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PREMIERE PARTIE

Cursus magistere






Premiére année

J’ai suivi les cours suivants:
— Licence de mathématiques:

— Analyse 1 (Intégration) - Y. Brenier
— Géométrie différentielle 1 - J.P. Labesse

— Licence de physique:

— Mécanique statistique 1 - M. Moreau
— Mécanique quantique 1 - C. Delalande

— Modeéles aléatoires en physique - B. Derrida,

— Maitrise de mathématiques:

Analyse 2 (Analyse fonctionnelle et distributions) - L. Desvillettes
— Théories spectrales - G. Skandalis

— Algébre 2 (Topologie algebrique) - L. Schwartz

— Représentations linéaires des groupes finis - A.M. Aubert

— Modélisation et analyse - H. Berestycki

— Physique macroscopique - Y. Pomeau

— Exposé:

Exposé sur la formule de Feynman-Kac sous la direction de Y. Brenier.

Deuxiéme année:

En deuxiéme année j’ai passé 'agrégation et j’ai effectué un DEA de maths pures & Orsay. J’ai obtenu les
AEA suivantes:

— Introduction au calcul pseudo-différentiel - P. Gérard
— C*-algébres et feuilletages (Paris 7) - G. Skandalis
— Méthode de Laplace et équation de Schridinger en grande dimension - B. Helffer

J’ai fait mon stage de DEA sous la direction d’Alain Connes qui m’a demander de rédiger un mémoire sur la
trace de Dixmier.

J’ai aussi assisté aux séances du groupe de travail de géométrie organisé par Eric Leichtnam et Francois Golse
a ENS et dont le but était la lecture d’une note d’Alain Connes et de Bernard Julia établissant un lien entre
théorie des nombres et mécanique statistique via la théorie des algebres de Von Neunman.

Enfin j’ai assisté a quelques séances du séminaire d’algebres d’opérateurs organisé par Georges Skandalis et
Alain Connes au College de France.

Troisieme année

J’ai commencé une these sous la direction d’Alain Connes dont le but est de définir un analogue du résidu de
Wodzicki pour les variétés de Heisenberg.

J’ai suivi deux cours cette année. Le premier était le cours d’Alain Connes au Collége de France ”Fondements
de la géométrie non commutative et modéle standard des interactions électromagnétiques faibles et fortes”. Le
deuxiéme était celui de J.B. Zuber (CEA) dans le cadre du DEA de maths de Paris 7 ”Théories quantiques des
champs”.

J’ai participé & une école d’été de géométrie et physque & Sinaia (Roumanie). J’y ai suivi deux cours d’in-
troduction, I'un sur les théories de jauge par V. Rivasseau (prof. X) et 'autre sur les groupes quantiques par P.
Roche (CNRS-X).

J’ai aussi participé au groupe de travail de géométrie ”Opérateurs de Dirac, théorémes de lindice et géométrie
non commutative” organisé par E. Leichtnam, F. Golse et V. Maillot & PENS. J’ai fait deux exposés, I'un sur
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les opérateurs de Dirac, I’autre sur la cohomologie cyclique des fonctions lisses sur une variété et du tore non
commutatif.

Enfin j’ai assisté a plusieurs séances du séminaire d’algebres d’opérateurs organisé par Georges Skandalis et
Alain Connes au College de France, notammemt aux quatres conférences données par M. Wodzicki.



DEUXIEME PARTIE

Thémes de recherche






Fondements de la géométrie non
commutative

La géomeétrie de Riemann permet de définir des notions de droite et de distance pour des espaces non euclidiens.
Sa donnée préalable est celle d’une variété M paramétrée par un nombre fini de coordonnées réelles z* et d’une
métrique g sur ’espace tangent :

”X”2 :gp,uqudXV VX € TM.
Les droites sont déterminées par 1’équation des géodésiques:

2+ . dz” dz”

> v dt dt

La distance entre deux points = et y de M est donnée par:

1
d(z,y) = inf{/o IF@I 5 v € CH([0,1], M), 7(0) = z,7(1) = y}

La géométrie riemannienne est 1la cadre mathématique de la relativité générale car elle fournit un excellent modele
de ’espace-temps pour des échelles de distances pas trop petites. Mais ce n’est plus le cas des qu’on aborde des
échelles de distances de ’ordre de la longueur de Planck:

I, = (Gh/c*)? ~ 1073 cm.

