SZEGO PROJECTIONS AND NEW INVARIANTS FOR CR AND
CONTACT MANIFOLDS

RAPHAEL PONGE

ABSTRACT. In this paper we present the construction in [Po4] of several new invariants for CR
and contact manifolds by looking at the noncommutative residue traces of various geometric
U5 DO projections. In the CR setting these operators arise from the dy-complex and include the
Szegd projections acting on (p, g)-forms. In the contact setting they stem from the generalized
Szegb projections at arbitrary integer levels of Epstein-Melrose and from the contact complex
of Rumin. In particular, we recover and extend recent results of Hirachi and Boutet de Monvel
and answer a question of Fefferman. Furthermore, we give simple algebro-geometric arguments
proving the vanishing of Hirachi’s invariant on strictly pseudoconvex CR manifolds of dimension
4m + 1.

1. INTRODUCTION

Let D ¢ C™*! be a strictly pseudoconvex domain with boundary dD. Let 6 be a pseudoher-
mitian contact form on 9D, i.e., if near a point of 9D we let p(z,Z) be a local defining function
for D with 9p > 0 then 6 agrees up to a conformal factor with i(d — 9)p.

We endow 0D with the Levi metric defined by the Levi form associated to # and we let
Sy : L*(0D) — L?(0D) be the Szegd projection associated to this metric and let kg, (2, w)d0™ A0
be the Schwartz kernel of Sp. As shown by Fefferman [Fel] and Boutet de Monvel-Sjostrand [BS]
near the diagonal w = z we can write

(11) kSe (2’@) = ¢9(zvﬁ)p(zvﬁ)_(n+l) + 1/)9(27@) log p(Z,E),
where py(z,w) and ¥y(z,w) are smooth functions. Then Hirachi defined
(1.2) L(Sp) := / Yo(2z,2)d0" N 6.

M

Theorem 1.1 (Hirachi [Hi]). 1) L(Sp) is a CR invariant, i.e., it does not depend on the choice
of 0. In particular, this is a biholomorphic invariant of D.

2) L(Sy) is invariant under smooth deformations of the domain D.

Subsequently, Boutet de Monvel [Bo2] generalized Hirachi’s result to the contact setting in
terms of the generalized Szegd projections for contact manifolds introduced in [BGu]. Such
operators are FIO’s with complex phase and their kernels admit near the diagonal a singularity
similar to (1.1). In this setting the integral of the leading logarithmic singularity defines a
contact invariant.

It has been asked by Fefferman whether there would exist other invariants like L(Sy), i.e.,
invariants arising from the integrals of the log singularities of geometric operators. The aim of
this paper is to explain that there are many such invariants. These invariants can be classified
into three families:

(i) CR invariants coming for the dy-complex of Kohn-Rossi ([KR], [Ko]);
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(ii) Contact invariants arising from the generalized Szegd projections at arbitrary integer level
of Epstein-Melrose [EM];

(iii) Contact invariants coming from the contact complex of Rumin [Ru].
The construction of these invariants is based on two main tools:
- The Heisenberg calculus of Beals-Greiner [BG| and Taylor [Tay];
- The noncommutative residue trace for the Heisenberg calculus constructed in [Pol] and [Po5].

To date there is no known example of CR or contact manifold for which one of those in-
variants is not zero. The only known results are vanishing results: Hirachi [Hi] and Boutet de
Monvel [Bo2] proved that their invariant vanish in dimension 3, and Boutet de Monvel [Bo3]
has announced a proof of the vanishing of the invariant in any dimension, but the details of
the proof have not appeared yet. In this paper, we mention give simple algebro-geometric
arguments proving the vanishing of this invariant on strictly pseudoconvex CR manifolds of
dimension 4m + 1 (see Section 7).

The talk is organized as follows. In Section 2 we recall few facts about Heisenberg manifolds
and the Heisenberg calculus. In Section 3 we recall the construction and the main properties
of the noncommutative residue for the Heisenberg calculus. In Section 4 we present the con-
struction of the CR invariants for the d,-complex. In Section 5 we obtain contact invariants
from the generalized Szegd projections of Epstein-Melrose. In Section 6 we construct contact
invariants from Rumin’s contact complex. Finally, in Section 7 we establish the vanishing of
Hirachi’s invariant on strictly pseudoconvex CR manifolds of dimension 4m + 1.

2. HEISENBERG CALCULUS

2.1. Heisenberg manifolds. A Heisenberg manifold is a pair (M, H) consisting of a mani-
fold M together with a distinguished hyperplane bundle H C T'M. Moreover, given another
Heisenberg manifold (M’ H') we say that a diffeomorphism ¢ : M — M’ is a Heisenberg
diffeomorphism when ¢, H = H'.

The main examples of Heisenberg manifolds include the following.

a) Heisenberg group. The (2n + 1)-dimensional Heisenberg group H?"*! is R?"*! = R x R?"
equipped with the group law,

(2.1) xy = (xo+yo+ Z (Tn44Yj — Tj¥Ynt5), 1+ Y1, - - - T2n + Yon)-
1<5<n

A left-invariant basis for its Lie algebra h2"*! is provided by the vector-fields,

0 0 0 0 0

(2:2) 0 ’ 7 Oxy T Iy Oxg’ s 0Tt j i o

i

with j =1,...,n. For j,k=1,...,n and k # j we have the relations,
(2.3) [Xj,Xn+k] = —25ij0, [Xo,Xj] = [Xj,Xk] = [Xn+j7Xn+k] =0.

