

```
Therefore:
           (i) the ech 3CE DECM) =4EC=(A) s.t. cp = cp + f.t. (ii) + C EDE(H) & =0 (=> 34EC=(A) s.t. cp = f.t.
    Let CE De (M). Then.
             Book (8,8, ..., 2e-1) = Qe (1,8, ..., 2e-1) - (-1) eq (8, ..., 2e-1, 1)
                                                                                  = < C,1,d8,x...vq8, > - (-1), < C, 8,98, ...vq(1))
                                                                                  = < C, d(g°dg'n-ndgg)>
                                                                                    = < 9, 5, 98, v... v98, >
                                                                                      = Pote (8°, --, 8°-1) 10 Bog = Pot
  Moreover:

(Pote (3°, --, 2°) = < C, d8°, --, ad8°) = (-1)°-1 < C, d8', --, d8°, d8°)

= (-1)°-1 (4tc (8', --, 2°), 8°)

1. OPITE = CPUTE.
   Therefore:

BY = ABOY = APHC = & PHE.
For CE Deployed (H): = Deployed De (H) de gine Q E Certaid (A) by.

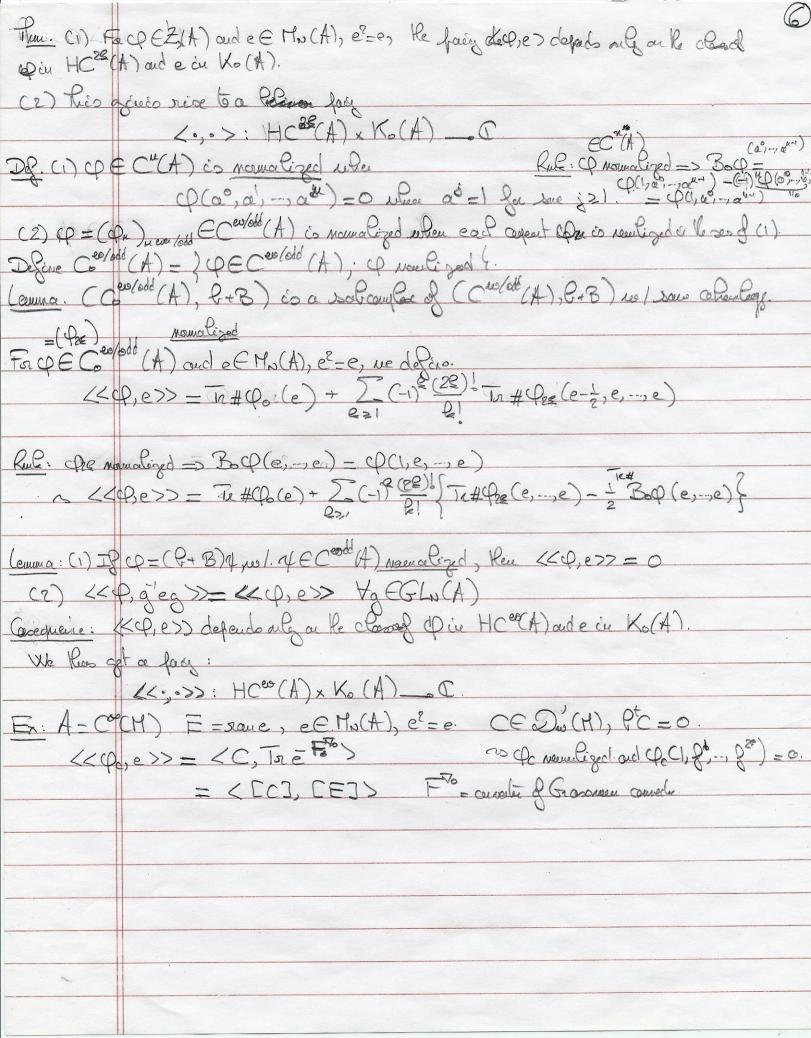
Pe = ( \frac{1}{2} \cdot \text{ Qce} ) \text{ evan/odd}.

There (P-B) \text{ Q} = B \text{ Q} = (\frac{1}{2} \text{ Qce}) = (\frac{1}{2} \text{ Qde}) = (\frac
        10 (P+B) P= PHC
Thun. (Comes): The liver may Dov/odd DC - CP E Cos/odd (A) gives rice to cocupless
Hess/odd (M) 2 + Cos/odd (A)
                                                                                                                                                                 à periodic ce cle colon lage of orber cocheins.
5. Pain w/ K- Keon (A-CO(M)):
We have a fain Hav(M) x Ko(M) _ (
                                                                        LECJ, CEJ) = LG TreFE).
    Xo giello a fair HCO(A) x Ko(A) _ C , A = CP(M).
```

Eufer = = non pr, fr ∈ Mo(A), projection. 12 Ca(H, E) T try=) & ECa(H, Ch); tr & = & (C Ca(H, Ch) The Grassomania connection of E is defined by (Co(H, E) Co(H, Ou) d, Co(H, TKM@ Cu) V6. 1⊗\$2 ~ COCH, THEE) Lemma: let FTO le le constant of To. Then: (2) $Trefore = p(dp)^2 = p(dp)p$. (2) $Trefore = \sum_{k \ge 0} Cy^k Trefore]$ · CPEC (A) (TA # CPE CE (Me (X)) Te = traig a Mp(C)) Τα # ((μ° σα, ---, μ° σα):= Tr(μ°--μ°] ((α°, --, α°) (Q=QC) CEDe: Tr # Pc (pools, , peols) = Tr[po- pe] < C, folk, , de) = < C, Tor Cyo - pe] go gri- rafe 7 = < C, Tu[mo fo d(po g') - d(po pe)]) Tr # (pc (a°, o, a°) - < C, Tr [a° da' - da°] > Yai E MR (co(M)).

The face for C = (Ce) Reven E Dev(M)

< C, Ir e Fro) = Fro Q! < (ce, Tr [r(d) 2°]) = = = C1)8 Tr#(C28 (h,h,...,h) (e=(22)) (c2) <(CC], (F]) = 2 (-1) 2(28) - 1 4(0) 2(1,1,1) 6. Pairie 100/ K- Theory (General Cose): For QEC, (A) and cEMW(A), e2=e, we defice. <φ e): = = Tr #φ(e, ..., e) Lemma: (i) IB (P-Pri, AEC28+(A), Hen L.P. e) =0 (ci) <q, geg > = < P, e> Yg EGLo(t)



The Local Index Formula in NCG

1. Spectral riples:

Spectrul triples = NC substitute for a manifold

An (even) spectral triple is a triple (A, H, D), ubere:

. H= +(+ €) +(- is a 1/2- graded Hillert space (me shall dente by 8=(0-1) ble grading aperator so that 82=1 and 8=8).

· A is atx-algebra togethe rel a x- supescentation T: A - & (K) (c.e., Train)=Train)

(Novally the representation is chaped from the notation, i.e., we identify A and is (i)).

Dis a reflection tember and aperator on H so that

- 8D = - D8, i.e., D= (D, D), D*: chuDOH2 - HF.

- LD, a) E L(H) Ya E A, i.e., a (don D) C don D aid aD-Da io Pounded Va EN.

- Dhao compact resolvent, i.e., (D+i) is a compact operator.