D’autre part, sila mécanique est adequat pour décrire les petites distances ce n’est pas une théorie relativiste. L’un
des buts de la géométrie non commutative est de développer le formalisme opératoriel de la mécanique quantique,
et plus précisement, celui de la mécanique des matrices de Heisenberg, afin d’obtenir un cadre géométrique
permettant une description plus souple de ’espace-temps a courte comme a grande échelle. Ce qui est remarquable
c’est que le cadre est suffisamment large pour pouvoir traiter les espaces riemanniens, les espaces discrets, les
espaces de configuration de la théorie quantique des champs ou les espaces duaux des groupes discrets non
nécessairement commutatifs.

La donnée d’un espace géométrique est alors celle d’un triplet spectral (A,7H,D) ou A est une algebre
involutive unifére se rprésentant dans ’espace de Hilbert H et D est un opérateur non borné auto-adjoint de
H. Ceci correspond & la dualité espace <+ algebre. Par exemple le théoreme de Gel’fand affirme que si A est
une C™*-algebre commutative alors elle est isomorphe & la C*-algebre des fonctions continues sur son spectre, i.e.
I’espace compact Sp A des caracteéres de .4 munis de la topologie faible.

1 Calcul quantifié
La premiere étape pour définir une géométrie est de se donner un calcul infinitésimal permettant de passer

du local au global. Notre cadre est imposé par la mécanique, c’est celui d’un espace de Hilbert séparable H qui
se décomposant en somme directe :

H="Hi & Ha,
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de deux sous-espaces orthogonaux de dimensions infinies. Ceci revient a se donner un opérateur F' de H tel que:
Fly, =idy, et Fly, = —idyy, -
En particulier:
F*=F et F? =1.

Donnons les premieres lignes du dictionnaire exprimant dans le langage opératoriel de la mécanique quantique
les principales notions du calcul infinitésimal classique:

CLASSIQUE QUANTIQUE
Variable complexe Opérateur borné de H
Variable rélle Opérateur borné auto-adjoint de H
Infinitésimal Opérateur compact
Infinitésimal d’ordre @ > 0  Opérateur compact tel que p,(T) = 0(n~%)
Différentielle de f df = [F, f]
Intégrale [ Trace de Dixmier {

o Variable complexe-variable réelle
Ces deux lignes sont usuelles en mécanique quantique. L’ensemble des valeurs d’une variable T' € £(H) est
donné par son spectre :

SpT ={AeC; (T -\ € L(H) ).

Le calcul fonctionnel holomorphe permet de sens & f(7") pour toute fonction holomorphe au voisinage de Sp T,
ce qui permet de faire de ’analyse complexe. Mais lorsqu’on veut faire de 1’analyse réelle et définir f(T) pour
toute fonction borélienne sur Sp T cela n’est possible que pour 7" normal, i.e. 7*T = T*T'. Or lorsque Sp7T C R,
cette derniere condition est équivalente & la condition 71" auto-adjoint”.

o Opérateurs infinitésimaux
On veut définir la notion d’opérateur infinitésimal, c.a.d. d’opérateur dont les valeurs sont infiniment petites.
La condition :

IT|<e Ve>0.

n’est pas satisfaisante mais on peut ’affaiblir en:
Pour tout € > 0 il existe un sous-espace E de H de dimension finie telle que ||T|g.|| < e.

Cela signifie que pour tout € > 0 on a ||T'|| < € en dehors d’un sous-espace de dimension finie. Cette propriété
est caractéristique des opérateurs compacts, c.a.d. des opérateurs bornés de H dont ’image de la boule unité est
relativement compacte. L’ensemble X des opérateurs compacts est un idéal bilatére fermé maximal de £(H) de
sorte que si S et T sont des opérateurs bornés de H on a:

T infinitésimal = ST et T'S infinitésimaux,
T infinitésimal <= |T| infinitésimal.
Ici |T| = (T*T)? est le module de T. On en déduit la caractérisation suivante des opérateurs compacts :

Un opérateur T' € L(H) est compact si, seulement si, le spectre de —T— est formé d’une suite de
valeurs propres de multiplicités finies qui tendent vers 0.

Si T est compact on range les valeurs propres de |T'| comptées avec leurs multiplicités en suite décroissante de
réels positifs :

po(T) 2 p(T) 2 ... 2 pu(T) > ... .

En particulier po(7) = ||T]|- On dit que p,(T) est la n-iéme valeur caractéristique de T'. Les valeurs caractéris-
tiques permettent de mesurer la taille de I’infinitésimal 7' car le principe du min-max affirme qu’on a:

1a(T) = mf{|T|ps ] ; dimE = n}.
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On dit que T est un infinitésimal d’ordre a > 0 si on a:

pn(T) = 0(n™").
L’ensemble des infinitésimaux d’ordre « est un idéal bilatére et on a:

T, infitésimal d’ordre o,

PP ,
T, infitésimal d’ordre as ) —> T T infitésimal d’ordre aqas,

de sorte qu’hormis la, commutativité toutes les régles algébriques du calcul infintésimal classique sont conservées.