In particular, the subbundle spanned by the vector fields Xi,..., X5, defines a left-invariant
Heisenberg structure on H2"*1.

(b) Codimension 1 foliations. These are the Heisenberg manifolds (M, H) such that H is
integrable in Frobenius’ sense, i.e., C*°(M, H) is closed under the Lie bracket of vector fields.

(¢c) Contact manifolds. A contact manifold is a Heisenberg manifold (M?"*1 H) such that
near any point of M there exists a contact form annihilating H, i.e., a 1-form 6 such that df|,
is non-degenerate. When M is orientable it is equivalent to require the existence of a globally
defined contact form on M annihilating H. More specific examples of contact manifolds include
the Heisenberg group H?"*!, boundaries of strictly pseudoconvex domains D C C?"*1, like the
sphere S?"*1 or even the cosphere bundle S*M of a Riemannian manifold M™*+1.



d) Confoliations. The confoliations of Elyashberg and Thurston in [ET] interpolate between
contact manifolds and foliations. They can be seen as oriented Heisenberg manifolds (M2"+1, H)
together with a non-vanishing 1-form 6 on M annihilating H and such that (d6)"™ A 6 > 0.

e) CR manifolds. If D C C"*! a bounded domain with boundary &D then the maximal
complex structure, or CR structure, of T(9D) is given by Ty g = T(dD) N T oC" ", where
T1, denotes the holomorphic tangent bundle of C"*t. More generally, a CR structure on an
orientable manifold M?"+! is given by a complex rank n integrable subbundle Ty C TcM such
that Ty 0 NT1o = {0}. Besides on boundaries of complex domains, such structures naturally
appear on real hypersurfaces in C"*!, quotients of the Heisenberg group H?"*! by cocompact
lattices, boundaries of complex hyperbolic spaces, and circle bundles over complex manifolds.

A real hypersurface M = {r = 0} C C"*! is strictly pseudoconvex when the Hessian 90r is
positive definite. In general, to a CR manifold M we can associate a Levi form Ly(Z, W) =
—idf(Z, W) on the CR tangent bundle T} o by picking a non-vanishing real 1-form @ annihilating
T1,0®Tp,1. We then say that M is strictly pseudoconvex (resp. k-strictly pseudoconvex) when we
can choose 6 so that Ly is positive definite (resp. is nondegenerate with x negative eigenvalues)
at every point. In particular, when this happens 6 is non-degenerate on H = R(T70® Tp 1) and
so (M, H) is a contact manifold.

2.2. Tangent Lie group bundle. The terminology Heisenberg manifold stems from the fact
that the relevant tangent structure in this setting is that of a bundle GM of graded nilpotent
Lie groups (see [BG], [Be|, [EM], [FS], [Gr], [Po2], [Ro]). This tangent Lie group bundle bundle
can be described as follows.

First, we can define an intrinsic Levi form as the 2-form £ : H x H — T'M/H such that, for
any point a € M and any sections X and Y of H near a, we have

(2.4) Lo(X(a),Y(a)) =[X,Y](a) mod H,.

In other words the class of [X,Y](a) modulo H, depends only on X (a) and Y (a), not on the
germs of X and Y near a (see [Po2]).

We define the tangent Lie algebra bundle gM as the graded Lie algebra bundle consisting of
(TM/H) & H together with the fields of Lie bracket and dilations such that, for sections Xj,
Yo of TM/H and X', Y’ of H and for ¢ € R, we have

(2.5) [Xo+ X, Yo+Y']=L(X,Y), t(Xo+ X') =t?Xo +tX'.

Each fiber g, M, a € M, is a two-step nilpotent Lie algebra, so by requiring the exponential
map to be the identity the associated tangent Lie group bundle GM appears as (TM/H) & H
together with the grading above and the product law such that, for sections Xy, Yy of TM/H
and X', Y’ of H, we have

1
(2.6) (Xo+X").(Yo+Y')=Xo+ Yo+ 5E(X’, Y+ X' +Y'.

Moreover, if ¢ is a Heisenberg diffeomorphism from (M, H) onto a Heisenberg manifold
(M', H') then, as ¢, H = H' we get linear isomorphisms from TM/H onto TM'/H' and from
H onto H' which together give rise to a linear isomorphism ¢, : TM/H® H — TM'/H' & H'.
In fact ¢ is a graded Lie group isomorphism from GM onto GM' (see [Po2]).

On the other hand, we have:

Proposition 2.1 ([Po2]). 1) At a point x € M we have vk L(x) = 2n iff GzM is isomorphic
to H2 1 x Ré—2n,

2) If dim M = 2n + 1 then (M1 H) is a contact manifold iff GM is a fiber bundle with
typical fiber H2"+1,



2.3. Heisenberg calculus. The Heisenberg calculus is the relevant pseudodifferential calculus
to study hypoelliptic operators on Heisenberg manifolds. It was independently introduced by
Beals-Greiner [BG] and Taylor [Tay] (see also [Bol], [Dyl], [Dy2], [EM], [FS], [Po3], [RS]).

The initial idea in the Heisenberg calculus, which is due to Stein, is to construct a class of
operators on a Heisenberg manifold (M 1 f ), called ¥z DO’s, which at any point a € M are
modeled on homogeneous left-invariant convolution operators on the tangent group G,M.

