
SZEGÖ PROJECTIONS AND NEW INVARIANTS FOR CR AND

CONTACT MANIFOLDS

RAPHAËL PONGE

Abstract. In this paper we present the construction in [Po4] of several new invariants for CR
and contact manifolds by looking at the noncommutative residue traces of various geometric
ΨHDO projections. In the CR setting these operators arise from the ∂b-complex and include the
Szegö projections acting on (p, q)-forms. In the contact setting they stem from the generalized
Szegö projections at arbitrary integer levels of Epstein-Melrose and from the contact complex
of Rumin. In particular, we recover and extend recent results of Hirachi and Boutet de Monvel
and answer a question of Fefferman. Furthermore, we give simple algebro-geometric arguments
proving the vanishing of Hirachi’s invariant on strictly pseudoconvex CR manifolds of dimension
4m + 1.

1. Introduction

Let D ⊂ C
n+1 be a strictly pseudoconvex domain with boundary ∂D. Let θ be a pseudoher-

mitian contact form on ∂D, i.e., if near a point of ∂D we let ρ(z, z) be a local defining function
for D with ∂∂ρ > 0 then θ agrees up to a conformal factor with i(∂ − ∂)ρ.

We endow ∂D with the Levi metric defined by the Levi form associated to θ and we let
Sθ : L2(∂D) → L2(∂D) be the Szegö projection associated to this metric and let kSθ

(z, w)dθn∧θ
be the Schwartz kernel of Sθ. As shown by Fefferman [Fe1] and Boutet de Monvel-Sjöstrand [BS]
near the diagonal w = z we can write

(1.1) kSθ
(z, w) = ϕθ(z, w)ρ(z, w)−(n+1) + ψθ(z, w) log ρ(z, w),

where ϕθ(z, w) and ψθ(z, w) are smooth functions. Then Hirachi defined

(1.2) L(Sθ) :=

∫

M
ψθ(z, z)dθ

n ∧ θ.

Theorem 1.1 (Hirachi [Hi]). 1) L(Sθ) is a CR invariant, i.e., it does not depend on the choice
of θ. In particular, this is a biholomorphic invariant of D.

2) L(Sθ) is invariant under smooth deformations of the domain D.

Subsequently, Boutet de Monvel [Bo2] generalized Hirachi’s result to the contact setting in
terms of the generalized Szegö projections for contact manifolds introduced in [BGu]. Such
operators are FIO’s with complex phase and their kernels admit near the diagonal a singularity
similar to (1.1). In this setting the integral of the leading logarithmic singularity defines a
contact invariant.

It has been asked by Fefferman whether there would exist other invariants like L(Sθ), i.e.,
invariants arising from the integrals of the log singularities of geometric operators. The aim of
this paper is to explain that there are many such invariants. These invariants can be classified
into three families:

(i) CR invariants coming for the ∂b-complex of Kohn-Rossi ([KR], [Ko]);
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(ii) Contact invariants arising from the generalized Szegö projections at arbitrary integer level
of Epstein-Melrose [EM];

(iii) Contact invariants coming from the contact complex of Rumin [Ru].

The construction of these invariants is based on two main tools:

- The Heisenberg calculus of Beals-Greiner [BG] and Taylor [Tay];

- The noncommutative residue trace for the Heisenberg calculus constructed in [Po1] and [Po5].

To date there is no known example of CR or contact manifold for which one of those in-
variants is not zero. The only known results are vanishing results: Hirachi [Hi] and Boutet de
Monvel [Bo2] proved that their invariant vanish in dimension 3, and Boutet de Monvel [Bo3]
has announced a proof of the vanishing of the invariant in any dimension, but the details of
the proof have not appeared yet. In this paper, we mention give simple algebro-geometric
arguments proving the vanishing of this invariant on strictly pseudoconvex CR manifolds of
dimension 4m+ 1 (see Section 7).

The talk is organized as follows. In Section 2 we recall few facts about Heisenberg manifolds
and the Heisenberg calculus. In Section 3 we recall the construction and the main properties
of the noncommutative residue for the Heisenberg calculus. In Section 4 we present the con-
struction of the CR invariants for the ∂b-complex. In Section 5 we obtain contact invariants
from the generalized Szegö projections of Epstein-Melrose. In Section 6 we construct contact
invariants from Rumin’s contact complex. Finally, in Section 7 we establish the vanishing of
Hirachi’s invariant on strictly pseudoconvex CR manifolds of dimension 4m+ 1.

2. Heisenberg calculus

2.1. Heisenberg manifolds. A Heisenberg manifold is a pair (M,H) consisting of a mani-
fold M together with a distinguished hyperplane bundle H ⊂ TM . Moreover, given another
Heisenberg manifold (M ′, H ′) we say that a diffeomorphism φ : M → M ′ is a Heisenberg
diffeomorphism when φ∗H = H ′.

The main examples of Heisenberg manifolds include the following.
a) Heisenberg group. The (2n+ 1)-dimensional Heisenberg group H

2n+1 is R
2n+1 = R × R

2n

equipped with the group law,

(2.1) x.y = (x0 + y0 +
∑

1≤j≤n

(xn+jyj − xjyn+j), x1 + y1, . . . , x2n + y2n).

A left-invariant basis for its Lie algebra h2n+1 is provided by the vector-fields,

(2.2) X0 =
∂

∂x0
, Xj =

∂

∂xj
+ xn+j

∂

∂x0
, Xn+j =

∂

∂xn+j
− xj

∂

∂x0
,

with j = 1, . . . , n. For j, k = 1, . . . , n and k 6= j we have the relations,

(2.3) [Xj , Xn+k] = −2δjkX0, [X0, Xj ] = [Xj , Xk] = [Xn+j , Xn+k] = 0.

In particular, the subbundle spanned by the vector fields X1, . . . , X2n defines a left-invariant
Heisenberg structure on H

2n+1.

(b) Codimension 1 foliations. These are the Heisenberg manifolds (M,H) such that H is
integrable in Fröbenius’ sense, i.e., C∞(M,H) is closed under the Lie bracket of vector fields.