In addition, ne shall assume:

The algebra A is closed ander habanaghic fanctional calculus.

Rule. The Past asscription inples Rat

Ko(A) = Ko(T) = { [e1] - [e1]; e; E Mo(A), es = e3 = e3 }

Example (Dirac Spectral Triple):

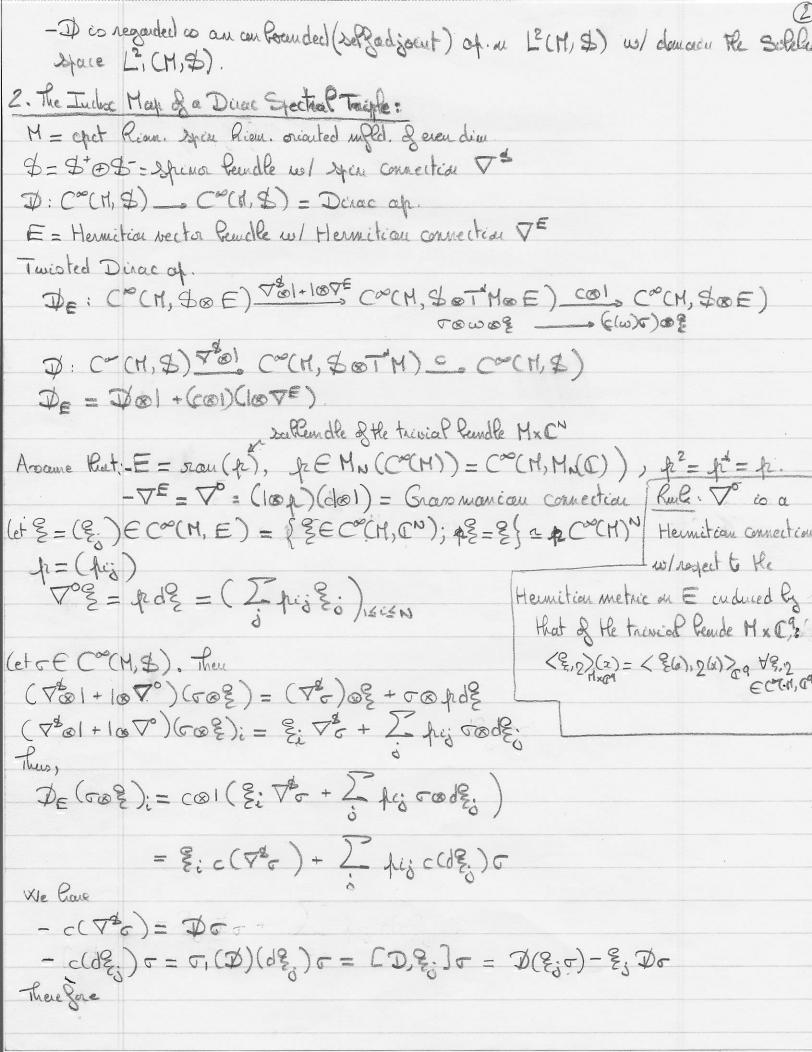
M = Cpct Spin Riem. oriented myld of even dim.

5=505 Spinor female

D: Co(1, 8) _ Co(H, 8) Dirac of & M. &= & + & = Then (COCM), L'CM, S), D) co a Spectral triple, where

- COCM) is represented in L'CM, &) by multiplication operation.

- L'CM, \$) is equipped not the 12- grading L'CM, \$) = L'CM, \$+) & L'CM \$-),



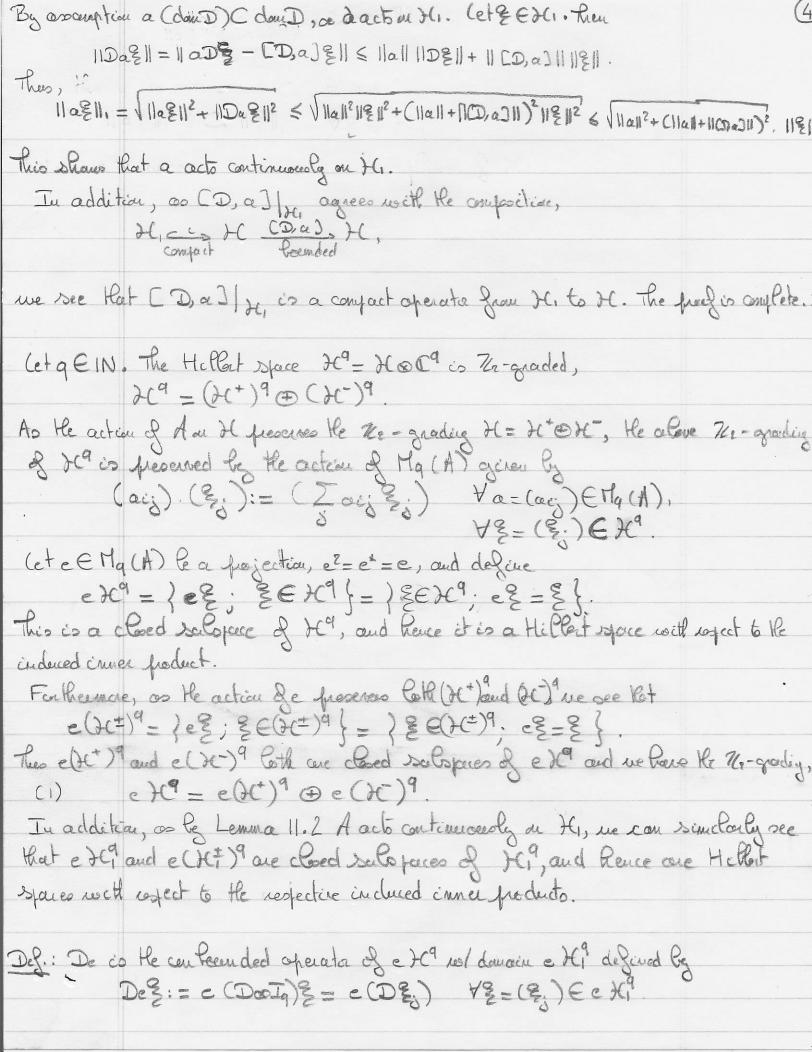
DE(508) = 8: Do + Z fris D(8:5) - his 8: Do f = \(\partition \) (\(\xi\) \(\xi\) \ = \(\frac{1}{2}\) \(\frac{1}{2 THE = h (FOOTN): A COCH, S)" - A COCH, SOE

COCH, SLOE)

COCH, SLOE 3. The Index Map & a Spectral Triple: Let (A, H, D) le a spectral triple. Notice Bat le fact lat (D+i) co compact implies that he spectram of D conocoto of coolated (seal) eigenvalues not finite multiplication. In the sequel we dont by To the sathagainst projection onto bow and by D' its frontial inne he D'is the Rouded operate of it that varioher as PorD and inverto D as ker D) = in D Equino lang, D'= (D+Tro) - Tro. Notice Pet 20'_ DD'= 1- To and D'D=1- To an dan D. I In addition, we denote by H. He Hillert space consisting of down agricultal to the inner froduct and norm,

(2) K\$,2>;= <\$,2>+<D\$,D2) and 11211,:= \[11211^2 + 11D\$\[11^2 \]. Notice that D is a continuous operator from H. G H. Lemma 11.1: (i) The cuclusion c: HICS H is compact. (ii) D'is a compact of of H and is continuous from H to H1. Proof: Open writing (= D+i). (D+i) and D=D'(D+i). (D+i)=(1-To+iD'). (D+i)

ne see that c is ampart and Dies is a surface op. of H. me see that a is compact and Disco a compact op. of it. Let & EX. Then 11D(DE)11=11(1-170) ≥ 11 ≤ 11≥11. The 115 ≥11, = \115 ≥11+11D(DE)112 ≤ \$\frac{1}{1}0'11+1'11 this proves that D'gives ruse to a out, op. from Itto H1. The freez is complete. D Lemma 11.2: Let a EA. Then + (c) The action of a on of indues a continuous en domosphion of oc. (cii) [Doa] k, is a consepact operata from H1 to H.