Locally the UDO’s can be described as follows. Let U € R**! be a local chart together with
a frame Xo,..., Xy of TU such that Xy,..., Xy span H. Such a chart is called a Heisenberg
chart. Moreover, on R%*! we consider the dilations,

(2.7) t.& = (1%, t&y, . . ., t€), EeRTL t>o0.

Definition 2.2. 1) S,,(U x R m € C, is the space of functions p(x,€) in C®(U x RIT1\0)
such that p(x,t.£) = t"p(z, &) for any t > 0.

2) S™(U x RN, m € C, consists of functions p € C®°(U x R with an asymptotic
eTpansion p ~ ijo Pm—j, P € Sk(U x RI1) | in the sense that, for any integer N and for any
compact K C U, we have

(2.8) 0200 (0 =D pm—) (@, )| < Capnic €M O7N, we K, ¢ =1,
J<N

where we have let (§) =200+ B1 + ... + Bq and ||€] = (& +&F + ...+ DV

Next, for j =0,...,d let 0;(x,§) denote the symbol (in the classical sense) of the vector field
1X; and set o = (0y,...,04). Then for p € S™(U x R¥*1) we let p(z, —iX) be the continuous
linear operator from C2°(U) to C*°(U) such that

(29)  pla,—iX)f(x) = (2m) @D / e Ep(e,o(z, €) f(E)dE, | € CE(U).

Definition 2.3. V}}(U), m € C, consists of operators P : CX(U) — C>(U) which are of
the form P = p(x,—iX) + R for some p in S™(U x R, called the symbol of P, and some
smoothing operator R.

For any a € U there is exists a unique affine change of variable 1, : R¥T! — R9*! such that
Pa(a) = 0 and (9g)«X; = 8%1- at x = 0 for j =0,1,...,d+ 1. Then, a continuous operator
P:CXU) — C>®(U) is a ¥YgDO of order m if, and only if, its kernel kp(x,y) has a behavior
near the diagonal of the form,

(2.10) kp(zy)~ Y (i@, ve(y) =) _cal@)iu(2)* log [¢a(y)]),
@=j

j>—(m+d+2)

with ¢, € C®(U) and aj(z,y) € C°(U x (R¥1\0)) such that a;(z,\.y) = Ma;(z,y) for
any A > 0. Moreover, a;(z,y) and co(x), @ = j, depend only on the symbol of P of degree
—(j+d+2).

The class of ¥z DO’s is invariant under changes of Heisenberg chart (see [BG, Sect. 16], [Po3,
Appendix A]), so we may extend the definition of ¥z DO’s to an arbitrary Heisenberg manifold
(M, H) and let them act on sections of a vector bundle £ over M. We let W}(M, E) denote the
class of W DO’s of order m on M acting on sections of £.

Let g*M denote the (linear) dual of the Lie algebra bundle gM of GM with canonical
projection pr : M — g*M. As shown in [Po3] (see also [EM]) the principal symbol of an
operator P € W}}(M,E) can be intrinsically defined as a symbol o,,(P) of the class below.

Definition 2.4. S,,(g*M), m € C, consists of sections p € C°(g*M \ 0, End pr*€) which are
homogeneous of degree m with respect to the dilations in (2.5), i.e., we have p(x, X\.§) = AN"p(z, &)
for any XA > 0.



Next, for any a € M the convolution on G, M gives rise under the (linear) Fourier transform
to a bilinear product for homogeneous symbols,

(2.11) #% 1 Sy (85 M Ea) X Sy (85 M, Ea) — Smy+ms (85M, Ea),
This product depends smoothly on a as much so to yield a product,

(2.12) k0 Sy (8" M, E) X Sy (8" M, E) — Sy 4my ("M, E),

(2.13) P * P (0, €) = [Py (@) ** Py (a, )}(E).

This provides us with the right composition for principal symbols, since we have
(2.14) Omytms (P1P2) = 0y (P1) % 0y (P2) VP € W37 (M, E).

for P € W' (M, E) and P € UY?*(M,E) such that one of them is properly supported.

Notice that when G,M is not commutative, i.e., £, # 0, the product %% is not anymore
the pointwise product of symbols and, in particular, is not commutative. Consequently, unless
when H is integrable, the product for Heisenberg symbols is not commutative and, while local,
it is not microlocal.

When the principal symbol of P € W'}(M, ) is invertible with respect to the product *, the
symbolic calculus of [BG] allows us to construct a parametrix for P in W, (M, £). In particular,
although not elliptic, P is hypoelliptic with a controlled loss/gain of derivatives (see [BG]).

In general, it may be difficult to determine whether the principal symbol of a given operator P
in U} (M, €) is invertible with respect to the product %, but this can be completely determined in
terms of a representation theoretic criterion on each tangent group G, M, the so-called Rockland
condition (see [Po3, Thm. 3.3.19]). In particular, if o,,(P)(a,.) is pointwise invertible with
respect to the product *® for any a € M then o,,(P) is globally invertible with respect to *.

3. NONCOMMUTATIVE RESIDUE

Let (M1 H) be a Heisenberg manifold equipped with a smooth positive density and let £
be a Hermitian vector bundle over M. We let W% (M, ) denote the space of ¥ DO of integer
order acting on sections of &.