(c) Contact manifolds. A contact manifold is a Heisenberg manifold (M2n+1, H) such that
near any point of M there exists a contact form annihilating H, i.e., a 1-form θ such that dθ|H
is non-degenerate. When M is orientable it is equivalent to require the existence of a globally
defined contact form on M annihilating H. More specific examples of contact manifolds include
the Heisenberg group H

2n+1, boundaries of strictly pseudoconvex domains D ⊂ C
2n+1, like the

sphere S2n+1, or even the cosphere bundle S∗M of a Riemannian manifold Mn+1.
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d) Confoliations. The confoliations of Elyashberg and Thurston in [ET] interpolate between
contact manifolds and foliations. They can be seen as oriented Heisenberg manifolds (M2n+1, H)
together with a non-vanishing 1-form θ on M annihilating H and such that (dθ)n ∧ θ ≥ 0.

e) CR manifolds. If D ⊂ C
n+1 a bounded domain with boundary ∂D then the maximal

complex structure, or CR structure, of T (∂D) is given by T1,0 = T (∂D) ∩ T1,0C
n+1, where

T1,0 denotes the holomorphic tangent bundle of C
n+1. More generally, a CR structure on an

orientable manifold M2n+1 is given by a complex rank n integrable subbundle T1,0 ⊂ TCM such

that T1,0 ∩ T1,0 = {0}. Besides on boundaries of complex domains, such structures naturally
appear on real hypersurfaces in C

n+1, quotients of the Heisenberg group H
2n+1 by cocompact

lattices, boundaries of complex hyperbolic spaces, and circle bundles over complex manifolds.
A real hypersurface M = {r = 0} ⊂ C

n+1 is strictly pseudoconvex when the Hessian ∂∂r is
positive definite. In general, to a CR manifold M we can associate a Levi form Lθ(Z,W ) =
−idθ(Z,W ) on the CR tangent bundle T1,0 by picking a non-vanishing real 1-form θ annihilating
T1,0⊕T0,1. We then say thatM is strictly pseudoconvex (resp. κ-strictly pseudoconvex) when we
can choose θ so that Lθ is positive definite (resp. is nondegenerate with κ negative eigenvalues)
at every point. In particular, when this happens θ is non-degenerate on H = ℜ(T1,0 ⊕T0,1) and
so (M,H) is a contact manifold.

2.2. Tangent Lie group bundle. The terminology Heisenberg manifold stems from the fact
that the relevant tangent structure in this setting is that of a bundle GM of graded nilpotent
Lie groups (see [BG], [Be], [EM], [FS], [Gr], [Po2], [Ro]). This tangent Lie group bundle bundle
can be described as follows.

First, we can define an intrinsic Levi form as the 2-form L : H ×H → TM/H such that, for
any point a ∈M and any sections X and Y of H near a, we have

(2.4) La(X(a), Y (a)) = [X,Y ](a) mod Ha.

In other words the class of [X,Y ](a) modulo Ha depends only on X(a) and Y (a), not on the
germs of X and Y near a (see [Po2]).

We define the tangent Lie algebra bundle gM as the graded Lie algebra bundle consisting of
(TM/H) ⊕H together with the fields of Lie bracket and dilations such that, for sections X0,
Y0 of TM/H and X ′, Y ′ of H and for t ∈ R, we have

(2.5) [X0 +X ′, Y0 + Y ′] = L(X ′, Y ′), t.(X0 +X ′) = t2X0 + tX ′.

Each fiber gaM , a ∈ M , is a two-step nilpotent Lie algebra, so by requiring the exponential
map to be the identity the associated tangent Lie group bundle GM appears as (TM/H) ⊕H
together with the grading above and the product law such that, for sections X0, Y0 of TM/H
and X ′, Y ′ of H, we have

(2.6) (X0 +X ′).(Y0 + Y ′) = X0 + Y0 +
1

2
L(X ′, Y ′) +X ′ + Y ′.

Moreover, if φ is a Heisenberg diffeomorphism from (M,H) onto a Heisenberg manifold
(M ′, H ′) then, as φ∗H = H ′ we get linear isomorphisms from TM/H onto TM ′/H ′ and from
H onto H ′ which together give rise to a linear isomorphism φ′H : TM/H ⊕H → TM ′/H ′ ⊕H ′.
In fact φ′H is a graded Lie group isomorphism from GM onto GM ′ (see [Po2]).

On the other hand, we have:

Proposition 2.1 ([Po2]). 1) At a point x ∈ M we have rkL(x) = 2n iff GxM is isomorphic
to H

2n+1 × R
d−2n.

2) If dimM = 2n + 1 then (M2n+1, H) is a contact manifold iff GM is a fiber bundle with
typical fiber H

2n+1.
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2.3. Heisenberg calculus. The Heisenberg calculus is the relevant pseudodifferential calculus
to study hypoelliptic operators on Heisenberg manifolds. It was independently introduced by
Beals-Greiner [BG] and Taylor [Tay] (see also [Bo1], [Dy1], [Dy2], [EM], [FS], [Po3], [RS]).

The initial idea in the Heisenberg calculus, which is due to Stein, is to construct a class of
operators on a Heisenberg manifold (Md+1, H), called ΨHDO’s, which at any point a ∈M are
modeled on homogeneous left-invariant convolution operators on the tangent group GaM .

Locally the ΨDO’s can be described as follows. Let U ⊂ R
d+1 be a local chart together with

a frame X0, . . . , Xd of TU such that X1, . . . , Xd span H. Such a chart is called a Heisenberg
chart. Moreover, on R

d+1 we consider the dilations,

(2.7) t.ξ = (t2ξ0, tξ1, . . . , tξ), ξ ∈ R
d+1, t > 0.

Definition 2.2. 1) Sm(U ×R
d+1), m ∈ C, is the space of functions p(x, ξ) in C∞(U ×R

d+1\0)
such that p(x, t.ξ) = tmp(x, ξ) for any t > 0.

2) Sm(U × R
d+1), m ∈ C, consists of functions p ∈ C∞(U × R

d+1) with an asymptotic
expansion p ∼

∑

j≥0 pm−j, pk ∈ Sk(U ×R
d+1), in the sense that, for any integer N and for any

compact K ⊂ U , we have

(2.8) |∂α
x ∂

β
ξ (p−

∑

j<N

pm−j)(x, ξ)| ≤ CαβNK‖ξ‖ℜm−〈β〉−N , x ∈ K, ‖ξ‖ ≥ 1,

where we have let 〈β〉 = 2β0 + β1 + . . .+ βd and ‖ξ‖ = (ξ20 + ξ41 + . . .+ ξ4d)1/4.