Notice that with respect to the Ter-grading (1) De takes the form, $\mathcal{D}_{\varepsilon} = \left(\begin{array}{c} \mathcal{D}_{\varepsilon}^{\pm} \\ \mathcal{D}_{\varepsilon}^{\pm} \end{array} \right), \quad \mathcal{D}_{\varepsilon}^{\pm} := e(\mathcal{D}^{\pm} \otimes \mathbb{I}_{q}) : e(\mathcal{H}_{\varepsilon}^{\pm})^{q} - e(\mathcal{H}_{\varepsilon}^{\mp})^{q}.$ We shall regard De oo an imbounded operator from e(H+)9 to e(H+)9 met dervice e(H+)9. Lemma 11.3: (i) De is selfadjoint. (ii) $(D_{\varepsilon}^{\dagger})^* = D_{\varepsilon}$. Proof: As Doo Iq w/ domain His is solfodypoint, upon replacing D by DO Iq, H by Hand Ale Mq (A) we may orscene Ret q=1. let & Edy. That, ga all & Eedli, <Deg, 2> = <Dg, 1> = <Dg, 2> = <Dg, 2> = <\$, D2> = (28,D0) = < 8, eD2) = < 8, D2). Thes De is synametric, i.e., we have the inclusion of graphs, G (De) C G (De*), and Reice G(De) = G(De) (down Dexet) By definition, G(D=)= (2,2)EHxeH; <2,5)=<2,D5> 45EeH, . Let (2,9) EG (De"). Recall Put CD, eI is Pounded and Reice Res domain & let SE Hi. Then < 2,5>= < e2,5>= < 2,e5>. As eSEeH, we see Post <2,5> = <3, De5> = <2, (eD+CD,e))5> = < \\$, eDS> + < \\$, CD, eJS> = < e \ , DS) + < CD, e J \ \ , S > Thus, = < \\ , D\\)+ < CD,e3*\\ , \\) < 2- [D. c] (S) = < 8, DS> + SE H1, that is, (= , 2 - [D, e] = (G (D+) = G (D). In fortice lar, we see that EE don't Do and home (3, 2) EGCD+) n (dom Dexet) = GCDE). This four Rut G (De) = G (De), Hatis, Deis selfolget. Next, we have G((D=)) = ((8,2) E(H) x (eH+); <2,5) = <8, D=5> YSE eH+)

= ((2,2) E (e H-) x (eH+); <2,5) = <\$, De5) YSEeH.f.

Thees, $G(\mathcal{D}_{\varepsilon}^{t})' = G(\mathcal{D}_{\varepsilon}^{t}) \cap (\mathcal{H}_{i} \times \mathcal{H}_{i}^{t}) = G(\mathcal{D}_{\varepsilon}) \cap (\mathcal{H}_{i} \times \mathcal{H}_{i}^{t}) = G(\mathcal{D}_{\varepsilon}).$ This shows that (DE) = De. The proof is conflete. I Notice Plat of sue regard De os an operata from eH9 tede, the De is orations, since Doo Iq is artimer from H9 to H9 and it follows from Lemma 11.2 Plat earts continuously on to. Lemma 11.4: (i) Seen ao am aperatar fran e H? to e H! He aperator De is Fredholm. (ii) Seen as an aperata from e (++)9 6 e(++)9 He operator De is Fredhelm and and De = dim her De - dim her De. Proof. As in the proof of Lemma 11.3 we may concerne that q=1. The aperata eD: eH - eH, is continuesces and, an eH, we have De.eD' = e (De)D' = e (eD [D,e])D' = e²DDT+eCD,eJDT = e-ello +eCD,eJ.DT id on excapact

Compact = 1 mod 12 (e f(). Ziji, Hi) 2 K(Hi, H) by Lemma 11.2 In addition, met, me have $eD'. De = eD'(De-De) = e-eT_0 = eD'. [D,e]_{H_1} = ed_{H_1} \mod \mathcal{K}(eH_1).$ $ed'aeH_1 Simte$ O = eD' Rolling.This shows that De is invertible module compact operates, and Rence is Fred Rolm. Cherne that with respect to the splitting H= H++ D++ and Hi = H++ D++. D'= (D)-1 O ...

There, with respect to the splittings e H = ext Det and e H = ext Dett,

eD' = (eD)-1 O ...

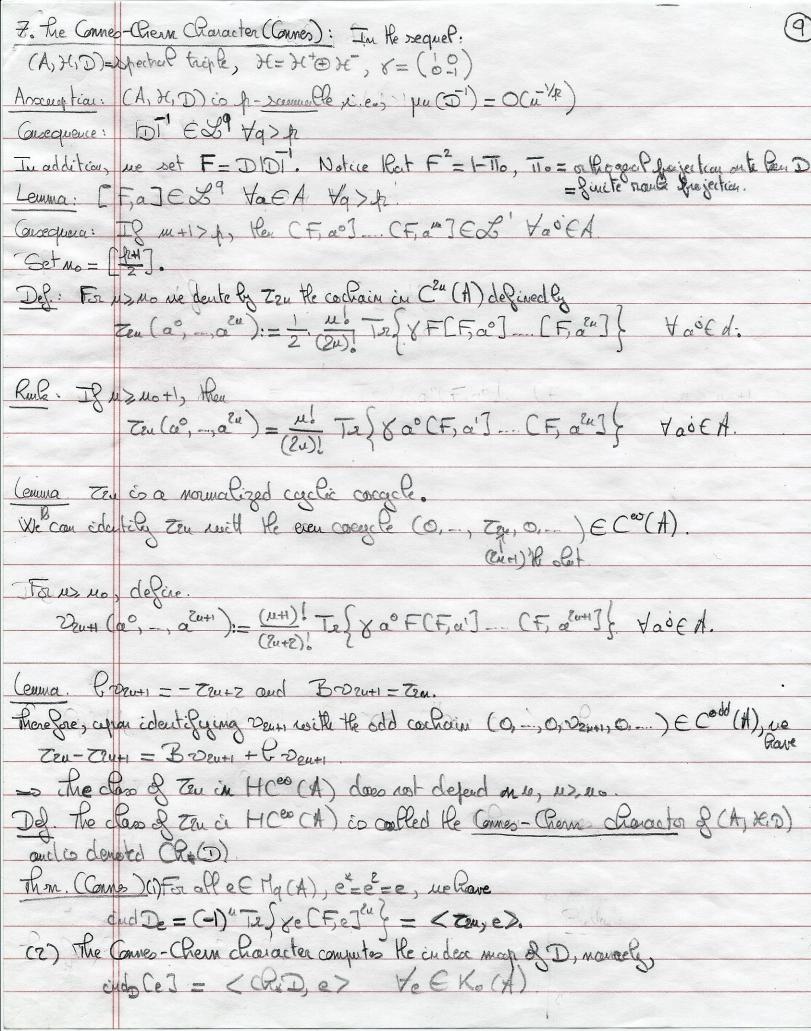
There, the fact that eD' is vinnerae of De modulo conject operationing lies that