3.1. Logarithmic singularity. Let P : C>*(M,&) — C*°(M,E) be a ¥yDO of integer order
m. Then it follows from (2.10) that in a trivializing Heisenberg chart the kernel kp(x,y) of P
has a behavior near the diagonal of the form,

(3.1) kp(z,y) = Z a;j(x, —2(y)) — cp(z) log [|¥2(y) || + O(1),
—(m+d+2)<j<1

where a;(z,y) is homogeneous of degree j in y with respect to the dilations (2.7). Furthermore,
we have

(3.2 r(@) =Wl [ parn (e O

where p_(44.9)(z,§) is the homogeneous symbol of degree —(d + 2) of P.
Let |A|(M) be the bundle of densities on M. Then we have:

Proposition 3.1 ([Pol], [Po5]). The coefficient cp(x) makes sense intrinsically on M as a
section of |[A|(M) @ End £.

3.2. Noncommutative residue. From now on we assume M compact. Therefore, for any
P € VL (M, &) we can let

(3.3) Res P = /M tre cp(x).

If Pisin WY (M, E) with ®m < —(d+2) then P is trace-class. It can be shown that we have
an analytic continuation of the trace to W;DO’s of non-integer orders which is analogous to

5



that for classical ¥DO’s in [KV]. Moreover, on ¥ DO’s of integer orders this analytic extension
of the trace induces a residual functional agreeing with (3.3), so that we have:

Proposition 3.2. Let P € W% (M,&). Then for any family (P(2)).cc C Vi (M,E) which is
holomorphic in the sense of [Po3] and such that P(0) = P and ordP(z) = z + ord P we have

(3.4) Res P = —res,—o Trace P(z).

Thus the functional (3.3) is the analogue for the Heisenberg calculus of the noncommutative
residue of Wodzicki ([Wol], [Wo2]) and Guillemin [Gul]. Furthermore, we have:

Proposition 3.3 ([Pol], [Po5]). 1) Let ¢ be a Heisenberg diffeomorphism from (M, H) onto a
Heisenberg manifold (M', H'). Then for any P € W% (M, E) we have Res ¢ P = Res P.

2) Res is a trace on the algebra V% (M, E) which vanishes on differential operators and on
U DO’s of integer order < —(d + 3).

3) If M is connected then Res is the unique trace up to constant multiple.

Let D Cc C™*! be a strictly pseudoconvex domain with boundary 0D and let 6 be a pseu-
dohermitian contact form on 0D. We endow 0D with the associated Levi metric and we let
Sp : L?(OD) — L*(0D) be the corresponding Szegd projection. Then Sy is a ¥z DO of order 0
and with the notation of (1.1) we have cg,(2) = —3vp(z,%)df" A 6. Thus,

(3.5) Res Sy — —%L(Sg).

This shows that Hirachi’s invariant can be interpreted as a noncommutative residue.

4. CR INVARIANTS FROM THE Op-COMPLEX

Let M?"*1 be a compact orientable CR manifold with CR tangent bundle Ty o C TcM, so
that H = R(T1,0©Tp,1) C TM is a hyperplane bundle of TM admitting an (integrable) complex
structure. Let 6 be a global non-zero real 1-form annihilating H and let Ly be the associated
Levi form,

(4.1) Lo(Z, W) = —id0(2, W) = i0([Z,W]),  Z,W € C°(M,T1).

Let N be a supplement of H in T'M. This is an orientable line bundle which gives rise to the
splitting,

(4.2) TcM =T ®To1 & (N @C).

Let A1 and A%! denote the annihilators in TsM of Tp 1 & (N ®C) and Ti o0& (N @C) respectively
and for p,q = 0,...,n let AP? = (AL0)P A (A%1)9 be the bundle of (p, q)-forms. Then we have
the splitting,

(4.3) ANTEM = (@D AP) @ 0 A A*TEM.
P,q=0

Notice that this decomposition does not depend on the choice of 6, but it does depend on that

of N.
The complex 9y : O (M, AP*) — C°(M, AP**1) of Kohn-Rossi ([KR], [Ko]) is defined as
follows. For any n € C*°(M, AP?) we can uniquely decompose dn as

(4.4) dn = Oyip,g + Obip.qn + 0 A Lxyn,

where Oy, 4n and Oy 41 are sections of APt and APT14 respectively and X is the section of
N such that (Xy) = 1. Thanks to the integrability of 77 ¢ we have 5b;p7q+1 o gb;p,q =0, so that

we get a chain complex. Notice that this complex depends on the CR structure of M and on
the choice of N.



Assume now that M is endowed with a Hermitian metric h on TcM which commutes with
complex conjugation and makes the splitting (4.2) become orthogonal. The associated Kohn
Laplacian is

_* Y Y ot
(4.5) DUbip.g = Obip.g+19bp.a + Obip.g—10bip.g-

For x € M let ky(x) (resp. k—(z)) be the number of positive (resp. negative) eigenvalues of
Ly at x. We then say that the condition Y'(¢) holds when at every point = € M we have

(4.6) G {5 (), im— e ()} U s (2), o — (@)},
For instance, when M is k-strictly pseudoconvex we have k_(z) = n — k4+(z) = K, so the
condition Y (q) exactly means that we must have ¢ # k and ¢ # n — k.

Proposition 4.1 (see [BG, Sect. 21], [Po3, Sect. 3.5]). The Kohn Laplacian Oy, , admits a
parametriz in W (M, AP9) iff the condition Y (q) is satisfied.

