). By [We]
the scalar curvature R; is then equal to 4 and thus we get

(5.60) areag M =

(5.61) pr ResA;l ResAg2 )—71_1 ResAIjl (/ de/\e)%l

On the other hand, by theorem 5.3 as t — 0T we have
-A 1 o 1 —1
(5.62) Tracee =t = ﬁResAb + ﬂRes Ay +0(1).

Since Ry = 4 here, we have A, = [y — 1. So using [St, theorem 4.34] we
obtain

2 2 2

(5.63) Tracee ™™ = ¢ (—— + O(t®)) = —— + —

162 1622 T 16t

+ O(1).
Thus Res Agz = Res A;l = %2 and we get

ho_ T .
(5.64) @—8\/5(/53d9/\9) .
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It remains then to compute |, gs d0 N 0. We have

—1
ddNng = T(ngzl ANdz Ndzy + z1dz N dzg N dz_z)

1
(5.65) = ilR(dCCl Adyy A dze A dys),
where R = % is the radial vector fields. Thus
1
(5.66) VolgS?’:/ dOnO = 2|83 = n?,
53 2

which finally yields 51 = 87\1/5' |

5.5 Local index formulae

Let D be an order 1 selfadjoint Wy, DO operator on a compact Heisenberg
manifold (M+1,V) acting on a the sections of a vector bundle S over M.
We assume that D is elliptic in the Heisenberg calculus and it anti-commutes
with a Zg-grading v on §. With respect to this grading we can decompose
S as a direct sum

(5.67) S=8tas,
and write D as
(5.68) D:(£+ DO_>, D :S: — Ss.

By definition the index of D is
(5.69) ind D = ind DT = dimker D — dimker D™,
The aim of this section is to compute by a local formula the index of D.

Theorem 5.21 Assume that D? is a sublaplacian, so that its heat kernel
has an asymptotic on the diagonal of the form

(5.70) ki(,x) ~ t75 Y tla;(D?)(a),
Jj=0

where the a;j(D?)(x) are smooth densities on M with values in END S.
1) If d+ 1 is even we have ind D = 0.
2) Ifd+1 is odd, d+ 1 =2n+ 1, then

(5.71) indD = /M Strs ag(D?)(z).
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Proof. We have

Jr
(5.72) D? = ( AO AO_ > ., AT =DTD*

The idea of the proof is to express the index of D as the difference of the
zeta functions of AT and A,

(5.73) ¢+ = TR(A%)™®,
In fact for Rs > 1(d + 2) we have

(5.74) (4(s) = ¢ (s) = > A(dimker(AT — A) — dimker(A~ — X)) =0,
A>0

for D induces for any A > 0 a bijection between ker(A*—\) and ker(A~—\).
So if d + 1 is even then by theorem 5.5 we have

(5.75) 0=¢:(0)—¢_(0) = —dimker AT + dimker A~ = —ind D,

while if d 4+ 1 = 2n + 1 is odd theorem 5.3 gives
(5.76)

ind D :/ tre+ a(n+1)(A+)(:U)—/ tre— Ay (A7) (2) = / Stre a(n+1)(D2)(x),
M M M

which completes the proof. B

Remark 5.22 It is actually possible to show that the square D? of any
elliptic ¥y, DO operator D of order 1 has an heat kernel asymptotic of the
kind of (5.70), adding logarithmic terms as in [DG| and [GruS]. So the
theorem holds for any odd selfdajoint elliptic Wy, DO of order 1.

Now let € be a Hermitian vector bundle and let V be a Hermitian con-
nection on &, i.e.

(5.77) (V& m) — (&, V) =d(&m),  &neCT(M,E).

We form the twist of D by V as follows. By [Col, prop. VI.1.4] we
define a define a morphism of C*°(M)-modules © : C®°(M,AT*M) —
C*°(M,EndS) by letting

(5.78) m(fOodft...df") = fOD, fY...[D, f1,  f'eC®(M).