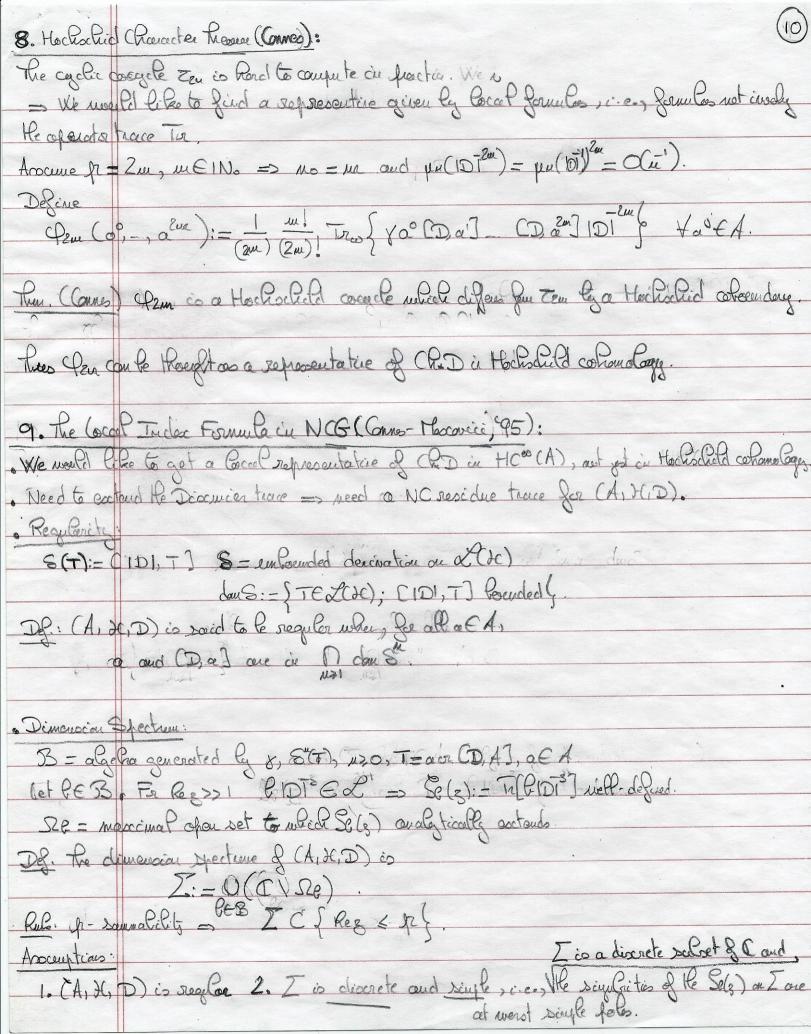
c D+)-1 is an involve of De modulo conject operation. There , De is Freel holom.

If we regard De as a continuous operator from e) C+ from e Ht, the De Ross adjuit De defined as the founded operate from eft to eft, s.t. <(Dt) (1) \(\gamma_1 \gamma_1 \gamma_2 \gamma = <\xi, Dt_2 \) \(\frac{1}{2} \in \text{2} \in \ Thes, of & E e H, Here ξ ∈ Pem (De) (=> <ξ, De2)=0 +2 ∈ eH; (=) (\{\,\0\) \\ \(\G(\O_{\operatorname}^{\operatorname}\)) (=) & E Ren (Dt) . As (DE) = DE, we see let le (De) (") = Por DE, and Prace and De = dim her De - dim her (De)(4) = dim her De - dim her De The lemma is proved. O Def.: The cucles of De is ind De = ind De = dim her De - dim her De. Lemma 11.4: (et e E Mq (A) be caritory. There and Deten = and De. Proof. As in the proofs of Lemma 11.3 and Lemma 11.4 we may concerne that q=1. Set & = exe en. Then the actions of in and en give rise to graded founded aperators u: 2H _set oud ut: et _sêt, which are inverses of each other. (Here the fact that is graded means that in (2)(=) Ce)(= Cike wise, by cesing Lemma 11.2, we see that He actions of an and see also give rior to tounded graded operators u: e H, _ e H, and u': e H, _ e H, which are inneres of each other. Then we De a is a antinuous operate for 27, 5 On & Hi we have u Den = u e Du = u e (eD+ cD, u) = et en D + n'e [D, n] | Hi | = E' +mod k(EH, EH) Compact fair H, to H by Lemma 11.2

Obere also Kat, with respect to the splittings, EH = & HOEH, and EH = & HERH,

et De a = (a De a O). Therefore, we see that le Dé le = Dè mod k (et) (, et). and Rence end De and and De agree. The front is complete. D. The above lemma shaw that and De depends ruly in the centrary equivalence close of e. Forthermore, of e. EMq.(A) and ex EMq.(A) are projections, then it is not hard to see that and Deroce = and Deroce = and (Dero Der) = and Der + and Der = ind Der + ind Dee. Thee See, we choin Prof. There coisoto a curique additire map, endo: Ko (A) - 72, such that, for all projections e E Mq (A), indo [e] = ind De.





		11
· PDOs and	NC Residue Trave:	
Fasso Cel	H'= dould D18 with 118112 = 11 101211.	
	1 1 1 1 1 1	
In addition	set H: = 1) H up topology described by the semi-morns 11. 11s, \$20.	
Leama: TS	ret He = OH wol topology defined by the semi-morns 11.11s, 220. TE Odom Su, Pen TEXCH3, H1) YSEIR.	
The second secon	2	
tormen sel	OP:= } TEat(de"), IDI" TE Nober St 6	
1 1018	EOPRES YSEC.	
Ceuma: IDI	E OT VEED.	
DP. J"(4)	WEC musich of ale. PELLOW) well-publich	
-9. 70 C	Par I Proi Dimis Curi E 3	
when as mea	Por I Proj Dimino ; Coming & B	
Anen	35EIN S.F. 49- I Pu-3 101 "3E OF"	
Cemma. IS F	E \$\frac{1}{4}\sigma_{i} = 1, 2, Ren P. P. € \$\frac{1}{2}\sigma_{i} + m^{2}(A).	
(ouma: Ci)	Re James	
	P: = Reoz= Tr PIDI	
defines a	Kinear fourtimat on early space Is (A).	
ce) fice	to tagge, in he seuse that	•
	f??? = f???, ∀?; € ₹ \$ (A)	
^	tocal: I vanco hes on Is (A), no / Ke m 2- R.	
· The CH co		
FORTEX	(He) and (E) Noverset	
	-CPI - (D?, CD?, -, CD?, -]]] C-times a maximalized	
	Moscovici) (1) The following formula defines to even cocycle AcH = (42m) in the	
(P.B)- com	tor 2 v:	

Rule (1) of Coop => familier for cleur, u>1, is Coop => (3) is a Coop circle formule.