A ce stade, comme la taille d’un infinitésimal est mesurée par une suit pu,, — 0, il pourrait sembler inutile d’uti-
liser le formalisme opératoriel. On pourrait remplacer 'idéal K de £(H) par l'ideal ¢o(N) des suites convergeant
vers 0 dans algebre [°°(N) des suites bornées. Cette version commutative ne convient pas car tout élément de
[*°(N) a un spectre ponctuel. Ce n’est que la non commutativité de £L(H) qui permet la co-existence de variables
ayant un spectre de Lebesgue avec des variables infinitésimales.

o Différentielle
Cette ligne utilise de maniére cruciale la non commutativité de £(H). Le passage de la différentielle classique

df = 8‘1{‘ dz* a la différentielle quantique df = [F, f] est analogue au passage en mécanique quantique du

crochet de Poisson {f, g} au commutateur [f, g] de deux obsevables. De plus, ’égalité F? = 1 implique :
=[F[Ffl]=0 Vfe A

o Trace de Dizmier
On cherche un analogue quantique de l'intégrale. Pour cela on cherche une trace sur £(H) de telle sorte que:

— son domaine de définition contienne les infinitésimaux d’ordre 1,
— elle s’annulle sur les infinitésimaux d’ordre < 1.

On a une trace naturelle sur £(H). Elle est définie sur 'idéal bilatere normé £' des opérateurs & trace:

TeLl' <> pun(T) < o,
n>0

ITlh =3 wn) VT e L'
La trace de T € L' est donnée par la valeur de la somme :

Trace(T) = Z<£n|T£n>

n=0

olt (&n),,>0 est une base orthonormée de L£(#) (la valeur de la somme est indépendante du choix de la base
(€n),>0)- Cette trace ne convient pas car elle satisafait & aucune des deux proprietés voulues. Néanmoins le
probleme est résolu par la trace de Dixmier.

L’ensemble naturel de définition de la trace de Dixmier est I'idéal bilatére normé £(:°) obtenu par interpo-
lation réelle de £! et de K :

(Leo) — ou(T)
£ =1 i>€ logu < ook
ou(T)

1T (1,00) = sup VT € £,
u

e logu
Ici oA(T) est la fonction d’interpolation de £! et K, définie pour tout 7' € K et A > 0 par:
ox(T) = inf{||z|ls + Mly|| ; (z,9) € L' xK et z+y =T} VA > 0.

Pour tout 7' € K la fonction A + o(T") est affine entre deux entiers consécutifs et pour tout entier N on a:
= Z pn(T)
n<N
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Autrement dit cette fonction est I'interpolation affine des sommes partielles ) p1n(T). En terme de boule
unité, disons que la boule unité pour oy est I’enveloppe convexe de la boule unité de £' et de A~! fois la boule
unité de K. Soit L’E:’Oo) le cone positif des élements positifs de £(1:°°). L’application de Esrl ) dans Ci([e, +00)) :

T +— oA(T) .
log A A>e

n’est pas additive. Néanmoins lorsqu’on considere la moyenne de Cesaro de A —> par rapport a la mesure
’ dditive. Néanmoins lorsqu’ idere 1 de C de X > 20 a1
de Haar d—;‘ du groupe multiplicatif R :
1 [*ou(T)d
(T) = / ou(T) du VT € £ vA > 1,

logA J; logu w

on a l'inégalité asymptotique:
(loglog A + 2) log 2

ITA(T1 + To) — a(Th) — a(T2)] < 111 + Toll(1,00) oz

Cette inégalité est la clé pour définir la trace de Dixmier. Elle signifie que les fonctionnelles 7 sont de deviennent
additives lorsque A devient infini. Il en résulte que tout limite simple 7 de ces fonctionnelles définit une trace
positive additive sur £(1:%)

T(ST) =7(TS) VS € L(H) VT € L),

T>0= 7(T) >0,
1
pn(T) = o) = 7(T) =0,
= (1,00)
_ _ 1,00
NgnmlogN;pn(T)_Lzr(T)_L T e £,

On dit que T' € £(1:%) est mesurable si la valeur de 7(T) est indépendante du point limite 7. On note alors cette
valeur {T; c’est la trace de Dixmier de T'.