Next, for j = 0, . . . , d let σj(x, ξ) denote the symbol (in the classical sense) of the vector field
1
iXj and set σ = (σ0, . . . , σd). Then for p ∈ Sm(U × R

d+1) we let p(x,−iX) be the continuous
linear operator from C∞

c (U) to C∞(U) such that

(2.9) p(x,−iX)f(x) = (2π)−(d+1)

∫

eix.ξp(x, σ(x, ξ))f̂(ξ)dξ, f ∈ C∞
c (U).

Definition 2.3. Ψm
H(U), m ∈ C, consists of operators P : C∞

c (U) → C∞(U) which are of

the form P = p(x,−iX) + R for some p in Sm(U × R
d+1), called the symbol of P , and some

smoothing operator R.

For any a ∈ U there is exists a unique affine change of variable ψa : R
d+1 → R

d+1 such that
ψa(a) = 0 and (ψa)∗Xj = ∂

∂xj
at x = 0 for j = 0, 1, . . . , d + 1. Then, a continuous operator

P : C∞
c (U) → C∞(U) is a ΨHDO of order m if, and only if, its kernel kP (x, y) has a behavior

near the diagonal of the form,

(2.10) kP (x, y) ∼
∑

j≥−(m+d+2)

(aj(x, ψx(y)) −
∑

〈α〉=j

cα(x)ψx(x)α log ‖ψx(y)‖),

with cα ∈ C∞(U) and aj(x, y) ∈ C∞(U × (Rd+1 \0)) such that aj(x, λ.y) = λjaj(x, y) for
any λ > 0. Moreover, aj(x, y) and cα(x), 〈α〉 = j, depend only on the symbol of P of degree
−(j + d+ 2).

The class of ΨHDO’s is invariant under changes of Heisenberg chart (see [BG, Sect. 16], [Po3,
Appendix A]), so we may extend the definition of ΨHDO’s to an arbitrary Heisenberg manifold
(M,H) and let them act on sections of a vector bundle E over M . We let Ψm

H(M, E) denote the
class of ΨHDO’s of order m on M acting on sections of E .

Let g∗M denote the (linear) dual of the Lie algebra bundle gM of GM with canonical
projection pr : M → g∗M . As shown in [Po3] (see also [EM]) the principal symbol of an
operator P ∈ Ψm

H(M, E) can be intrinsically defined as a symbol σm(P ) of the class below.

Definition 2.4. Sm(g∗M), m ∈ C, consists of sections p ∈ C∞(g∗M \ 0,Endpr∗E) which are
homogeneous of degree m with respect to the dilations in (2.5), i.e., we have p(x, λ.ξ) = λmp(x, ξ)
for any λ > 0.
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Next, for any a ∈M the convolution on GaM gives rise under the (linear) Fourier transform
to a bilinear product for homogeneous symbols,

(2.11) ∗a : Sm1
(g∗aM, Ea) × Sm2

(g∗aM, Ea) −→ Sm1+m2
(g∗aM, Ea),

This product depends smoothly on a as much so to yield a product,

∗ : Sm1
(g∗M, E) × Sm2

(g∗M, E) −→ Sm1+m2
(g∗M, E),(2.12)

pm1
∗ pm2

(a, ξ) = [pm1
(a, .) ∗a pm2

(a, .)](ξ).(2.13)

This provides us with the right composition for principal symbols, since we have

(2.14) σm1+m2
(P1P2) = σm1

(P1) ∗ σm2
(P2) ∀Pj ∈ Ψ

mj

H (M, E).

for P1 ∈ Ψm1

H (M, E) and P2 ∈ Ψm2

H (M, E) such that one of them is properly supported.
Notice that when GaM is not commutative, i.e., La 6= 0, the product ∗a is not anymore

the pointwise product of symbols and, in particular, is not commutative. Consequently, unless
when H is integrable, the product for Heisenberg symbols is not commutative and, while local,
it is not microlocal.

When the principal symbol of P ∈ Ψm
H(M, E) is invertible with respect to the product ∗, the

symbolic calculus of [BG] allows us to construct a parametrix for P in Ψ−m
H (M, E). In particular,

although not elliptic, P is hypoelliptic with a controlled loss/gain of derivatives (see [BG]).
In general, it may be difficult to determine whether the principal symbol of a given operator P

in Ψm
H(M, E) is invertible with respect to the product ∗, but this can be completely determined in

terms of a representation theoretic criterion on each tangent group GaM , the so-called Rockland
condition (see [Po3, Thm. 3.3.19]). In particular, if σm(P )(a, .) is pointwise invertible with
respect to the product ∗a for any a ∈M then σm(P ) is globally invertible with respect to ∗.

3. Noncommutative residue

Let (Md+1, H) be a Heisenberg manifold equipped with a smooth positive density and let E
be a Hermitian vector bundle over M . We let ΨZ

H(M, E) denote the space of ΨHDO of integer
order acting on sections of E .

3.1. Logarithmic singularity. Let P : C∞(M, E) → C∞(M, E) be a ΨHDO of integer order
m. Then it follows from (2.10) that in a trivializing Heisenberg chart the kernel kP (x, y) of P
has a behavior near the diagonal of the form,

(3.1) kP (x, y) =
∑

−(m+d+2)≤j≤1

aj(x,−ψx(y)) − cP (x) log ‖ψx(y)‖ + O(1),

where aj(x, y) is homogeneous of degree j in y with respect to the dilations (2.7). Furthermore,
we have

(3.2) cP (x) = |ψ′
x|

∫

‖ξ‖=1
p−(d+2)(x, ξ)dξ,

where p−(d+2)(x, ξ) is the homogeneous symbol of degree −(d+ 2) of P .
Let |Λ|(M) be the bundle of densities on M . Then we have:

Proposition 3.1 ([Po1], [Po5]). The coefficient cP (x) makes sense intrinsically on M as a
section of |Λ|(M) ⊗ End E.

3.2. Noncommutative residue. From now on we assume M compact. Therefore, for any
P ∈ ΨZ

H(M, E) we can let

(3.3) ResP =

∫

M
trE cP (x).