(2) The cocycle Gem is called the CM cocycle of (1, HD).

11.7. The CM Cocycle of a Dirac Spectral Triple

In this section, we explain how to compute. computation of the CM cocycle of a Dirac spectral triple given in [Po].

Let (M^n, g) be an even dimensional compact oriented Riemannian spin manifold with spinor bundle $\mathcal{S} = \mathcal{S}^+ \oplus \mathcal{S}^-$ and Dirac operator $\mathcal{D}_M : C^{\infty}(M,\mathcal{S}) \to \mathcal{S}^+$ $C^{\infty}(M, \mathcal{S})$. We shall use the same notation as in Chapter 8 without any further notice.

Let us explain why the Dirac spectral triple $(C^{\infty}(M), L^{2}(M, \mathcal{S}), \mathcal{D}_{M})$ satisfies the assumptions of the local index formula in noncommutative geometry.

As $\not \! D_M$ is a $\Psi {
m DO}$ of order -1, the results of Chapter 7 show that the characteristic values of $\not \!\! D_M^{-1}$ satisfy

$$\mu_k(\mathbb{D}_M^{-1}) = \mathcal{O}(k^{-\frac{1}{n}}),$$

that is, the spectral triple $(C^{\infty}(M), L^2(M, \$), \not \!\!\!D_M)$ is n-summable. Consider the derivation $\delta(T) := |\not \!\!\!D_M|, T|$ with domain

$$\operatorname{dom} \delta := \bigg\{ T \in \mathcal{L}(L^2(M, \mathcal{S}); \ [|\not\!\!\!D_M|, T] \in \mathcal{L}(L^2(M, \mathcal{S}) \bigg\}.$$

LEMMA 11.7.1. $\Psi^0(M, \mathcal{S})$ is contained in dom δ and

$$\delta\left(\Psi^0(M,\mathcal{S})\right) \subset \Psi^0(M,\mathcal{S}).$$

PROOF. By the results of Chapter 6 on the complex powers of an elliptic ΨDO ,

$$\sigma_1(|\!\!\!D_M|)=\sigma_1\left(\sqrt{\!\!\!D_M^2}\right)=\sqrt{\sigma_2(\!\!\!D_M^2)}.$$

Recall that $\sigma_1(\mathcal{D}_M)(x,\xi) = ic(\xi)$ (cf. Chapter 8), so we have

$$\sigma_2(D_M^2)(x,\xi) = (\sigma_1(D_M)(x,\xi))^2 = (ic(\xi))^2 = \langle \xi, \xi \rangle_g = |\xi|_g^2$$

where $\langle \cdot, \cdot \rangle_q$ and $|\cdot|_q$ are the inner product and norm on the fibers of T^*M defined by the Riemmanian metric g. Thus,

$$\sigma_1(|\mathcal{D}_M|)(x,\xi) = \sqrt{\sigma_2(\mathcal{D}_M^2)(x,\xi)} = |\xi|_g.$$

The above formula shows that $\sigma_1(|\!\!D_M|)(x,\xi)$ is scalar, and hence commutes with all principal symbols. Therefore, if $P \in \Psi^0(M, \mathcal{S})$, then the commutator $[\![\!\!D_M,P]=|\![\!\!D_M|P-P|\![\!\!D_M]]$ is a $\Psi {\rm DO}$ of order ≤ 1 whose symbol of order 1 is equal

$$\sigma_1(|\!\!D_M|)\sigma_0(P) - \sigma_0(P)\sigma_1(|\!\!D_M|) = 0.$$

In other words, $[\![D_M, P]\!]$ is a zeroth order Ψ DO. As the zeroth order Ψ DOs are bounded, this implies that $\Psi^0(M,\mathcal{S})$ is contained in dom δ and $\delta\left(\Psi^0(M,\mathcal{S})\right)$ is contained in $\Psi^0(M, \mathcal{S})$. The lemma is proved.

It follows from Lemma 11.7.1 that $\Psi^0(M, \mathcal{S})$ is contained in $\cap_{j\geq 1} \operatorname{dom} \delta^j$ and

(11.1)
$$\delta^{j}\left(\Psi^{0}(M,\mathcal{S})\right) \subset \Psi^{0}(M,\mathcal{S}) \qquad \forall j \in \mathbb{N}.$$

Observe that if $f \in C^{\infty}(M)$, then both f and [D, f] = c(df) are zeroth order ΨDOs , and hence belong to $\cap \operatorname{dom} \delta^{j}$. This shows that the spectral triple $(C^{\infty}(M), L^{2}(M, \mathcal{S}), \mathcal{D}_{M})$ is regular.

Define

$$\Sigma := \{ k \in \mathbb{Z}; k \le n \} .$$

It follows from (11.1) that the algebra $\mathcal B$ constructed in the previous section is contained in $\Psi^0(M,\mathcal S)$. If $P\in \Psi^0(M,\mathcal S)$, then by the results of Chapter 6 the function $z\to \operatorname{Tr}[P|\!\!\!D_M|^{-z}]$ has a meromorphic continuation to $\mathbb C$ which is holomorphic on $\mathbb C\setminus \Sigma$ and on Σ has at worst simple pole singularities. We then deduce that the spectral triple $(C^\infty(M),L^2(M,\mathcal S),\mathbb D_M)$ has a simple and discrete dimension spectrum contained in Σ .

In addition, it can be shown that, for all $m \in \mathbb{C}$, the space $\Psi^m_{\mathcal{D}_M}(C^\infty(M))$, introduced in the previous section, is contained in $\Psi^m(M, \mathcal{F})$ and, with the notation of the previous section, for all $P \in \Psi^m_{\mathcal{D}_M}(C^\infty(M))$,

$$\oint P = \operatorname{Res}_{z=0} \operatorname{Tr} \left[P | \not \!\! D_M |^{-z} \right] = \operatorname{Res} P,$$

where $\operatorname{Res} P$ is the noncommutative residue of P (cf. Chapter 6).

As the Dirac spectral triple $(C^{\infty}(M), L^2(M, \mathcal{S}), \mathcal{D}_M)$ satisfies the assumptions of the local index formula in noncommutative geometry, its CM cocycle $\varphi_{\text{CM}} = (\varphi_{2k})$ makes sense and is given by the following formulas:

- If k=0, then, for all $f^0 \in C^{\infty}(M)$,

$$\varphi_0(f^0) = \operatorname{Res}_{z=0} \left\{ \Gamma(z) \operatorname{Str} \left[f^0 (|\not\!\!\!D_M|^{-z} + \Pi_0) \right] \right\},\,$$

where Π_0 is the orthogonal projection onto ker \mathbb{D}_M .

- If $k \geq 1$, then, for all $f^j \in C^{\infty}(M)$,

$$(11.2) \quad \varphi_{2k}(f^0, \dots, f^{2k}) = \sum_{\alpha} c_{k,\alpha} \int \gamma f^0[D, f^1]^{[\alpha_1]} \dots [D, f^{2k}]^{[\alpha_{2k}]} | \mathcal{D}_M|^{-2(|\alpha|+k)},$$

where $\Gamma(|\alpha|+k)c_{k,\alpha}^{-1}=2(-1)^{|\alpha|}\alpha!(\alpha_1+1)\cdots(\alpha_1+\cdots+\alpha_{2k}+2k)$ and the symbol $T^{[j]}$ denotes the j-th iterated commutator with $\not\!\!\!D_M^2$.