Let Sp.p.q be the Szegd projection on (p, q)—for?s, i.e., the ortih*ogonal projeciion onto kerEl*b;pvq.
We :'idso consider the orthogonalprojections Iy (Op:p,q) aind o (0y,p ) Onto kef Ob:pqg and ker Oy, =
(im Oppg—1)+. In fact, as ker Oy, = ker Oy g @ im Ipyp g1 we have Ho(Oppyg) = Sppg + 1 —
Ho(gz;qu), that is,

(4.7) Sb;p,q = Ho(gb;l%q) + HO(EZ;P:Q) - L

Let Ny, 4 be the partial inverse of [y, 4, so that Np.p, (U o = Upp ¢ Np:pg = 1 — Spyp,q- Then
it can be shown (see, e.g., [BG, pp. 170-172]) that we have

(4.8) o(Oppq) =1 — 8Z;p,qNb;p,q+18b;p7qa HO(az;p,q) =1- ab;pyq—le;paq—laz;p,q—l‘

By Proposition 4.1 when the condition Y'(¢) holds at every point the operator Oy, , admits
a parametrix in ‘III_{Q(M, AP9) and then Sy, 4 is a smoothing operator and Ny, 4 is a WDO of
order —2. Therefore, using (4.8) we see that if the condition Y (¢ + 1) (resp. Y (¢ — 1)) holds
everywhere then ITo(0p. ) (resp. HO@Z;p,q)) is a ¥ DO.

Furthermore, in view of (4.7) we also see that if at every point the condition Y (q) fails, but
the conditions Y(¢ — 1) and Y (¢ + 1) hold, then the Szegt projection Sy, , is a zero’th order
WU DO projection. Notice that this may happen if, and only if, M is k-strictly pseudoconvex
with k =qor k =n—q.

Bearing all this in mind we have:

Theorem 4.2 ([Pod]). 1) The following noncommutative residues are CR diffeomorphism in-
variants of M :

(i) Reso(Opp,4) when the condition Y (q + 1) holds everywhere;

(7i) Res HO@Z;p,q) when the condition Y (q — 1) holds everywhere;

(iii) Res Spp . and Res Sy n—. when M is k-strictly pseudoconvex.

In particular, they depend neither on the choice of the line bundle N, nor on that of the Her-
mitian metric h.

2) The noncommutative residues (i)-(iii) are invariant under deformations of the CR struc-
ture coming from deformations of the complex structure of H.

Specializing Theorem 4.2 to the strictly pseudoconvex case we get:

Theorem 4.3 ([Pod]). Suppose that M is a compact strictly pseudoconver CR manifold. Then:

1) Res Sy,pj, j = 0,n, and Res Ho@b;p,q); g=1,...,n—1, are CR diffeomorphism invariants
of M. In particular, when M 1is the boundary of a strictly pseudoconver domain D C C™ they
give rise to bilholomorphism invariants of D.

2) The above residues are invariant under deformations of the CR structure.



5. INVARIANTS OF GENERALIZED SZEGO PROJECTIONS

Let (M?"* H) be an orientable contact manifold. Given a contact form 6 on M annihilating
H we let X be the Reeb vector field of 0, i.e., the unique vector field X such that tx,0 = 1 and
tx,df = 0. In addition, we let J be an almost complex structure on H which is calibrated in the
sense that df(X, JX) > 0 for any nonzero section X of H. Extending J to T'M by requiring to
have J X, = 0, we can equip 7'M with the Riemannian metric gg ; = d6(., J.) + 6°.

In this context Szegd projections have been defined by Boutet de Monvel and Guillemin
in [BGu| as an FIO with complex phase. This construction has been further generalized by
Epstein-Melrose [EM] as follows.

Let H?"*! be the Heisenberg group of dimension 2n + 1 consisting of R?"*! together with
the group law (2.1). Let 0° = dxg + %Z?Zl(mjd:cnﬂ — Zn4jdxj) be the standard left-invariant
contact form of H*"*!; its Reeb vector field is X = 8%0.

- 0_ 90 1 .0 0 _ _90 _ 1, 0 0 0
For j =1,...,n let X; = Dz + 3Tn+ize, and Xpij = Doy — 229 Bag then X7,..., X5,

form a left-invariant frame of H? = ker§° and sastify the relations (2.3). The standard CR
structure of H?"*! is then given by the complex structure J° on HY such that JOX](-J =X

n+j
and J°X,,+; = —X;. Moreover, it follows from (2.3) that J? is calibrated with respect to #° and
that Xg, X9 ..., X8 form an orthonormal frame of TH?"*! with respect to the metric 960,.J0-

The scalar Kohn Laplacian on H?"*! is equal to
0 1 042 032y 4 ;0
(5.1) Db,o:—§((X1) + .t (Xg) )+Z§Xo-

For A € C the operator —3((X{)? + ...+ (X9,)?) + iAX{ is invertible if, and only if, we have
A € £(2 +N) (see [FS], [BG]). For k =0,1,... the orthogonal projection Ilo(0, + ikX{) onto
the kernel of [, + ik X{ is a left-invariant homogeneous ¥ DO of order 0 (see [BG, Thm. 6.61]).
We then let s9 € So((h?"F1)*) denote its symbol, so that we have Io(C, + ik X)) = s (—iX?).

Next, since (M, H) is a contact manifold by Proposition 2.1 the tangent Lie group bundle
GM is a fiber bundle with typical fiber H?"*1. A local trivialization near a given point a € M
is obtained as follows.