If P is in Ψm
H(M, E) with ℜm < −(d+2) then P is trace-class. It can be shown that we have

an analytic continuation of the trace to ΨHDO’s of non-integer orders which is analogous to
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that for classical ΨDO’s in [KV]. Moreover, on ΨHDO’s of integer orders this analytic extension
of the trace induces a residual functional agreeing with (3.3), so that we have:

Proposition 3.2. Let P ∈ ΨZ
H(M, E). Then for any family (P (z))z∈C ⊂ Ψ∗

H(M, E) which is
holomorphic in the sense of [Po3] and such that P (0) = P and ordP (z) = z + ordP we have

(3.4) ResP = − resz=0 TraceP (z).

Thus the functional (3.3) is the analogue for the Heisenberg calculus of the noncommutative
residue of Wodzicki ([Wo1], [Wo2]) and Guillemin [Gu1]. Furthermore, we have:

Proposition 3.3 ([Po1], [Po5]). 1) Let φ be a Heisenberg diffeomorphism from (M,H) onto a
Heisenberg manifold (M ′, H ′). Then for any P ∈ ΨZ

H(M, E) we have Resφ∗P = ResP .

2) Res is a trace on the algebra ΨZ
H(M, E) which vanishes on differential operators and on

ΨHDO’s of integer order ≤ −(d+ 3).

3) If M is connected then Res is the unique trace up to constant multiple.

Let D ⊂ C
n+1 be a strictly pseudoconvex domain with boundary ∂D and let θ be a pseu-

dohermitian contact form on ∂D. We endow ∂D with the associated Levi metric and we let
Sθ : L2(∂D) → L2(∂D) be the corresponding Szegö projection. Then Sθ is a ΨHDO of order 0
and with the notation of (1.1) we have cSθ

(z) = −1
2ψθ(z, z)dθ

n ∧ θ. Thus,

(3.5) ResSθ = −
1

2
L(Sθ).

This shows that Hirachi’s invariant can be interpreted as a noncommutative residue.

4. CR invariants from the ∂b-complex

Let M2n+1 be a compact orientable CR manifold with CR tangent bundle T1,0 ⊂ TCM , so
that H = ℜ(T1,0⊕T0,1) ⊂ TM is a hyperplane bundle of TM admitting an (integrable) complex
structure. Let θ be a global non-zero real 1-form annihilating H and let Lθ be the associated
Levi form,

(4.1) Lθ(Z,W ) = −idθ(Z,W ) = iθ([Z,W ]), Z,W ∈ C∞(M,T1,0).

Let N be a supplement of H in TM . This is an orientable line bundle which gives rise to the
splitting,

(4.2) TCM = T1,0 ⊕ T0,1 ⊕ (N ⊗ C).

Let Λ1,0 and Λ0,1 denote the annihilators in T ∗
C
M of T0,1⊕(N⊗C) and T1,0⊕(N⊗C) respectively

and for p, q = 0, . . . , n let Λp,q = (Λ1,0)p ∧ (Λ0,1)q be the bundle of (p, q)-forms. Then we have
the splitting,

(4.3) Λ∗T ∗
CM = (

n
⊕

p,q=0

Λp,q) ⊕ θ ∧ Λ∗T ∗
CM.

Notice that this decomposition does not depend on the choice of θ, but it does depend on that
of N .

The complex ∂b : C∞(M,Λp,∗) → C∞(M,Λp,∗+1) of Kohn-Rossi ([KR], [Ko]) is defined as
follows. For any η ∈ C∞(M,Λp,q) we can uniquely decompose dη as

(4.4) dη = ∂b;p,qη + ∂b;p,qη + θ ∧ LX0
η,

where ∂b;p,qη and ∂b;p,qη are sections of Λp,q+1 and Λp+1,q respectively and X0 is the section of

N such that θ(X0) = 1. Thanks to the integrability of T1,0 we have ∂b;p,q+1 ◦ ∂b;p,q = 0, so that
we get a chain complex. Notice that this complex depends on the CR structure of M and on
the choice of N .
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Assume now that M is endowed with a Hermitian metric h on TCM which commutes with
complex conjugation and makes the splitting (4.2) become orthogonal. The associated Kohn
Laplacian is

(4.5) �b;p,q = ∂
∗
b;p,q+1∂b;p,q + ∂b;p,q−1∂

∗
b;p,q.

For x ∈ M let κ+(x) (resp. κ−(x)) be the number of positive (resp. negative) eigenvalues of
Lθ at x. We then say that the condition Y (q) holds when at every point x ∈M we have

(4.6) q 6∈ {κ−(x), . . . , n− κ+(x)} ∪ {κ+(x), . . . , n− κ−(x)}.

For instance, when M is κ-strictly pseudoconvex we have κ−(x) = n − κ+(x) = κ, so the
condition Y (q) exactly means that we must have q 6= κ and q 6= n− κ.

Proposition 4.1 (see [BG, Sect. 21], [Po3, Sect. 3.5]). The Kohn Laplacian �b;p,q admits a

parametrix in Ψ−2
H (M,Λp,q) iff the condition Y (q) is satisfied.

Let Sb;p,q be the Szegö projection on (p, q)-forms, i.e., the orthogonal projection onto ker�b;p,q.

We also consider the orthogonal projections Π0(∂b;p,q) and Π0(∂
∗
b;p,q) onto ker ∂b;p,q and ker ∂

∗
b;p,q =

(im ∂b;p,q−1)
⊥. In fact, as ker ∂b;p,q = ker�b;p,q ⊕ im ∂b;p,q−1 we have Π0(∂b;p,q) = Sb;p,q + 1 −

Π0(∂
∗
b;p,q), that is,

(4.7) Sb;p,q = Π0(∂b;p,q) + Π0(∂
∗
b;p,q) − 1.

Let Nb;p,q be the partial inverse of �b;p,q, so that Nb;p,q�b;p,q = �b;p,qNb;p,q = 1−Sb;p,q. Then
it can be shown (see, e.g., [BG, pp. 170–172]) that we have

(4.8) Π0(∂b;p,q) = 1 − ∂
∗
b;p,qNb;p,q+1∂b;p,q, Π0(∂

∗
b;p,q) = 1 − ∂b;p,q−1Nb;p,q−1∂

∗
b;p,q−1.