Exemples. 1) Soit M une variété compacte riemannienne de dimension n et P un ¥DO (opérateur pseudo-
différentiel) sur M d’ordre —n. Alors, opérateur P s’étend en un opérateur borné de L?(M) qui est un opérateur
infinitésimal d’ordre 1 mesurable pour la trace de Dixmier. Sa trace de Dixmier est donnée par :

][P: lResP,
n

Res P = (27) " / o n(P)(z, €)dude,
S* M

ou Res P est le résidu de Wodzicki de P :

ol S*M est le fibré en spheres du fibré cotangent T*M et o_, (P) est le symbole principal de P. Lorsque P est
un ¥DO sur M d’ordre quelconque, son symbole d’ordre —n n’est défini que localement, mais on peut montrer
que l’intégrale:

Vi@ [ (P e

peut étre définie globalement sur M comme une 1-densité. Il en résulte que le résidu peut de Wodzicki est défini
pour n’importe quel DO sur M et qu’on peut prolonger la trace de Dixmier & toute ’algebre des DO sur M
en posant :

1
fP:EResP VP e ¥(M).
2) Soit S le cercle unité de C. On a un calcul quantifié sur S* pour H = L?(S!) et F définit par:
F(en) = Sign(n)ena en(m) = e Vx € Sl.
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Soit J I’ensemble de Julia associé au systeme dynamique z — 22 + ¢ (¢ # 0):

J = 08B, B ={z; sup|¢™(2)| < co}.
neN

Pour ¢ petit, J est une courbe de Jordan et B est la composante bornée de son complementaire. On peut alors
montrer qu’il existe une équivalence conforme entre B et le disque unité ouvert D. Cette équivalence se prolonge
en un homéomorphisme de D dans B dont 'inverse définit par restriction un homéomorphisme Z : S* + J. La
dimension de Hausdorff de la courbe de Jordan est un réel p > 1 de sorte que la fonction Z n’est nulle a variation
bornée et qu’on ne peut pas définir |Z’'| méme en invoquant les distributions. Néanmoins dZ| a un sens dans
notre calcul infinitésimal et il vérifie les propriétés suivantes :

~ Dopérateur {Z| est un infinitésimal d’ordre  ;
— pour toute fonction continue sur J, Popérateur f(Z){@Z|P est mesurable;

— il existe une constante C; > 0 de telle sorte qu’on ait:

f r@ypzr =c, /J fah,  VfeCw),

ol dA, désigne la mesure de Hausdorff sur J.

2 Notion de variété en géométrie non commutative

2.1 Cas des variétés riemanniennes
Soit n € N et (A, #H, D) un triplet spectral. Lorsque n est pair on suppose que H est Zs-gradué par -y :
v =7 et 2 =1.

Lorsque I’algebre involutive A est commutative, on paut caractériser les triplets spectraux provenant d’une variété
compacte de dimension n par les axiomes (1) & (7) qui vont suivre. Les deux premiers axiomes sont :

(1) Dimension. L'opérateur ds = D~! est infinitésimal d’ordre L.
(2) Ordre 1. On a [[D,a],b] = 0 pour tout a et b dans A.

Dans le cas ou D agit sur les sections d’un fibré au-dessus d’une variété M, 'axiome (2) dit précisement que D
est un opérateur différentiel d’ordre 1

(3) Régularité. Pour tout a € A, les opérateurs a et [D,a] sont dans N dom 6%, ol § est la dérivation de £(H):
T — [|D|,T].

Un cycle de Hochschild ¢ € Z (A, A) est un élément de A®™ T tel que bc = 0, ol b est le bord de Hochschild :
n—1
ba’®a' ®...®a") =) (-1)a"®...dd" ®...®ad"
7=0
+(-D"a"a’ ®...®@a" .
Conceptuellement I’homologie de Hochschild est la formulation algebrique des formes différentielles.

(4) Orientabilité. 1l existe un cycle de Hochschild ¢ € Z,,(A, A) tel que 7(c) = «v (cas pair) ou w(c) = 1 (cas
impair), ot 7w est 'unique application linéaire de A" telle que:

ma®®a' ®...®a") =d’[D,a']...[D,a"] Vd’ € A.

Il résulte de cet axiome que pour tout a € A l'opérateur ads™ est mesurable, ce qui nous permet d’énoncer
I’axiome suivant :

(5) Finitude. Le A-module & = Ny, dom D* est projectif de type fini, et il existe une unique métrique hermtienne
(.,.) : % = A telle que:

(a€,n, =) 7[ a(e,mds” V(e 1) € 2, Va € A.
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On définit les K-groupes de A de la facon suivante :

— Le groupe Ko (A) est le groupe abélien engendré par le semi-groupe des classes d’équivalences des projecteurs
de M (A): deux projecteurs e, f dans My (A) (e = e* = eet f2 = f* = f) sont dits équivalents s’il existe
u € My(A) telle que u*u = e et wu* = f. La somme sur Ko(A) correspond & 'opération de somme directe :

(e,f) 2> edf.