For example, in the case of the Dirac operator on a spin Riemannian mani-
fold we would have got the Clifford representation. We get then a morphism
of C*°(M)-modules 7 : C*°(M,S @ AT*M) — C*°(M,End S). The twisted
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operator Dy ¢ is the differential operator acting on C*°(M,S ® &) defined
by

(5.79) Dvyg =D®1+7V,

where 7V is given by the compositions
(5.80) C®(M,S®E&) X =M, S®AT* ® &) ™2} (M, S ® €).

However by Serre-Swan theorem the map & — C°°(M, ) induces an
isomorphism in K-theory,

(5.81) KO%(M) ~ Ky(A),

where A is the (Fréchet) algebra C°°(M). Under this isomorphism the
definition of Dy ¢ coincides the one given in [Mo], so that

(582) ind Dv7g = indD[S],

where [€] is the class of £ in K°(M) ~ Ky(A) and indp is the index map
from Ko(A) into Z ([At], [Kas], [Col]).

The cyclic cohomology [Col] can be presented as follows. First the
Hochschild cohomology H*(A,.A*) is the cohomology of the complex of
cochains,

C"(A) = {continuous (n + 1)-linear form on A} if n >0,
(5.83) = 0 ifn<0,

with coboundary
bi/)(ao,... ’an+1) _ Z(_l)jw(aoj.” ,ajaj+1,--- 7an+1)
(584) + (_1)n+1¢(an+1a0’ . ’an) VCLJ c A

The cyclic cohomology is the cohomology of the sub-complex (C5(.A),d)
of the Hochschild complex consisting in cyclic cochains, i.e.

(5.85) Plat,---,a"a%) = (=1)"p(a’, -+ a") ) € A

It can equivalently described in terms of the second filtration of the (b, B)-
bicomplex defined as follows. Let

(5.86) cmm(A) = CM(A),  myme N,

take b as vertical differential and as horizontal differential take B : C"(A) —
C™~1(A) given by
(5.87)

B = AB07 (A¢)(a07 o ,am—l) = Z(_l)(M—l)jw(aj7 T 7aj_1)7
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(5.88) Bow(a®,--- ,a™ ) =(1,d%, - ,a™ ), a € A

One can check that b?> = B2 = bB + Bb = 0 so that (C**,b, B) is really a
bicomplex.
Actually, it is more convenient to work with the short cyclic complex

1o}
(5.89) CV(A) S C(4), d=b+B,

(5.90) CV(A) =P C*(A), oA Pct(A),

n>0 n>0

where @ is the algebraic direct sum, so that the cochains in the short complex
have finite supports. We thus obtain two cohomology groups HC(A)
and HC°(A). For the reader familiar with [Col] note that HC®'(A) @
HC°Y(A) is just the periodic cyclic cohomology seen as the filtration by
dimension of the entire cyclic cohomology HC*(A).

We have a pairing between HC®(A) and Ky(.A) such that for a cyclic
cocycle ¢ = (pa,) in C°(A) and for an idempotent e € Proj My(A) we
have

(2n)!
n!

SDQTL#tr(ea to ae)a

(5.91) (el [e) = > (=1)"

[>[0
where @9, # tr is then + 1-linear map on My (A) = M (C) ® A defined by

@Qn# tr(ﬂo b2y a07 e 7:“2n & GQTL)
(5.92)  =tr(u’. .. 1o (d®, - a®), p € My(C), o € A.

(See [Col, sect. IV.7.4] using the table p. 371).

However we are dealing here with A = C°°(M) and this has important
topological counterparts. First we can explicitly described the Hochschild
cohomology in terms of de Rham’s currents.

Proposition 5.23 ([Co2]) 1) We define an isomorphism v — Cy,
from the Hochschild cohomology group H*(A, A*) onto the space D} (M)
of k-dimensional currents by letting

(5.93)
(Con S ) = 5 S )0 fe Y, feA

€Sy,

2) Under this isomorphism we have B = kd' where d' is the de Rham
boundary for currents.
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Note that if the k-cocycle 9 is completely antisymmetric in the last k vari-
ables then

(5:94)  (Cy, fUdft . dff) = (O 1Y), FeA
The inverse of the above isomorphism is given by C' — ¥¢ where
(5.95) ba(fO, fh - 1) = (Cy, £OdfT . dfY), e A

This defines a cocycle and we have

BOQpC(an"'afk_l) = QJZ)C(]-aan""fk_l)
(5.96) = (C,df°N...ANdf*Y = (d'C, FONdFEA LA dFF).