By Proposition 4.1 when the condition Y (q) holds at every point the operator �b;p,q admits

a parametrix in Ψ−2
H (M,Λp,q) and then Sb;p,q is a smoothing operator and Nb;p,q is a ΨHDO of

order −2. Therefore, using (4.8) we see that if the condition Y (q + 1) (resp. Y (q − 1)) holds

everywhere then Π0(∂b;p,q) (resp. Π0(∂
∗
b;p,q)) is a ΨHDO.

Furthermore, in view of (4.7) we also see that if at every point the condition Y (q) fails, but
the conditions Y (q − 1) and Y (q + 1) hold, then the Szegö projection Sb;p,q is a zero’th order
ΨHDO projection. Notice that this may happen if, and only if, M is κ-strictly pseudoconvex
with κ = q or κ = n− q.

Bearing all this in mind we have:

Theorem 4.2 ([Po4]). 1) The following noncommutative residues are CR diffeomorphism in-
variants of M :

(i) Res Π0(∂b;p,q) when the condition Y (q + 1) holds everywhere;

(ii) Res Π0(∂
∗
b;p,q) when the condition Y (q − 1) holds everywhere;

(iii) ResSb;p,κ and ResSb;p,n−κ when M is κ-strictly pseudoconvex.

In particular, they depend neither on the choice of the line bundle N , nor on that of the Her-
mitian metric h.

2) The noncommutative residues (i)–(iii) are invariant under deformations of the CR struc-
ture coming from deformations of the complex structure of H.

Specializing Theorem 4.2 to the strictly pseudoconvex case we get:

Theorem 4.3 ([Po4]). Suppose that M is a compact strictly pseudoconvex CR manifold. Then:

1) ResSb;p,j, j = 0, n, and Res Π0(∂b;p,q), q = 1, . . . , n−1, are CR diffeomorphism invariants
of M . In particular, when M is the boundary of a strictly pseudoconvex domain D ⊂ C

n they
give rise to bilholomorphism invariants of D.

2) The above residues are invariant under deformations of the CR structure.
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5. Invariants of generalized Szegö projections

Let (M2n+1, H) be an orientable contact manifold. Given a contact form θ on M annihilating
H we let X0 be the Reeb vector field of θ, i.e., the unique vector field X0 such that ιX0

θ = 1 and
ιX0

dθ = 0. In addition, we let J be an almost complex structure on H which is calibrated in the
sense that dθ(X, JX) > 0 for any nonzero section X of H. Extending J to TM by requiring to
have JX0 = 0, we can equip TM with the Riemannian metric gθ,J = dθ(., J.) + θ2.

In this context Szegö projections have been defined by Boutet de Monvel and Guillemin
in [BGu] as an FIO with complex phase. This construction has been further generalized by
Epstein-Melrose [EM] as follows.

Let H
2n+1 be the Heisenberg group of dimension 2n + 1 consisting of R

2n+1 together with
the group law (2.1). Let θ0 = dx0 + 1

2

∑n
j=1(xjdxn+j − xn+jdxj) be the standard left-invariant

contact form of H
2n+1; its Reeb vector field is X0

0 = ∂
∂x0

.

For j = 1, . . . , n let X0
j = ∂

∂xj
+ 1

2xn+j
∂

∂x0
and X0

n+j = ∂
∂xn+j

− 1
2xj

∂
∂x0

then X0
1 , . . . , X

0
2n

form a left-invariant frame of H0 = ker θ0 and sastify the relations (2.3). The standard CR
structure of H

2n+1 is then given by the complex structure J0 on H0 such that J0X0
j = X0

n+j

and J0Xn+j = −Xj . Moreover, it follows from (2.3) that J0 is calibrated with respect to θ0 and
that X0

0 , X
0
1 , . . . , X

0
2n form an orthonormal frame of TH

2n+1 with respect to the metric gθ0,J0 .

The scalar Kohn Laplacian on H
2n+1 is equal to

(5.1) �
0
b,0 = −

1

2
((X0

1 )2 + . . .+ (X0
2n)2) + i

n

2
X0

0 .

For λ ∈ C the operator −1
2((X0

1 )2 + . . . + (X0
2n)2) + iλX0

0 is invertible if, and only if, we have

λ 6∈ ±(n
2 + N) (see [FS], [BG]). For k = 0, 1, . . . the orthogonal projection Π0(�b + ikX0

0 ) onto

the kernel of �b + ikX0
0 is a left-invariant homogeneous ΨHDO of order 0 (see [BG, Thm. 6.61]).

We then let s0k ∈ S0((h
2n+1)∗) denote its symbol, so that we have Π0(�b + ikX0

0 ) = s0k(−iX
0).

Next, since (M,H) is a contact manifold by Proposition 2.1 the tangent Lie group bundle
GM is a fiber bundle with typical fiber H

2n+1. A local trivialization near a given point a ∈M
is obtained as follows.

Let X1, . . . , X2n be a local orthonormal frame of H on an open neighborhood U of a and
which is admissible in the sense that Xn+j = JXj for j = 1, . . . , n. In addition, let X0(a) denote

the class of X0(a) in TaM/Ha. Then as shown in [Po2] the map φX,a : (TaM/Ha)⊕Ha → R
2n+1

such that

(5.2) φX,a(x0X0(a) + x1X1(a) + . . .+ x2nX2n(a)) = (x0, . . . , x2n), xj ∈ R,

gives rise to a Lie group isomorphism from GaM onto H
2n+1. In fact, as φX,a depends smoothly

on a we get a fiber bundle trivialization of GM |U ≃ U × H
2n+1.

For j = 0, . . . , 2n let Xa
j be the model vector field of Xj at a as defined in [Po2]. This is the

unique left-invariant vector field on GaM which, in the coordinates provided by φX,a, agrees

with ∂
∂xj

at x = 0. Therefore, we have Xa
j = φ∗X,aX

0
j and so we get φ∗X,a�

0
b = −1

2((Xa
1 )2 + . . .+

(Xa
2n)2) + in2X

a
0 .