Let X1,..., X2, be a local orthonormal frame of H on an open neighborhood U of a and
which is admissible in the sense that X,,;; = JX; for j = 1,...,n. In addition, let X¢(a) denote
the class of Xo(a) in T,M/H,. Then as shown in [Po2] the map ¢x o : (I,M/H,)® H, — R>" 1
such that

(52) ng’a(l'oXo(a) + CL’1X1(CL) + ...+ xangn(a)) = (170, e xgn), zj € R,
gives rise to a Lie group isomorphism from G,M onto H?"*!. In fact, as ¢ x,o depends smoothly
on a we get a fiber bundle trivialization of GM |y ~ U x H?"*1,

For j =0,...,2n let X7 be the model vector field of X; at a as defined in [Po2]. This is the
unique left-invariant vector field on G,M which, in the coordinates provided by ¢x ., agrees
with % at = 0. Therefore, we have Xf = @(,anQ and so we get ¢§(7QD8 =—2((XO)*+...+
(X8,)2) + i5Xg.

If X1,...,Xo, is another admissible orthonormal frame of H near a, then we pass from
(f(f, . ,Xgn) to (X¢,...,X§,) by an orthogonal linear transformation, which leaves the ex-
pression (X{)? + ...+ (X%,)? unchanged. Therefore, the differential operator ¢ := ox. 209
makes sense independently of the choice of the admissible frame X1, ..., X5, near a.

On the other hand, as ¢x , induces a unitary transformation from L?(G,M) onto L?(H?*"+1)
we have Iy (O + ik X§) = To(¢% ,(O) + ik X()) = ¢ Jo(O) + ik Xg)). Hence Mo(0 + ik X
is a zero’th order left-invariant homogeneous ¥y DO on G,M with symbol sj(§) = ¢ e
s%((qﬁ}}a)tf). In fact, since ¢x , depends smoothly on a we obtain:
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Proposition 5.1. For k = 0,1,... there is a uniquely defined symbol s € So(g*M) such
that, for any admissible orthonormal frame Xi,..., Xy of H near a point a € M, we have

Sk(a’f) = (rb?(,asg(f) fO’f’ any (avé‘) € g*M \ 0.

We call s, the Szegd symbol at level k. This definition a priori depends on the contact form
f and the almost complex structure J, but we have:

Lemma 5.2 ([EM], [Pod]). (i) The symbol sy is invariant under conformal changes of contact
form.

(i) The change (0,J) — (—0,—J) transforms sy into si(x,—¢).

(iii) The symbol sj depends on J only up to homotopy of idempotents in So(g*M).

From now on we let £ be a Hermitian vector bundle over M.

Definition 5.3 ([EM, Chap. 6]). For k =0,1,... a generalized Szegd projection at level k is a
U DO projection Sy, € WY (M, E) with principal symbol s ® idg.

Generalized Szego projections at level k always exist (see [EM], [Po4]). Moreover, when k = 0
and & is the trivial line bundle the above definition allows us to recover the Szego projections
of [BGu] (see [Pod]). In particular, when M is strictly pseudoconvex the Szegd projection Sp g
is a generalized Szeg6 projection at level 0.

Given a generalized Szego projection at level k we define

(5.3) L;(E) = Res Sy.
In fact, we have:

Proposition 5.4 ([Pod]). The value of Li(E) does not depend on the choice of Sk.

Next, recall that the K-group K°(M) can be described as the group of formal differences
of stable homotopy classes of (smooth) vector bundles over M, where a stable homotopy be-
tween vector bundles £ and & is given by an auxiliary vector bundle F and a vector bundle
isomorphism ¢ : & & F ~ & & F. Then we obtain:

Theorem 5.5 ([Pod]). 1) Li(E) depends only on the Heisenberg diffeomorphism class of M
and on the K-theory class of £. In particular, it depends neither on the contact form 6, nor on
the almost complex structure J.

2) Li(E) invariant is under deformations of the contact structure.

6. INVARIANTS FROM THE CONTACT COMPLEX

Let (M?"*1 H) be an orientable contact manifold. Let @ be a contact form on M and let X,
be its Reeb vector field of 8. We also let J be a calibrated almost complex structure on H and
we endow T'M with the Riemannian metric gg ; = df(., J.) + 6%

Observe that the splitting TM = H @& RXj allows us to identify H* with the annihilator of
Xp in T* M. More generally, identifying A(’éH * with ker vx,, where tx, denotes the contraction
operator by Xy, gives the splitting

2n 2n
(6.1) ARTM = (EPAEH") © (D0 AAEHY).
k=0 k=0

For any horizontal form n € C*°(M, AféH *) we can write dn = dyn + 0 N\ Lx,n, where dyn
is the component of dn in A(]?’CH *. This does not provide us with a complex, for we have
d? = —Lx,e(df) = —e(d) L x,, where £(df) denotes the exterior multiplication by df.

The contact complex of Rumin [Ru] is an attempt to get a complex of horizontal differential
forms by forcing the equalities d7 = 0 and (dj)? = 0.

A natural way to modify dp to get the equality dz = 0 is to restrict dp to the subbundle
A% :=kere(df) N ALH*, since the latter is closed under dj, and is annihilated by d3.
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Similarly, we get the equality (dj)? = 0 by restricting di to the subbundle A} := ker«(df) N
ALH* = (ime(df))t N ALH*, where ¢(df) denotes the interior product with df. This amounts
to replace dy, by m o dp, where 7; is the orthogonal projection onto Aj.

In fact, since df is nondegenerate on H the operator e(df) : A(’f:H * AféHH * is injective for
k < n — 1 and surjective for £ > n 4+ 1. This implies that Alg =0 for kK < n and A]f = 0 for
k > n + 1. Therefore, we only have two halves of complexes.