— Le groupe K1 (A) est le groupe abélianisé de Gl (A), c.a.d. son quotient par le sous-groupe des commuta-
teurs.

On définit 'indice de D & coefficient dans K, (A), ou n varie modulo 2, comme V'application additive ind D :
K, (A) — Z définie par:

— si n est pair:
(ind D, [e]) = inde(D4 ® Ix)e Ve € Proj My (A),
ou Dy = (1—p)Dpavecp=1(1+7).
— si n est impair :
(ind D, [u]) = ind(P ® I})u(P ® I}) Yu € Gl (A),
o P =1(1+F) avec F =signD.
L’application diagonale:
m: AR A— A, m(a®b) =ab V(a,b) € A2,

définit par fonctorialité une application m. : K,(A ® A) — K,(A), qui composée avec ind D donne la forme
d’intersection :
Kn(A) x Kp(A) — Z
(z,y) — (ind D,m.(z @ y)).

On peut alors énoncer 1’axiome (6) :
(6) Dualité de Poincaré. La forme d’intersection K, (A) x K,(A) — Z est inversible.

Comme A est commutative, il en est de méme de la fermeture normique de A dans L£(#), la C8-algebre A.
Le théoreme de Gel’fand affirme alors que A est I’algébre des fonctions continues sur ’espace X = Sp A des
caracteres sur A (i.e les morphismes d’algébres unitaux de A dans C). Mais comme tout caractére de A se
prolonge automatiquement en un caractere de A, ’espace X est celui des caracteres de 4. Grace & un théoreme
de D. Sullivan cette dualité de poincaré caractérise les espaces X ayant le type d’homotopie d’une variété. Ceci
requiert 'utilisation de la K-théorie réelle plutdt que la K-théorie complexe ci-dessus et ’axiome (7) affirme
précisemment ’existence d’une telle structure pour A:

(7)Réalité. Tl existe une isométrie anti-linéaire J : H — H telle que:

JaJ ! =a* Va € A,
J? =, JD =¢€'DJ, Jy =¢€'~vJ,

ol €, € et € sont déterminés par la valeur de n modulo 8 selon le tableau:

-1 11 1 -1

0 6
11 -1 -1 -1 -1 1 1
1 1
1 -1 1 -1

Si le triplet spectral (A, H, D) vérifie les axiomes (1) & (7), alors X est une variété compacte de dimension n. On
peut montrer qu’il existe une unique métrique riemannienne g(7) sur X de telle sorte que la distance géodésique
soit donnée par :

d(z,y) = sup{la(z) —a(y)| ; a € A ||[D,all| <1}
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Cette métrique g(m) ne dépend que de la classe d’équivalence unitaire de 7. Réciproquement, ’algébre A étant
fixée et étant donnée une métrique riemannienne de la forme g(7) ci-dessus, il existe une unique structure
spinorielle S, sur X telle que g soit donnée par le triplet spectral (A, H,,D,), ou H, = L*(X,S,) et D, est
I'opérateur de Dirac. Dans ce cas la valeur de chs"_z est minamale et égale a ’action d’Hilbert-Einstein pour la
métrique g:

2[n/2](n, — 2)
d 2= — n d" ’ n = ’
][ y ¢ /X’"‘/E T a(amnr (2 4 1)

ou r désigne la courbure scalaire et ,/gd"z la densité riemannienne.

2.2 Variétés spectrales

Montrons comment on peut définir une notion de variété lorsque ’algebre A n’est plus commutative.

le produit de A n’intervenant pas dans la formulation des axiomes (1), (3) et (5) on peut les laisser inchangés.
Commencons par modifier I’axiome (7). Le point de départ est la théorie de Tomita qui associe & tout vecteur
& € H cyclique pour A et son commutant A’ :

At =H et Ale =H,
une involution anti-linéire isométrique J : H — H, obtenue & partir de la décomposition polaire de I'opérateur :
Saf = a*¢ Va € A,
et qui vérifie de plus:
JA'JTL = A

En particulier, on a [a,b°] = 0 V(a,b) € A2, ou on utilise la représentation suivante de 1’algeébre opposée A°
dnas H :

a® = Ja*J ! Va € A.