If X̃1, . . . , X̃2n is another admissible orthonormal frame of H near a, then we pass from
(X̃a

1 , . . . , X̃
a
2n) to (Xa

1 , . . . , X
a
2n) by an orthogonal linear transformation, which leaves the ex-

pression (Xa
1 )2 + . . . + (Xa

2n)2 unchanged. Therefore, the differential operator �
a
b := φ∗X,a�

0
b

makes sense independently of the choice of the admissible frame X1, . . . , X2n near a.
On the other hand, as φX,a induces a unitary transformation from L2(GaM) onto L2(H2n+1)

we have Π0(�
a
b + ikXa

0 ) = Π0(φ
∗
X,a(�

0
b + ikX0

0 )) = φ∗X,aΠ0(�
0
b + ikX0

0 )). Hence Π0(�
a
b + ikXa

0 )

is a zero’th order left-invariant homogeneous ΨHDO on GaM with symbol sa
k(ξ) = φ∗X,as

0
k(ξ) =

s0k((φ
−1
X,a)

tξ). In fact, since φX,a depends smoothly on a we obtain:
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Proposition 5.1. For k = 0, 1, . . . there is a uniquely defined symbol sk ∈ S0(g
∗M) such

that, for any admissible orthonormal frame X1, . . . , Xd of H near a point a ∈ M , we have
sk(a, ξ) = φ∗X,as

0
k(ξ) for any (a, ξ) ∈ g∗M \ 0.

We call sk the Szegö symbol at level k. This definition a priori depends on the contact form
θ and the almost complex structure J , but we have:

Lemma 5.2 ([EM], [Po4]). (i) The symbol sk is invariant under conformal changes of contact
form.

(ii) The change (θ, J) → (−θ,−J) transforms sk into sk(x,−ξ).

(iii) The symbol sk depends on J only up to homotopy of idempotents in S0(g
∗M).

From now on we let E be a Hermitian vector bundle over M .

Definition 5.3 ([EM, Chap. 6]). For k = 0, 1, . . . a generalized Szegö projection at level k is a
ΨHDO projection Sk ∈ Ψ0

H(M, E) with principal symbol sk ⊗ idE .

Generalized Szegö projections at level k always exist (see [EM], [Po4]). Moreover, when k = 0
and E is the trivial line bundle the above definition allows us to recover the Szegö projections
of [BGu] (see [Po4]). In particular, when M is strictly pseudoconvex the Szegö projection Sb,0

is a generalized Szegö projection at level 0.
Given a generalized Szegö projection at level k we define

(5.3) Lk(E) = ResSk.

In fact, we have:

Proposition 5.4 ([Po4]). The value of Lk(E) does not depend on the choice of Sk.

Next, recall that the K-group K0(M) can be described as the group of formal differences
of stable homotopy classes of (smooth) vector bundles over M , where a stable homotopy be-
tween vector bundles E1 and E2 is given by an auxiliary vector bundle F and a vector bundle
isomorphism φ : E1 ⊕F ≃ E2 ⊕F . Then we obtain:

Theorem 5.5 ([Po4]). 1) Lk(E) depends only on the Heisenberg diffeomorphism class of M
and on the K-theory class of E. In particular, it depends neither on the contact form θ, nor on
the almost complex structure J .

2) Lk(E) invariant is under deformations of the contact structure.

6. Invariants from the contact complex

Let (M2n+1, H) be an orientable contact manifold. Let θ be a contact form on M and let X0

be its Reeb vector field of θ. We also let J be a calibrated almost complex structure on H and
we endow TM with the Riemannian metric gθ,J = dθ(., J.) + θ2.

Observe that the splitting TM = H ⊕ RX0 allows us to identify H∗ with the annihilator of
X0 in T ∗M . More generally, identifying Λk

C
H∗ with ker ιX0

, where ιX0
denotes the contraction

operator by X0, gives the splitting

(6.1) Λ∗
CTM = (

2n
⊕

k=0

Λk
CH

∗) ⊕ (
2n
⊕

k=0

θ ∧ Λk
CH

∗).

For any horizontal form η ∈ C∞(M,Λk
C
H∗) we can write dη = dbη + θ ∧ LX0

η, where dbη

is the component of dη in Λk
C
H∗. This does not provide us with a complex, for we have

d2
b = −LX0

ε(dθ) = −ε(dθ)LX0
, where ε(dθ) denotes the exterior multiplication by dθ.

The contact complex of Rumin [Ru] is an attempt to get a complex of horizontal differential
forms by forcing the equalities d2

b = 0 and (d∗b)
2 = 0.

A natural way to modify db to get the equality d2
b = 0 is to restrict db to the subbundle

Λ∗
2 := ker ε(dθ) ∩ Λ∗

C
H∗, since the latter is closed under db and is annihilated by d2

b .
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Similarly, we get the equality (d∗b)
2 = 0 by restricting d∗b to the subbundle Λ∗

1 := ker ι(dθ) ∩
Λ∗

C
H∗ = (im ε(dθ))⊥ ∩ Λ∗

C
H∗, where ι(dθ) denotes the interior product with dθ. This amounts

to replace db by π1 ◦ db, where π1 is the orthogonal projection onto Λ∗
1.

In fact, since dθ is nondegenerate on H the operator ε(dθ) : Λk
C
H∗ → Λk+2

C
H∗ is injective for

k ≤ n − 1 and surjective for k ≥ n + 1. This implies that Λk
2 = 0 for k ≤ n and Λk

1 = 0 for
k ≥ n+ 1. Therefore, we only have two halves of complexes.

As observed by Rumin [Ru] we get a full complex by connecting the two halves by means of
the operator DR,n : C∞(M,Λn

C
H∗) → C∞(M,Λn

C
H∗) such that

(6.2) DR,n = LX0
+ db,n−1ε(dθ)

−1db,n,

where ε(dθ)−1 is the inverse of ε(dθ) : Λn−1
C

H∗ → Λn+1
C

H∗. Notice that DR,n is a second order
differential operator. This allows us to get the contact complex,

(6.3) C∞(M)
dR,0
→ . . . C∞(M,Λn)

DR,n
→ C∞(M,Λn) . . .

dR,2n−1
→ C∞(M,Λ2n).

where dR,k agrees with π1 ◦ db for k = 0, . . . , n− 1 and with dR,k = db otherwise.
The contact Laplacian is defined as follows. In degree k 6= n this is the differential operator

∆R,k : C∞(M,Λk) → C∞(M,Λk) such that

(6.4) ∆R,k =

{

(n− k)dR,k−1d
∗
R,k + (n− k + 1)d∗R,k+1dR,k, k = 0, . . . , n− 1,

(k − n− 1)dR,k−1d
∗
R,k + (k − n)d∗R,k+1dR,k, k = n+ 1, . . . , 2n.