In order to compute the cochains φ_{2k} we will need a differentiable version of the local index theorem as follows.

DEFINITION 11.7.2. We say that an operator $Q \in \Psi^*_{\mathbf{v}}(M \times \mathbb{R}, \mathcal{F})$ has Getzler order m when, for all $x_0 \in M$, in any normal coordinates centered at x_0 the operator Q has Getzler order m in the sense of Definition 8.12.13.

PROPOSITION 11.7.3. Let $\mathbb{P}: C^{\infty}(M, \mathfrak{F}) \to C^{\infty}(M, \mathfrak{F})$ be a differential operator of Getzler order m and, for t > 0, let us denote by $h_t(x, y)$ the kernel of $\mathbb{P}e^{-t\mathbb{P}_M^2}$. Then, as $t \to 0^+$, there is an asymptotics in $C^{\infty}(M, |\Lambda|(M))$ of the form

$$\operatorname{Str}_{\mathcal{S}_x} h_t(x,x) = \left\{ \begin{array}{ll} \operatorname{O}(t^{\frac{-m+1}{2}}) & \text{if m is odd,} \\ t^{\frac{-m}{2}} B_0(\not \!\!\!D_M^2,\not \!\!\!P)(x) + \operatorname{O}(t^{\frac{-m}{2}+1}) & \text{if m is even,} \end{array} \right.$$

where, in normal coordinates centered at x_0 ,

$$B_0(D_M^2, P)(x_0) = (-2i)^{\frac{n}{2}} \left[P_{(m)} G_R(0, 1) \right]^{(n)},$$

where $P_{(m)}$ is the model operator of P and $G_R(x,t)$ is the fundamental solution of $H_R + \partial_t$ given by Lemma 8.12.21.

PROOF. As in the proof of Proposition 8.12.12,

$$h_t(x,y) = K_{\mathbb{P}(\mathbb{D}^2_{1,t} + \partial_t)^{-1}}(x,y,t).$$

By Lemma 8.12.18 and Lemma 8.12.19, in normal coordinates, $P(D_W^2 + \partial_t)^{-1}$ has Getzler order m-2 and its model operator is

$$Q_{(m-2)} = P_{(m)}(H_R + F^W + \partial_t)^{-1}.$$

Thus,

$$K_{Q_{(m-2)}}(x,0,t) = P_{(m)x}K_{(H_R+\partial_t)^{-1}}(x,0,t) = P_{(m)}G_R)(x,t).$$

The proposition then follows from Proposition 8.12.12 and Lemma 8.12.17.

Theorem 11.7.4. The CM cocycle $\varphi_{\rm CM}=(\varphi_{2k})$ is given by (11.3)

$$\varphi_{2k}(f^0, \dots, f^{2k}) = \frac{(2i\pi)^{-\frac{n}{2}}}{(2k)!} \int_M f^0 df^1 \wedge \dots \wedge df^{2k} \wedge \hat{A}(R^M)^{(n-2k)}, \quad f^j \in C^{\infty}(M),$$

where $\hat{A}(R^M)$ is the \hat{A} -form of the Riemann curvature R^M .

PROOF. Let $k \in \mathbb{N}$ and f^0, \dots, f^{2k} in $C^{\infty}(M)$. For all $\alpha \in \mathbb{N}_0^{2k}$ we set

$$P_{\alpha} = f^{0}[p_{M}, f^{1}]^{[\alpha_{1}]} \cdots [p_{M}, f^{2k}]^{[\alpha_{2k}]} = f^{0}c(df^{1})^{[\alpha_{1}]} \cdots c(df^{2k})^{[\alpha_{2k}]}.$$

Then

(11.4)
$$\varphi_{2k}(f^0,\ldots,f^{2k}) = \sum c_{k,\alpha} \oint \gamma \mathcal{P}_{\alpha} |\mathcal{D}_{M}|^{-2(|\alpha|+k)}.$$

Observe also that

$$\begin{split} (11.5) \quad & \oint \gamma \mathbb{P}_{\alpha} | \mathbb{P}_{M} |^{-2(|\alpha|+k)} = 2 \operatorname{Res}_{z=0} \operatorname{Tr} \left[\gamma \mathbb{P}_{\alpha} | \mathbb{P}_{M} |^{-2(|\alpha|+k)} . | \mathbb{P}_{M} |^{-2z} \right] \\ & = 2 \operatorname{Res}_{z=0} \operatorname{Str} \left[\mathbb{P}_{\alpha} | \mathbb{P}_{M} |^{-2(|\alpha|+k+z)} \right]. \end{split}$$

CLAIM. For t > 0 let $h_{\alpha,t}(x,y)$ be the kernel of $\mathbb{P}_{\alpha}e^{-t\mathbb{P}_{M}^{2}}$. Then, as $t \to 0^{+}$, there is an asymptotics in $C^{\infty}(M,|\Lambda|(M))$ of the form (11.6)

$$\operatorname{Str}_{\mathcal{S}} h_{\alpha,t}(x,x) = \begin{cases} \operatorname{O}(t^{-(k+|\alpha|)+1}) & \text{if } \alpha \neq 0, \\ \frac{t^{-k}}{(2i\pi)^{\frac{n}{2}}} \int_{M} f^{0} df^{1} \wedge \ldots \wedge df^{2k} \wedge \hat{A}(R^{M})^{(n-2k)} + \operatorname{O}(t^{-k+1}) & \text{if } \alpha = 0. \end{cases}$$

PROOF OF THE CLAIM. In synchronous normal coordinates $c(df^j)$ and \mathcal{D}^2 have respective Getzler orders 1 and 2 and respective model operators $df^j(0)$ and $H_R = -\sum (\partial_i - R_{ij}^M(0)x^j)^2$. Therefore, by Lemma 8.12.18 the operator \mathcal{P}_{α} has Getzler order $\leq 2(k + |\alpha|)$ and

$$P_{\alpha} = c[f^{0}(0)df^{1}(0)^{[\alpha_{1}]} \wedge \cdots \wedge df^{2k}(0)^{[\alpha_{2k}]}] + O_{G}(2(k+|\alpha|)-1),$$

where $T^{[j]}$ is the j-th iterated commutator of T with H_R .

Notice that $[H_R, df^j(0)] = 0$, so if $\alpha \neq 0$ then $P_{\alpha}Q$ has Getzler order $\leq 2(k + |\alpha|) - 1$. Moreover, the model operator of P_0 is $P_{0(2k)} = f^0(0)df^1(0) \wedge \ldots \wedge df^{2k}(0)$, and so we have

$$(P_{0(2k)}G_R)(0,1) = (4\pi)^{-\frac{n}{2}} f^0(0) df^1(0) \wedge \ldots \wedge df^{2k}(0) \wedge \hat{A}(R^M(0)).$$

Applying Proposition 11.7.3 then gives the claim.