Lorsque A est commutative on a a = a®° Va € A, de sorte que 'égalité de I’axiome (7) a = Ja*J~! Vae€ A
est compatible avec I'involution de Tomita. On en déduit que dans le cas non commutatif, pour que ’axiome (7)
soit toujours compatible avec l'involution de Tomita on doit remplacer cette égalité par:

(7°) Pour tout a et b dans A on a [a,b°] = 0 ou b° = Jb*J L.
Le reste de I’axiome (7) reste inchangé. Ceci munit # d’une structure de A ® .A%-module:
a®b.£ =alb*JIE V¢ € H,V(a,b) € A2

et permet définir une classe p de K R"-homologie (n variant modulo 8) pour ’algébre A ® A° munie de I’auto-
morphisme anti-linéaire :

T@a®b®)=b*®a®  V(a,b) € A%

Le produit d’intersection de Kasparov permet alors de formuler la dualité de Poincaré comme I’invertibilité de
e

(6) 1l existe 8 € KR, (A ® A% telle que:

BRap=1ida, et B®a, f=1d4 .

L’homologie de Hochschild peut étre définie & coefficient dans un bimodule et on peut munir ’algebre 4 ® A°
d’une structure de A-bimodule:

a(b® P)d = (abd) @  V(a,b,c,d) € AL,
On remplace alors I’axiome (4) par:

(4) 1l existe un cycle de Hochschild ¢ € Z, (A, A ® A°) tel que 7(c) = v (cas pair) ou m(c) = 1 (cas impair).
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Ici ¢ est un élement de (A ® A°) ® A®" et 7(c) est définit 4 I’aide de la représentation de A ® A° dans H.
Enfin on remplace I’axiome (2) par:

(2’) Pour tout a et b on a [[D,a],b°] = 0.

On appelle alors variété spectrale de dimension n tout triplet spectral (A, H, D) qui vérifie les axiomes (1)-(7).
L’algebre A une fois fixée, une géométrie spectrale sur A est déterminée par la classe déquivalence unitaire du
triplet spectral (A, H, D) avec isométrie J. Deux triplets spectraux (A;, H;, D;) (i=1,2) sont dits unitairement
équivalents s’il existe un unitaire U : H; — Hs tel que:

Urmi(a)U* = m2(a) Va € A,
UD,U* = D, ULU* = Ja,
(et Uy U* = 7y, dans le cas pair).
Dans le cas non commutatif le role du groupe Diff (X) des difféomorphismes de la variété X est joué par le

groupe Aut(A) des automorphismes de I’algebre involutive 4. Dans la cas commutatif on a un isomorphisme
entre Diff (M) et Aut(C°°(M)) donné par:

a—ag,  aslf) =Ffod™' VfeC®(M),VgDiff(M).
Le groupe Aut(.A) agit sur les géométries de A par composition :
T — Mo ma(a) = m(a"l(a)) Va € A,Va € Aut(A).

Dans le cas non commutatif le groupe Aut(A) admet un sous-groupe normal non trivial, le groupe Int(A) des
automorphismes intérieurs, i.e. les automorphismes de la forme:

a,(a) = u*au Va € A,

ou u € A est unitaire. Si u € A est unitaire la géométrie sur A associée & m,, est équivalente & celle obtenue en
laissant inchanger la représentation 7 mais en faisant la modification suivante sur D :

D — D +u[D,u*] + Ju[D,u*]J .
L’équivalence unitaire étant donnée par 'unitaire :
U=uJuJ ! =u(u*)°.

Cette géométrie est en fait un cas particulier de géométrie obtenue par déformation intérieure de la géométrie
de A. Une telle géométrie est obtenue, sans modification de la représentation w ni de l'involution J, par le
remplacement de D par:

D+ A+ JATY

ou A est un opérateur auto-adjoint de la forme:

A = Zai[D,bi], (a,’,bz’) € ./42.

Exemple. Tore non commutatif. Soit 8 € R/Z. On considére I’algebre involutive :
As =D amnU™V"; (am.n) € S(Z2)},

olt S(Z2?) est I’espace des suites doubles & décroissance rapide. La structure d’algeébre involutive de Ay est donné
par la présentation :

Uv =¥ vy, Ur=uU"", V*=v-1

Pour déterminer une géométrie sur Ap on se donne un nombre complexe 7 tel que 7 > 0. L’espace de Hilbert
Hg est la somme de deux copies de L2(Ag, 7o), ol Ty est la trace normalisée:

7(a) = ag,0, a= Z A U™V",
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et Pespace de Hilbert L?(Ag, 7o) est le complété de Ay pour le produit scalaire:
(a,b) = 19(a™b) Y(a,b) € A3.