As observed by Rumin [Ru] we get a full complex by connecting the two halves by means of
the operator Dg,, : C°(M,A¢H*) — C*°(M,A¢H*) such that

(6.2) DR,n = EXO + dbynflé(dg)_ldbm,

where £(df)~! is the inverse of (df) : Ag_lH - AZCZ'HH *. Notice that Dp, is a second order
differential operator. This allows us to get the contact complex,

d Dg.n dRr on_
(6.3) C®(M) ™2 C®(M,A™) 5" C°(M,A") ... "2571 (M, A*").
where dg ) agrees with m ody, for k = 0,...,n — 1 and with dg; = dj otherwise.

The contact Laplacian is defined as follows. In degree k # n this is the differential operator
Apgy 1 C®(M,AF) — C°°(M, A*) such that

App = { (n— k)dR,kflde +(n—k+ 1)d}<g,k+1dR,k7 k=0,...,n—1,

(64) (k=n—1)dpr1dy, + (k=n)dp 1 drg, k=n+1,...,2n.

For k = n we have the differential operators Ag ; : C*°(M, A;‘) — C°(M, A?), j=1,2, given
by the formulas,

(65) Ale = (dR,n—ldEm)Q + DE,nDR:”’ AR,nQ = DR,nD}k%,n + (d*R,n—f—ldR,n)'

Observe that Agry, k # n, is a differential operator order 2, whereas Agy,; and Agy2 are
differential operators of order 4. Moreover, Rumin [Ru] proved that in every degree the contact
Laplacian is maximal hypoelliptic. In fact, in every degree the contact Laplacian has an invert-
ible principal symbol, hence admits a parametrix in the Heisenberg calculus (see [JK], [Po3,
Sect. 3.5]).

Let IIo(dg k) and H(Dpg ) be the orthogonal projections onto ker dg  and ker Dp p,, and let
A;%,lk and AE}W be the partial inverses of Ag ) and Ag ;. Then as in (4.8) we have

1= (n—k—1)"dy  Aghadrr, k=0,...,n—2,

(6.6) o(dre) = 1= dhpdrn1d},ArmdRn1, k=n-—1,
1= (k—n)"'dy 1 A1 dRons k=n,...,2n—1,
(6.7) HO(DR,n) =1- DR,*A;{}nQDR,n'

As in each degree the principal symbol of the contact Laplacian is invertible, the operators
Aliz,lkv k # n, and A;%,lnj? j=1,2are Y DO’s of order —2 and order —4 respectively. Therefore,
the above formulas for Ily(dg) and IIo(Dgy) show that these projections are zero’th order

\I/HDO’S.

Theorem 6.1 ([Po4]). 1) ResIly(dry), k =1,...,2n — 1, and ResIly(Dg,,) are Heisenberg
diffeomorphism invariants of M, hence their values depend neither on the contact form 6, nor
on the almost complex structure J.

2) These noncommutative residues are invariant under deformations of the contact structure.

7. VANISHING OF HIRACHI’S INVARIANT

In this section we give simple algebro-geometric arguments showing that Hirachi’s invariant
L(S) = —%Res Sp:0,0 always vanishes on strictly pseudoconvex CR manifolds of dimension
4m + 1. First, we have:
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Lemma 7.1. (i) We have ResIly(9pyp,4) = — ResIlp (EZ;p,qH) when the condition Y (q+1) holds
everywhere.

(i) We have Res Ilo(dpp.q) = ResIly(Opyp g12) when the condition Y (q+1) and Y (q+2) both
hold everywhere.

(iii) If M is strictly pseudoconvex and n even we have Res Sy 0 = — Res Spp .

Proof. Suppose that the condition Y (gq) holds everywhere. Then from (4.8) and the fact that
Res is a trace vanishing on 1 we get

(7.1) Res o (Dpyp,q) = — Res@:;p,qﬂNb;p,q+15b;p,q) == Res(gb;p,qu;p,qﬂNb;p,q+1)v
(7.2) Res HO@Z;p,qH) = Res(gb;p,qﬂNb;p,quZ;p,qH) == Res@Zm,qﬂgb;p,qﬂNb;p,qul)~

Therefore, we see that ResIIo(9pp4) + Res Iy (5Z;p’q+2) is equal to

(73) - Res[@b;p,qu;p,qﬂ + 5Z;p,qﬂgl);p,zﬂrl)Nb;p,qﬂ] = — Res(Oyp,g+1Nopg+1)
= —Res(1 = Sppgt1)-
Since the condition Y (¢4 1) holds everywhere the operator Sp.p 441 is smoothing and so we have
Res(1 — Sppg+1) = 0. It then follows that ResIIy(dpyp ) = — Res Ho(gz;p’q-l,—Q)'
Assume now that both conditions Y (¢ + 1) and Y (¢ + 2) hold everywhere. Then Sy, 412 is
smoothing and so from (4.7) we get
(7.4) Res Ho(gb;p,q_i_Q) + Res HO(EZ;p,q-i—Q) = Res(l + Sb;p#ﬁ_g) =0.

Hence ResIIy(0pp 4+2) = — ResIl (52;p7q+2) = Reso(Opyp,q) as desired.