By the Mellin's formula, for $\Re s > 1$ we have

(11.7)
$$|\mathcal{D}_{M}|^{-2s} = (\mathcal{D}_{M}^{2})^{-s} = \Gamma(s)^{-1} \int_{0}^{\infty} t^{s-1} (1 - \Pi_{0}) e^{-t\mathcal{D}_{M}^{2}} dt,$$

where Π_0 is the orthogonal projection onto $\ker \mathcal{D}_M^2 = \ker \mathcal{D}_M$. The above integral converges in $\mathcal{L}(L^2(M,\mathcal{S}))$ because

(11.8)
$$\|(1 - \Pi_0)e^{-t\mathcal{D}_M^2}\| = e^{-\mu t} \quad \forall t \ge 0,$$

where μ is the smallest non-zero eigenvalue of \mathbb{D}_{M}^{2} .

It is useful to rewrite (11.7) in the form

(11.9)
$$|\mathcal{D}_{M}|^{-2s} = \Gamma(s)^{-1} \int_{0}^{1} t^{s-1} e^{-t\mathcal{D}_{M}^{2}} dt + R(s),$$

where we have set

$$\begin{split} R(s) := & -\Gamma(s)^{-1} \int_0^1 t^{s-1} \Pi_0 e^{-t \mathcal{D}_M^2} dt + \Gamma(s)^{-1} \int_1^\infty t^{s-1} (1 - \Pi_0) e^{-t \mathcal{D}_M^2} dt \\ (11.10) \\ &= & -s^{-1} \Gamma(s)^{-1} \Pi_0 + \Gamma(s)^{-1} e^{-\frac{1}{4} \mathcal{D}_M^2} \left(\int_{\frac{1}{2}}^\infty (t + \frac{1}{2})^{s-1} (1 - \Pi_0) e^{-t \mathcal{D}_M^2} dt \right) e^{-\frac{1}{4} \mathcal{D}_M^2}. \end{split}$$

The projection Π_0 is a smoothing operator, as is $e^{-\frac{1}{4}\mathcal{P}_M^2}$. Moreover, the function $s^{-1}\Gamma(s)^{-1}$ is entire and using (11.8) we see that $s \to \int_{\frac{1}{2}}^{\infty} (t+\frac{1}{2})^{s-1} (1-\Pi_0) e^{-t\mathcal{P}_M^2} dt$ is a holomorphic map from $\mathbb C$ to $\mathcal{L}\left(L^2(M,\mathcal{S})\right)$. It then follows that $(R(s))_{s\in\mathbb C}$ is a holomorphic family of smoothing operators.

In addition, as the principal symbol of \mathbb{Z}_M^2 is scalar (it is equal to $\mathrm{id}_{\mathfrak{F}_x} |\xi|_g^2$), it commutes with all principal symbols. Therefore, by arguing as in $(\ref{eq:property})$ we see that if $P \in \Psi^m(M, \mathfrak{F})$, then the commutator $[\mathbb{Z}_M^2, P]$ is a Ψ DO of order $\leq m+1$. An immediate induction then shows that

$$P^{[j]} \in \Psi^{m+j}(M, \mathcal{S}) \qquad \forall j \in \mathbb{N}.$$

In particular, we see that the operator $P_{\alpha} = f^0 c (df^1)^{[\alpha_1]} \cdots c (df^{2k})^{[\alpha_{2k}]}$ is a Ψ DO of order $\leq \alpha_1 + \cdots + \alpha_{2k} = |\alpha|$.

Bearing all this in mind and using (11.9), we see that, for $\Re z > -(k + \frac{1}{2}|\alpha|)$, (11.11)

$$I\!\!P_\alpha |I\!\!D_M|^{-2(k+|\alpha|)-2z} = \Gamma(k+|\alpha|+z)^{-1} \int_0^1 t^{k+|\alpha|+z-1} I\!\!P_\alpha e^{-tI\!\!D_M^2} dt + I\!\!P_\alpha R(k+|\alpha|+z).$$

The convergence of the above integral is ensured by the equality

$$(11.12) \quad t^{k+|\alpha|+z-1} P_{\alpha} e^{-t \mathcal{D}_{M}^{2}} =$$

$$t^{k+|\alpha|+z-1} P_{\alpha} \Pi_{0} + t^{k+\frac{1}{2}|\alpha|+z-1} P_{\alpha} |\mathcal{D}_{M}|^{-|\alpha|} \cdot (t \mathcal{D}_{M}^{2})^{\frac{|\alpha|}{2}} (1 - \Pi_{0}) e^{-t \mathcal{D}_{M}^{2}},$$

and the following facts:

- The operators $I\!\!P_{\alpha}\Pi_0$ and $I\!\!P_{\alpha}|I\!\!D_M|^{-|\alpha|}$ are bounded, since the former is smoothing and the latter is a zeroth order Ψ DO.
- For all t > 0,

$$\|(t\!\!\not\!\!D_M^2)^{\frac{|\alpha|}{2}}(1-\Pi_0)e^{-t\!\!\not\!\!D_M^2}\|\leq \sup_{\lambda\geq \mu}\lambda^{\frac{|\alpha|}{2}}e^{-\lambda}.$$

Actually, for all $\epsilon > 0$, we can rewrite (11.12) in the form,

Observe that, as $\{P_{\alpha}R(k+|\alpha|+z)\}_{z\in\mathbb{C}}$ is a holomorphic family of smoothing operators, the function $z\to \operatorname{Str}[P_{\alpha}R(k+|\alpha|+z)]$ is entire. Therefore, using (11.5) and (11.13) we get

$$\begin{split} (11.14) \quad & \oint \gamma \mathbb{P}_{\alpha} |\mathbb{P}_{M}|^{-2(|\alpha|+k)} = 2\operatorname{Res}_{z=0} \operatorname{Str} \left[\mathbb{P}_{\alpha} |\mathbb{P}_{M}|^{-2(k+|\alpha|)-2z} \right] \\ & = 2\Gamma(k+|\alpha|)^{-1} \operatorname{Res}_{z=0} \int_{0}^{1} t^{k+|\alpha|+z-1} \operatorname{Str} \left[\mathbb{P}_{\alpha} e^{-t \mathbb{P}_{M}^{2}} \right] dt. \end{split}$$

Furthermore, the potential singularity at z=0 of $\int_0^1 t^{k+|\alpha|+z-1} \operatorname{Str}\left[\not\!\!P_{\alpha} e^{-t\not\!\!D_M^2} \right] dt$ only depends on the behavior of $\operatorname{Str}\left[\not\!\!P_{\alpha} e^{-t\not\!\!D_M^2} \right]$ as $t\to 0^+$.