For k = n we have the differential operators ∆R,nj : C∞(M,Λn
j ) → C∞(M,Λn

j ), j = 1, 2, given
by the formulas,

(6.5) ∆R,n1 = (dR,n−1d
∗
R,n)2 +D∗

R,nDR,n, ∆R,n2 = DR,nD
∗
R,n + (d∗R,n+1dR,n).

Observe that ∆R,k, k 6= n, is a differential operator order 2, whereas ∆Rn1 and ∆Rn2 are
differential operators of order 4. Moreover, Rumin [Ru] proved that in every degree the contact
Laplacian is maximal hypoelliptic. In fact, in every degree the contact Laplacian has an invert-
ible principal symbol, hence admits a parametrix in the Heisenberg calculus (see [JK], [Po3,
Sect. 3.5]).

Let Π0(dR,k) and Π0(DR,n) be the orthogonal projections onto ker dR,k and kerDR,n, and let

∆−1
R,k and ∆−1

R,nj be the partial inverses of ∆R,k and ∆R,nj . Then as in (4.8) we have

Π0(dR,k) =











1 − (n− k − 1)−1d∗R,k+1∆
−1
R,k+1dR,k, k = 0, . . . , n− 2,

1 − d∗R,ndR,n−1d
∗
R,n∆−1

R,n1dR,n−1, k = n− 1,

1 − (k − n)−1d∗R,k+1∆
−1
R,k+1dR,k, k = n, . . . , 2n− 1,

(6.6)

Π0(DR,n) = 1 −DR,∗∆
−1
R,n2DR,n.(6.7)

As in each degree the principal symbol of the contact Laplacian is invertible, the operators
∆−1

R,k, k 6= n, and ∆−1
R,nj , j = 1, 2 are ΨHDO’s of order −2 and order −4 respectively. Therefore,

the above formulas for Π0(dR,k) and Π0(DR,n) show that these projections are zero’th order
ΨHDO’s.

Theorem 6.1 ([Po4]). 1) Res Π0(dR,k), k = 1, . . . , 2n − 1, and Res Π0(DR,n) are Heisenberg
diffeomorphism invariants of M , hence their values depend neither on the contact form θ, nor
on the almost complex structure J .

2) These noncommutative residues are invariant under deformations of the contact structure.

7. Vanishing of Hirachi’s invariant

In this section we give simple algebro-geometric arguments showing that Hirachi’s invariant
L(S) = −1

2 ResSb;0,0 always vanishes on strictly pseudoconvex CR manifolds of dimension
4m+ 1. First, we have:
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Lemma 7.1. (i) We have Res Π0(∂b;p,q) = −Res Π0(∂
∗
b;p,q+2) when the condition Y (q+1) holds

everywhere.

(ii) We have Res Π0(∂b;p,q) = Res Π0(∂b;p,q+2) when the condition Y (q+1) and Y (q+2) both
hold everywhere.

(iii) If M is strictly pseudoconvex and n even we have ResSb;p,0 = −ResSb;p,n.

Proof. Suppose that the condition Y (q) holds everywhere. Then from (4.8) and the fact that
Res is a trace vanishing on 1 we get

Res Π0(∂b;p,q) = −Res(∂
∗
b;p,q+1Nb;p,q+1∂b;p,q) = −Res(∂b;p,q∂

∗
b;p,q+1Nb;p,q+1),(7.1)

Res Π0(∂
∗
b;p,q+2) = −Res(∂b;p,q+1Nb;p,q+1∂

∗
b;p,q+2) = −Res(∂

∗
b;p,q+2∂b;p,q+1Nb;p,q+1).(7.2)

Therefore, we see that Res Π0(∂b;p,q) + Res Π0(∂
∗
b;p,q+2) is equal to

(7.3) − Res[(∂b;p,q∂
∗
b;p,q+1 + ∂

∗
b;p,q+2∂b;p,q+1)Nb;p,q+1] = −Res(�b;p,q+1Nb;p,q+1)

= −Res(1 − Sb;p,q+1).

Since the condition Y (q+1) holds everywhere the operator Sb;p,q+1 is smoothing and so we have

Res(1 − Sb;p,q+1) = 0. It then follows that Res Π0(∂b;p,q) = −Res Π0(∂
∗
b;p,q+2).

Assume now that both conditions Y (q + 1) and Y (q + 2) hold everywhere. Then Sb;p,q+2 is
smoothing and so from (4.7) we get

(7.4) Res Π0(∂b;p,q+2) + Res Π0(∂
∗
b;p,q+2) = Res(1 + Sb;p,q+2) = 0.

Hence Res Π0(∂b;p,q+2) = −Res Π0(∂
∗
b;p,q+2) = Res Π0(∂b;p,q) as desired.

Finally, suppose that M is strictly pseudoconvex and that n is even. Then the condition
Y (q) holds for q = 1, . . . , n. In particular, the conditions Y (q+1) and Y (q+2) hold everywhere
simultanously for q = 0, 2, . . . , n − 4. Therefore, by the part (ii) we have Res Π0(∂b;p,0) =

Res Π0(∂b;p,2) = . . . = Res Π0(∂b;p,n−2). Moreover, as the condition Y (n− 1) holds, by the part

(i) we have Res Π0(∂b;p,n−2) = −Res Π0(∂
∗
b;p,n). Since Sb;p,0 = Π0(∂b;p,0) and Sb;p,n = Π0(∂

∗
b;p,n)

it follows that ResSb;p,0 = −ResSb;p,n. �

Next, assume M strictly pseudoconvex and let θ be a contact form anihilating T1,0 ⊕ T0,1.
Let X0 be the Reeb vector field of θ so that ιX0

θ = 1 ad ιX0
dθ = 0. We endow TCM with the

Levi metric associated to θ, i.e., the Hermitian metric hθ such that:

- The splitting TCM = T1,0 ⊕ T0,1 ⊕ CX0 is orthogonal with respect to hθ;

- hθ commutes with complex conjugation;

- hθ agrees with Lθ on T1,0 and we have hθ(X0, X0) = 1.