Therefore given a current C' = (Cj) € Pr<oD), (M) we define a cochain
in the short complex by letting

1
(597) Yc = (@Ck)a Yc, = Ewck

Since dpc = pgtc this map induces a morphism w — ¢, from the even
de Rham homology Hey (M) = &p<oH2, (M) of the manifold into the even
cyclic cohomology HC®V(A) of A.

Proposition 5.24 1) The map w — @y, is an isomorphism from H ¢,( M)
onto HC'(A).

2) Let C' be an even closed current on M and let £ be an Hermitian
vector bundle over M. Then

(5.98) ([pcl, [€]) = ([C],Ch™ €),
where the l.h.s. is the pairing of the cyclic cohomology class of oo with

the class of £ in Ko(A) ~ K%(M), while the r.h.s. is the pairing of
the homology class of C' with the Chern character of £.

Proof. 1) Let ¢ = (¢2,) € C®V(A) such that dp = 0, i.e.

(5.99) By + bpan, = 0.

For n large enough we have (9, = 0 for p > n. In particular 9,12 = 0 so
that bpg, = 0. Thus 9, is a Hochschild cocycle and by proposition 5.23
there exists an unique 2n dimensional current Cy, = (2n)!Cy,, on M such
that @2, — ¢, 15 a cobounday cochain,

(5.100) on = PCy,, + b2n-1, Yon-1 € C*"1H(A).
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This current is closed since the boundary d* corresponds in Hochschild
cohomology to the B operator and we have

(5.101) Boc,, = By, + Bbpan—1 = —b(p2n—2 + Biban—1).
Then (5.96) implies Byc,, = 0, so
(5.102) b(pan—2 — Bpan—1) = —B(pan — bib2n—1) = 0.

Hence 2,2 — Bia,—1 is a Hochschild cocycle and there exists an unique
2n — 2 dimensional current Ca, 2 and a cochain 19, 3 € C?*"*73(A) such
that

(5.103) Pon—2 = PCyp_o + Bthon_1 + b2, 3.

The current Cy,,_5 is also closed, since

(5.104) Bycy, ., = Bpan—2 — Bbiha,_3 = b(pan—4a + Bipan_3).

Moreover if ¢, ; is another cochain satisfying (5.100) then t)g,_1 —
Y, 4 is a Hochschild cocycle and 4, _; yields another closed current C4,,_, €
DS, _o(M) such that

(5.105) PCon_z = 0y, _, = Bthon—1 — ¥hy_1).

So Cap—o — C%, _5 is a boundary current and the homology class of Cay,_s is
uniquely determined.

Repeating this process we get an even current C' = (Cb),) and an odd
cochain 1 = (¢2,+1) such that

(5.106) © = o + 0.

Each step yields an uniquely determined homology class of currents, so we
have proven that for each class ¢ € HC®(A) there exists an unique even
homology class w € Hey (M) such that ¢ = ¢,,. Thus w — ¢, is an isomor-
phism from He, (M) onto HC®V(A).

2) Let € be an Hermitian vector bundle over M. As a A-module C*° (M, E)
is isomorphic to eA* for some integer k and some idempotent e € Proj M (A).
So we can suppose that £ = ime and define a connection on £ by setting

(5.107) V=(®1)d: C®(M,E) — C®(M,E® AT*M).
One can check that the curvature of this connection is
(5.108) V2 = e(de)? = e(de)’e € O°(M,E @ A*T*M),

so that the Chern character of £ is represented by the even closed form

(5.109) Tre ™V =) (i Te(e(de)®)" = Gl Tr e(de)?".

n! n!
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Now let C' = (Cby,) be an even closed current. Then

ot Tr(a® @ p°, - a® @ p*) = (2171)' Tr(u - - - u?")(Cap, a®da’ - - - a*")
(5.110) _ (;n)!wgn, Tr(a® @ 10, a2 @ ji2")).