If $\alpha \neq 0$, then by (11.6) we have

$$t^{k+|\alpha|-1}\operatorname{Str}\left[\mathbb{P}_{\alpha}e^{-t\mathbb{D}_{M}^{2}}\right]=\mathrm{O}(1),$$

and hence $\int_0^1 t^{k+|\alpha|+z-1} \operatorname{Str} \left[\mathbb{P}_{\alpha} e^{-t \mathcal{D}_M^2} \right] dt$ is regular at z=0. Thus,

If $\alpha = 0$, then (11.6) gives

$$t^{k-1} \operatorname{Str} \left[\mathbb{P}_0 e^{-t \mathbb{D}_M^2} \right] = t^{-1} \beta_k + \mathcal{O}(1),$$

where we have set $\beta_k := (2i\pi)^{-\frac{n}{2}} \int_M f^0 df^1 \wedge \ldots \wedge df^{2k} \wedge \hat{A}(R^M)^{(n-2k)}$. Thus,

$$\int_0^1 t^{k+z-1} \operatorname{Str} \left[\mathbb{P}_{\alpha} e^{-t \mathbb{P}_M^2} \right] dt = \int_0^1 t^{z-1} \beta_k dt + h(z) = z^{-1} \beta_k + h(z),$$

where h(z) is a function which is regular near z = 0. Combining this with (11.14) then gives

Combining (11.4) with (11.15) and (11.16) we obtain

$$\varphi_{2k}(f^0, \dots, f^{2k}) = c_{k,0} \oint \gamma \mathbb{P}_0 |\mathbb{P}_M|^{-2k} = \frac{1}{2} \frac{\Gamma(k)}{(2k)!} \cdot 2\Gamma(k)^{-1} \beta_k$$
$$= \frac{(2i\pi)^{-\frac{n}{2}}}{(2k)!} \int_M f^0 df^1 \wedge \dots \wedge df^{2k} \wedge \hat{A}(R^M)^{(n-2k)}.$$

This proves (11.3) when $k \geq 1$.

It remains to compute φ_0 . Let $f^0 \in C^{\infty}(M)$. As $\Gamma(z) \sim z^{-1}$ near z = 0, we have

$$(11.17) \quad \varphi_0(f^0) = \operatorname{Res}_{z=0} \left\{ \Gamma(z) \operatorname{Str} \left[f^0 (\not\!\!\!D_M |^{-z} + \Pi_0) \right] \right\}$$

$$= 2 \operatorname{Res}_{z=0} \left\{ \Gamma(2z) \operatorname{Str} \left[f^0 |\not\!\!\!D_M |^{-2z} \right] \right\} + \operatorname{Res}_{z=0} \left\{ \Gamma(z) \operatorname{Str} \left[f^0 \Pi_0 \right] \right\}$$

$$= \operatorname{Res}_{z=0} \left\{ \Gamma(z) \operatorname{Str} \left[f^0 |\not\!\!\!D_M |^{-2z} \right] \right\} + \operatorname{Str} \left[f^0 \Pi_0 \right].$$

As in (11.13), for $\Re z > n$ we have

$$(11.18) \quad \Gamma(z)\operatorname{Str}\left[f^{0}|\not\!\!\!D_{M}|^{-2z}\right] = \int_{0}^{1} t^{z-1}\operatorname{Str}\left[f^{0}e^{-t\not\!\!\!D_{M}^{2}}\right]dt + \Gamma(z)\operatorname{Str}\left[f^{0}R(z)\right].$$

The local index theorem (i.e., Theorem 8.10.5) implies that

$$t^{-1} \operatorname{Str} \left[f^0 e^{-t \mathcal{D}_M^2} \right] = t^{-1} \int_M f^0(x) \operatorname{Str}_{\mathcal{S}} k_t(x, x) = t^{-1} \beta_0 + \mathrm{O}(1),$$

where we have set $\beta_0=(2i\pi)^{-\frac{n}{2}}\int_M f^0\hat{A}(R^M)^{(n)}$. Therefore, by using similar arguments as those for proving (11.16) we get

$$\operatorname{Res}_{z=0} \int_{0}^{1} t^{z-1} \operatorname{Str} \left[f^{0} e^{-t \mathcal{D}_{M}^{2}} \right] dt = \beta_{0}.$$

Furthermore, as (11.10) shows that $R(0) = -\Pi_0$, we have

$$\operatorname{Res}_{z=0} \left\{ \Gamma(z) \operatorname{Str} \left[f^{0} R(z) \right] \right\} = \operatorname{Str} \left[f^{0} R(0) \right] = - \operatorname{Str} \left[f^{0} \Pi_{0} \right].$$

Therefore, taking residues at z = 0 of both sides of (11.18) yields

(11.19)
$$\operatorname{Res}_{z=0}\left\{\Gamma(z)\operatorname{Str}\left[f^{0}|\not\!\!\!D_{M}|^{-2z}\right]\right\} = \beta_{0} - \operatorname{Str}\left[f^{0}\Pi_{0}\right].$$

Combining (11.17) with (11.19) gives

$$\varphi_0(f^0) = \beta_0 - \text{Str}\left[f^0\Pi_0\right] + \text{Str}\left[f^0\Pi_0\right] = \beta_0 = (2i\pi)^{-\frac{n}{2}} \int_M f^0 \hat{A}(R^M)^{(n)}.$$

This is Eq. (11.3) when k = 0. The proof is thus complete.

Let $e \in M_q(C^\infty(M))$, $e^2 = e^* = e$ and let us denote by E the vector bundle im e; this is a subbundle of the trivial Hermitian bundle $M \times \mathbb{C}^q$. We endow E with the induced Hermitian metric and the Grassmanian connection $\nabla^0 := e(d \otimes 1_q)$.

Let $\mathcal{D}_E: C^{\infty}(M, \mathcal{S} \otimes E) \to C^{\infty}(M, \mathcal{S} \otimes E)$ be the twisted Dirac operator associated to ∇^0 , that is,

$$\mathbb{D}_E := \mathbb{D}_M \otimes 1_E + (c \otimes 1_E)(1_{\mathcal{S}} \otimes \nabla^0).$$

As we are using the Grassmanian connection, we know that

$$D_E = (D_M)_e = e(D_M \otimes 1_q).$$

Thus,

(11.20)
$$\operatorname{ind} \mathcal{D}_{E} = \operatorname{ind}(\mathcal{D}_{M})_{e} = \operatorname{ind}_{\mathcal{D}_{M}}[e] = \langle \varphi_{\mathrm{CM}}, e \rangle.$$

Observe that (11.3) exactly means that the CM cocycle $\varphi_{\rm CM}$ agrees with the even cocycle φ_{C} associated to the even de Rham current C defined by

$$(11.21) \qquad \langle C, \omega \rangle = (2i\pi)^{-\frac{n}{2}} \int_{M} \left[\hat{A}(R^{M}) \wedge \omega \right]^{(n)} \qquad \forall \omega \in C^{\infty}(M, \Lambda_{\mathbb{C}}^{\text{ev}} T^{*}M).$$

That is, C is the Poincaré dual of the even form $(2i\pi)^{-\frac{n}{2}}\hat{A}(R^M)$. Therefore, by the results of Chapter 10,

$$\langle \varphi_{\rm CM}, e \rangle = \langle \varphi_C, e \rangle = \langle C, \operatorname{Ch}(F^0) \rangle,$$

where F^0 is the curvature of ∇^0 and $\operatorname{Ch}(F^0)$ its Chern form. Combining this with (11.20) and (11.21) then gives

$$\operatorname{ind} {\not \!\! D}_E = (2i\pi)^{-\frac{n}{2}} \int_M \left[\hat{A}(R^M) \wedge \operatorname{Ch}(F^0) \right]^{(n)}.$$

This is the local index formula of Atiyah-Singer for D_E .

Bibliography

[Po] Ponge, R.: A new short proof of the local index formula and some of its applications. Comm. Math. Phys. 241 (2003) 215–234.