By duality this defines a Hermitian metric on Λ∗T ∗
C
M , still denoted hθ, and there is a uniquely

defined Hodge operator ∗ : Λp,q → Λn−q,n−p such that

(7.5) α ∧ ∗β = hθ(α, β)dθn ∀α, β ∈ C∞(M,Λp,q).

The operator ∗ is unitary and satisfies ∗2 = (−1)p+q on Λp,q. Moreover, we have

(7.6) ∂
∗
b;p,q = − ∗ ∂b;n−q,n−p∗, ∂∗b;p,q = − ∗ ∂b;n−q,n−p ∗ .

Lemma 7.2. Assume that M is strictly pseudoconvex. Then we have ResSb;0,0 = ResSb;0,n.

Proof. First, let Π0(∂b;0,0) be the orthogonal projection onto the kernel of ∂b;0,0. Notice that

the operators ∂b and ∂b in (4.4) are complex conjugates of each other, i.e., we have

(7.7) ∂b;p,qα = ∂b;p,qα ∀α, β ∈ C∞(M,Λp,q).

Therefore Π0(∂b;0,0) is the complex conjugate of Π0(∂b;0,0) = Sb;0,0. As Sb;0,0 = (S∗
b;0,0)

t = St
b;0,0

and by the results of [Po5] we have cSt
b;0,0

(x) = cSb;0,0
(x), we see that the densities cΠ0(∂b;0,0)(x)

and cSb;0,0
(x) agree.
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On the other hand, let Π0(∂
∗
b;n,n) denote the orthogonal projection onto ker ∂

∗
b;n,n. Since

by (7.6) we have ∂
∗
b;n,n = − ∗ ∂b;0,0∗ we see that Π0(∂

∗
b;n,n) = ∗Π0(∂b;0,0)∗. As ∗2 = 1 on

Λn,n we get trΛn,n cΠ0(∂
∗

b;n,n)(x) = trΛn,n [∗cΠ0(∂b;0,0)(x)∗] = cΠ0(∂b;0,0)(x). Therefore, we have

trΛn,n cΠ0(∂
∗

b;n,n)(x) = cSb;0,0
(x), so that Res Π0(∂

∗
b;n,n) = ResSb;0,0.

Next, let Z1, . . . , Zn be a local orthonormal frame of T1,0. Then {X0, Zj , Zj̄} is an orthonormal

frame of TCM . Let {θ, θj , θj̄} be the dual coframe on T ∗
C
M . Let ζ = θ1 ∧ . . . ∧ θn and let

τ(η) = ζ ∧ η. Then τ is a a (locally defined) vector bundle isomorphism from Λ0,n onto Λn,n

and we have

∂b(ζ ∧ η) = (∂bζ) ∧ η + (−1)nζ ∧ ∂bη,(7.8)

∂bζ =
∑

1≤j≤n

(−1)j−1θ1 ∧ . . . ∧ θj−1 ∧ (∂bθ
j) ∧ θj+1 ∧ . . . . ∧ θn.(7.9)

Let ω ∈ C∞(M,T ∗M⊗End(T ∗
C
M)) be the connection 1-form of the Tanaka-Webster connec-

tion (see [Ta], [We]). Thus, if we let ωj
k = hθ(ω(Zj), Zk) then dθj = θk ∧ωj

k mod θ ∧ T ∗M . Let

ω0,1 and ωj,0,1
k be the respective (0, 1)-components of ω and ωj

k. Then we have ∂bθ
j = θk∧ωj,0,1

k .
Combining this with (7.9) then gives

(7.10) ∂bζ =
∑

1≤j≤n

(−1)j−1θ1 ∧ . . . ∧ θj−1 ∧ θj ∧ ωj,0,1
j ∧ θj+1 ∧ . . . ∧ θn = −Trω0,1 ∧ ζ.

Hence ∂b(ζ ∧ η) = (−1)nζ ∧ ∂bη − Trω0,1 ∧ ζ ∧ η. Thus,

(7.11) τ−1∂b;n,qτ = Db;0,q, Db;0,qη = (−1)n∂b;0,qη − Trω0,1 ∧ η.

As τ is a unitary isomorphism we also have τ−1∂
∗
b;n,qτ = D∗

b;0,q. Using (4.8) we then deduce

that τ−1Π0(∂
∗
b;n,n)τ agrees with the orthogonal projection Π0(Db;0,n) onto kerDb;0,n. Therefore,

the density trΛ0,n cΠ0(Db;0,n)(x) is equal to

(7.12) trΛ0,n [τ(x)cΠ0(∂
∗

b;n,n)τ(x)
−1] = trΛn,n cΠ0(∂

∗

b;n,n)(x).

Hence Res Π0(Db;0,n) = Res Π0(∂
∗
b;n,n).

On the other hand, it also follows from (4.8) that Π0(Db;0,n) and Π0(∂
∗
b;0,n) have same princi-

pal symbol, so by [Po4, Prop. 3.7] their noncommutative residues agree. Hence Res Π0(∂
∗
b;n,n) =

Res Π0(∂
∗
b;0,n). As Sb;0,n = Π0(∂

∗
b;0,n) and we have shown above that Res Π0(∂

∗
b;n,n) = ResSb;0,0,

we see that ResSb;0,n = ResSb;0,0. The lemma is thus proved. �

We are now ready to prove:

Proposition 7.3. The Hirachi invariant vanishes on strictly pseudoconvex CR manifolds of
dimension 4m+ 1.

Proof. Let M be strictly pseudoconvex CR manifolds of dimension 4m + 1. By Lemma 7.1
we have ResSb;0,0 = −ResSb;2m,2m and by Lemma 7.2 we have ResSb;0,0 = ResSb;2m,2m, so
ResSb;0,0 = 0. Hence the result. �

References

[BG] Beals, R.; Greiner, P.C.: Calculus on Heisenberg manifolds. Annals of Mathematics Studies, vol. 119.
Princeton University Press, Princeton, NJ, 1988.
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