Therefore

Gan (el e = 3 S 0, Tree™) = o) on g,

which concludes the proof. B

Let us now go back to our index problem. The cyclic cohomology is
actually the natural recipient, at least at the operatorial level, to a dual
Chern character whose pairing enables us as in the Atiyah-Singer index
theorem [AS] to compute the index of D with coefficient in K((.A).

Indeed let H be the Hilbert space

(5.112) L*(M,S) = L*(M,S%) @ L*(M,S™).

Then A = C°°(M) acts on this Hilbert space by multiplication and D is
an odd unbounded selfadjoint operator on H. As D is an (Heisenberg)
elliptic differential operator of order 1, it has compact resolvent and almost
commutes with A to the extent that [D,a] is bounded for any a € A. Hence
(A,H,D) is an even spectral triple in the sense of [CM2].

This spectral triple is (d + 2)-summable since by theorem 4.11 we have

(5.113) jin(D71) = O(n@).

Suppose now that the complex powers |D|?*, z € C, define a one pa-
rameter group of Wy DO’s such that ord|D|* = z. By chapter 3 this is
certainly true if D? is a sublaplacian. Then theorem 4.5 implies that if we
let ¥ = {k € Z;k < (d+2)} then for any ¥y DO with integral order < 0 the
function TR P|D|~* is holomorphic on C \ ¥ and has at most simple pole
singularities on 3 with a residue at z = 0 given by

(5.114) res,—o TR P|D|™* = Res P.

It follows that the spectral triple (A, H, D) has a discrete and simple dimen-
sion spectrum contained in ¥. Thus it satisfies to the hypothesis of [CM2,
theorem II.3] which provides us with a Chern character in cyclic cohomology
given by local formulae.

Proposition 5.25 ([CM2]) Suppose that D? is a sublaplacian. Then:
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1) We define an even cyclic cocycle ¢ = (pay) as follows. For n # 0
the cochain oy is given by
(5.115)

Pan = an Resva’[D, a']®V) ... [D, a?")(e2n) | p|~2(lal+n), al € A,

where ¢;;' = (=1)1*12a! (g +1) - (a1 +- - -+ 9 +2n) and the symbol
T®) denotes the k’th iterated commutator with D2, while for n = 0 we
have

(5.116) qﬂﬁ—Agm&m%wmm, feA,

where ag(D?)(x) is the density occurring as the constant term on the
asymptotics of the heat kernel on the diagonal.

2) The pairing with the class of ¢ in HC®(A) gives the index with
coefficients in Ko(A),

Remark 5.26 The expression of ¢q differs a little bit from [CM2] but it is
the good one since it gives back the index of D and if D is not invertible
res,—o z TR~y|D|™% is not equal to the constant term in the asymptotics of
Traceve “P” for e small.

Putting all these things together we obtain:

Theorem 5.27 If D? is a sublaplacian, then:

1) There exists an even homology class Chy, D € Hey(M) such that for
any Hermitian vector bundle over M with a Hermitian connection V
we have

(5.117) ind Dy ¢ = (Ch, D,Ch* ).

2) We can define an explicit closed even current C = (Cyy,) representing
Chy D as follows. For n # 0 define Cy, by

(Con, fOdfY A ... A df*™)
(5.118) = (2n)! > caResyfO[D, f1]2 ... [D, f2r)oen| D|~2loln),

«

where ;' = (—=1)!*2al(a1 +1) - (1 4+ -+, +2n) and the symbol
T®) denotes the k’th iterated commutator with D?, while for n = 0 we
have

(5.119) <%ﬂ=Aﬁ@&mMWM%

where ag(D?)(x) is the density occurring as the constant term on the
asymptotic of the heat kernel on the diagonal.
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Remark 5.28 The only thing we need for applying the Connes-Moscovici
theorem is that the complex powers |D|?, z € C, define a one parameter
group of ¥y, DO’s such that ord|D|* = z. It is also possible to prove this is
true for any elliptic ¥y DO of order 1. So the above theorem holds for any
odd selfadjoint elliptic ¥y, DO of order 1.
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