La représentation de A4y dans Hy est donné par la multiplication & gauche:

a+— ( )\(Oa) )\(Oa) ) , Ma)b=ab Y(a,b) € A2

L’opérateur Dy est donné par la matrice:

_ 0 (51-’-’7’52
Da_(—al—m 0 )

ou d; et &y sont les dérivations basiques de Ay :

61 (U) = 2inU, 02(U) =0,
0 (V) =0, 02(U) = 2inV.
. . 1 0 ye . 0 Jo N e .
La Zo-graduation est donnée par v = 0 1 et linvolution est Jy = J o )-ou Jo est 'involution
- —Jo

de Tomita :
Joa = a* Va € L*(Ag, m0).

En particulier JoA(a*)J; ' = p(a) est I'opérateur de multiplication & droite par a.
On vérifie qu’on a bien une géométrie spectrale sur 4y et que cette géométrie ne dépend que de 'orbite de 7
pour action PSL(2,Z) sur le demi-plan de Poincaré.

3 Géométrie de I’espace-temps et principe d’action spectral

A des énergies raisonnablement faibles, la description euclidienne de 1’espace-temps se déduit complétement
de la fonctionlle d’action :

T =TI+ ZIswu,

ou:

-1
Ty = d*
B 167G /M r\/g “

est 'action d’Hilbert-Einstein pour la métrique g de la variété riemannienne spinorielle M de dimension 4, et ou :

Isu = / Lsm/9d'z, Lsy =La+Las+ Ly + Los+ Lay,
M
est Paction du modele standard de la physique des particules. Le lagrangien Lgps invoque plusieurs champs de
bosons et de fermions:
— les bosons G' qui sont de spin 1: le photon 7, les bosons médiateurs W= et Z et les huit gluons;

— les fermions f qui sont de spin % et qui foment trois familles de quarks et de leptons associées & leurs

2
anti-particules ;

— les bosons de spin 0 sont les champs de Higgs qui sont introduits pour rendre compatibles la renormalistion
et le phénomene de brisure spontanée de symétrie.

Le groupe de symétrie de Zg et Diff (M) et celui de ZSM est:
U=C®M,U(1) x SU(2) x SU(3)),
de sorte que que le groupe de symétrie de la fonctionnelle d’action 7 est le produit semi-direct :
G = U x Diff(M).
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La premigére étape consiste & trouver un espace géométrique X tel que Diff(X) = G. Dans la cas non commutatif,
le role de Diff (X)) est joué par Aut(A). Ceci nous détermine I’algebre involutive A :

A=C*M)® Ar, Ar =CoH® M5(C),

ou l'algebre involutive Ap est la somme directe des algeébres C des nombres complexes, H des quaternions et
Ms(C) des matrices 3 x 3 & coefficients complexes.

Etant données deux géométries spectrales (A;,H;,D;) (j = 1,2), la premiere étant Zo-graduée par 7, on
peut définir une géométrie produit (A, ?, D) ou on a:

A=A ® A, H=H1 ® Ha, D=D;®1+v ®Ds,.

Comme l’algebre involutive A4 est elle-méme un produit tensoriel, cette construction suggere de prendre comme
modele de l'espace-temps la géométrie produit :

A=C®(M)® Ar, H=L*M,S)@HF, D=0y®1+v ®Dp,

ott L?(M,S) est l'espace de Hilbert des spineurs de carré intégrable et dys est I'opérateur de Dirac de M. La
géométrie (A, Hp,DF) est une géométrie finie sur Ap. L’espace de Hilbert Hr est engendré par les fermions
élémentaires :

Quarks
up (u) charm (c) top (t)
down (d) special (s) bottom (b)
Leptons
neutrino-électron (v,) neutrino-muon (v,) neutrino-tau (v;)
électron (e) muon () tau (1)

1l faut rajouter ’indice de chiralité:
f1s J = L (gauche), R (droite).
sauf pour les neutrinos qui sont tous de chiralité gauche. Les quarks ont de plus un indice de couleur:
¢, j =y (yellow), r (red), b (blue).
Charque particule est associée & une anti-particule:
f—f f particule.

Il y a donc en tout 90 fermions élementaires. La corespondance particule <+ ant-particule nous donne l'involution
J F:

Tr = Nfi+ D mifi) =Y Bifi+ Y Aifi
i j j i
Décrivons 'action de A sur Hp. Soit a = (A, ¢, m) dans Ap. On représente le quaternion ¢ sous forme matricielle :

P A T
(% #)

a
L’action de a sur la premiere famille de quarks est donnée indépendament de I’indice de couleur par:

AQUR = AUR, aur, =o¢uL—BdL,
adgr = /_\dR, ady, = Buy + ady,.