Finally, suppose that M is strictly pseudoconvex and that n is even. Then the condition
Y (q) holds for ¢ = 1,...,n. In particular, the conditions Y (¢+ 1) and Y (¢+2) hold everywhere
simultanously for ¢ = 0,2,...,n — 4. Therefore, by the part (ii) we have ResIly(0pp0) =
Reso(Opp2) = ... = Reso(p;pn—2). Moreover, as the condition Y (n — 1) holds, by the part
(i) we have ResIly(Oppn—2) = — Res Ho(a;pm). Since Sp.p.0 = o(Opp,0) and Spprn = Ho(az*,;p,n)
it follows that Res Sy, 0 = — Res Spp n- O

Next, assume M strictly pseudoconvex and let § be a contact form anihilating 779 @® 7o 1.
Let X be the Reeb vector field of 6 so that tx,0 =1 ad tx,df = 0. We endow TcM with the
Levi metric associated to 0, i.e., the Hermitian metric hy such that:

- The splitting TcM = T1,0 ® To,1 & CXp is orthogonal with respect to hg;
- hg commutes with complex conjugation;
- hy agrees with Ly on T ¢ and we have hy(Xo, Xo) = 1.

By duality this defines a Hermitian metric on A*T{* M, still denoted hy, and there is a uniquely
defined Hodge operator * : AP — A"~ 2"7P guch that

(7.5) a A B = hg(a, B)do™ Va, B € C(M, AP9).
The operator * is unitary and satisfies *2 = (—1)P*4 on AP, Moreover, we have
(7.6) 5Z;p,q = — % Opin—qn—p*; Opipg = — * bsn—gn—p * -

Lemma 7.2. Assume that M is strictly pseudoconvex. Then we have Res Sp.00 = Res Sp.o p -

Proof. First, let I1o(0y0,0) be the orthogonal projection onto the kernel of Oy00. Notice that
the operators d, and 0y in (4.4) are complex conjugates of each other, i.e., we have

(7.7) 5b;p7qo¢ = ab;ma Va, 5 € C(M, APT).

Therefore Io(0p.0,0) is the complex conjugate of Ho(Fp0,0) = Sb:0.0- AS Spo0 = (Si00) = 5Stoo
and by the results of [Po5] we have cst O(x) = €S}, (), We see that the densities cry, (g, o) (7)

and cg, () agree.
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On the other hand, let Ho@zm,n) denote the orthogonal projection onto ker gz;mn. Since
by (7.6) we have gz;n,n = — % Opyp0* We see that Ho@;n,n) = #lIp(Op0,0)%. As 2 = 1 on
A™™ we get trpn.n Cﬂo(gzm,n)(x) = trann [%C11g(8y,0.0) (T)*] = CIy(@y,0,0)(2)- Therefore, we have
trpnn cHo(EZ;n,n)@) = C8y,,(7), 50 that Res HO@Z;n,n) = Res Sp,0 0.

Next, let Z1, ..., Z, be alocal orthonormal frame of T g. Then { Xy, Zj, Z;} is an orthonormal

frame of TcM. Let {0,9@93} be the dual coframe on T*M. Let ¢ = ' A ... A O™ and let
7(n) = ¢ Am. Then 7 is a a (locally defined) vector bundle isomorphism from A%" onto A™"
and we have

(7.8) (¢ AN) = (9pC) A+ (=1)"C A Do,
(7.9) D¢ =Y (1O AL AGTIA D) NPT AL A
1<j<n
Let w € C*°(M,T*M @ End(T¢M)) be the connection 1-form of the Tanaka-Webster connec-
tion (see [Tal, [We]). Thus, if we let w], = hg(w(Z;), Z)) then 'dOj = 0¥ Aw] mod @ AT*M. Let

w! and wi’o’l be the respective (0, 1)-components of w and wy. Then we have 9,67 = ok /\wi’o’l.

Combining this with (7.9) then gives
(7100 Bl = > ()7 AL ABTIAGP AW AP AL AP =~ Tr W AC

1<j<n
Hence 9p(C A1) = (—1)"C A9y — Trw® A ¢ An. Thus,
(7'11) 7__lgb;n,qT = Db;O,qa Db;O,qU = (—1)7151;;07(177 — Tl"wo’l AM.

As 7 is a unitary isomorphism we also have 7'_15:;”7(17' = Dy, Using (4.8) we then deduce

that 7~ (52%71)7 agrees with the orthogonal projection Ily(Dy. ) onto ker Dy ,,. Therefore,
the density tryon cry(p,,,,)(2) is equal to

(7.12) trpomn [T(SU)CHO( )T(:U)_l] = trpnn ¢y

G o) ()

Hence ResIIy(Dpy,n) = ResIly (52;%”).
On the other hand, it also follows from (4.8) that IIg(Dy, ) and I (5;0771) have same princi-
pal symbol, so by [Po4, Prop. 3.7] their noncommutative residues agree. Hence Res I (5;,%”) =

Res HO(EZ;(]’”). As Sp.o.n = Il (5;0,”) and we have shown above that Res Iy (gz;n,n) = Res Sp.0.0,
we see that Res Sy.0, = Res Sp.00. The lemma is thus proved. O

We are now ready to prove:

Proposition 7.3. The Hirachi invariant vanishes on strictly pseudoconver CR manifolds of
dimension 4m + 1.

Proof. Let M be strictly pseudoconvex CR manifolds of dimension 4m + 1. By Lemma 7.1
we have Res Sp.00 = — Res Sp.om,2m and by Lemma 7.2 we have Res Sp.0 9 = Res Sp.om 2m, s0
Res Sp.00 = 0. Hence the result. O
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