L’action est la méme pour les autres familles de quarks. Pour les leptons ’action est similaire, pour la premiere
famille elle est donnée par:

auy, = av, — fer,

aegr = \eg, ady, = Bv, + aey,.
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L’action sur les anti-particules est :

al = M, [ lepton,
aj=mg, q quark,

ou la matrice m agit sur I'indice de couleur.
L’opérateur Dp est donné par la matrice:

Y 0
DF:(O Y)’

ou Y est la matrice de couplage de Yukawa, de la forme:

Y=(,0L)eY,

avec:
0O 0 M, 0
0 0 0 M, 8 g ]‘g
Ya M: 0 0 0 |’ ME 0 0
0 M; 0 0 e

S’il n’y avait qu’une seule famille de quarks et de leptons M,, My et M, corresponderaient aux masses des
fermions, mais ici cs sont des matrices 3 x 3 dont les coefficients dépendent des masses des fermions et de leurs
proprietés de mélange.

La chiralité la Zs-graduation sur Hp :

vr(fr) = fR, vr(fr) = fr, f part. ou anti-part.

On obtient ainsi une géometrie finie F' qui vérifie les axiomes (1)-(7)’. La deuxiéme étape consiste a calculer les
déformations intérieures de la géométrie produit. Il s’agit de déterminer les opérateurs auto-adjoints de la forme:

A= Zai[Dabi]7 (ai,bi) € .Az.

Comme D =9y ® 1 + v5 ® D, on peut décomposer A en somme de deux termes A9 et A1) provenant de
la commutation avec Oy ® 1 et 5 ® Dp. Le calcul montre que le terme A(®1) rassemble les bosons G et que
A0 redonne les champs de Higgs. En d’autres termes les bosons de jauge s’interprétent naturellement comme
des déformations intérieures de la géométrie de A.

La courbure de A:

0 =dA+ A’ =) [D,bj][D,a;] + A?,
i
redonne la partie bosonique de la fonctionnelle d’action Z, c.a.d. action de Yang-Mills:
][02ds4 =Tym =TI + Tay + Ty
La partie fermionique de Z est obtenue sous la forme:

ol 79 est le vecteur de Hr donné par la somme des vecteurs associés aux particules et D est 'opérateur associé
aA:

D=D+ A+ JAJ L.

Enfin ’action d’Hilbert-Einstein peut s’écrire:

1
IE = = fdsz.
l2
p
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On peut ainsi complétement exprimé la fonctionnelle 7 en termes non commutatifs :
2,4, 1 2 3
I =+ 6%ds* + 2 ds® + (¢, D).
P
Néanmoins cette action dépend de la décomposition D = D + A+ JAJ~! et ne satisfait pas au principe d’action
spectral :

L’action physique ne dépend que du spectre de D.

Ce principe est plus fort que le principe d’invariance par difféomorphisme de la relativité générale et conduit a
la fonctionnelle d’action suivante :

7= ’I‘race(w(%)) + (¢, D),

ol w € CX(R) est paire et vaut 1 sur V'intervalle [0, 1]. Un calcul montre qu’on a:

D

Trace(w( I

)) =T +Iypy+Iw +ZIc+1Ig+ O(A_oo),

ol Zy est un terme de gravité de Weyl, Z¢ est un terme cosmologique et Zr est un terme renormalisable de la
forme [, r?¢,/gd'z.
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Interprétation du résidu de Wodzicki
en termes de la singularité du noyau
pres de la diagonale

Le résidu de Wodzicki [Wo], ou résidu non commutatif, est une trace sur l’algébre des opérateurs pseudo-
différentiels (¥ DO) sur une variété compacte. Etant donné un ¥ DO P d’ordre m sur une variété compacte M
de dimension n et qui agit sur les sections d’un fibré £, la fonction z — Trace PA~% ou A est une laplacien de
M est définie et holomorphe pour £z > %(m +n). Elle se prolonge en une fonction qui est holomorphe sur C\ Z
et qui a au plus des pdles simples sur Z. Le résidu de Wodzicki de P est alors donné par:

res P = 2Res,_q Trace PA™%.

Cela définit une trace sur algébre ¥Z /¥~ et c’est méme la seule & coefficient multiplicatif prés si M est connexe
et de dimension > 1.

Le résidu de Wodzicki a d’importantes implications en géométrie non commutative grace a ses liens avec la
trace de Dixmier [Co] et le théoreme d’indice local de [CM]. 11 a été étendu & d’autres situations comme ’algebre
de Boutet de Monvel pour les variétés & bord [FGLS] et le calcul transversalement elliptique pour les feuilletages
[CM].

Pour le construire et montrer ses principales propriétés Wodzicki utilise le formalisme de la géométrie de cones
symplectiques [Wo]. Néanmoins comme dans [CM], en utilisant les résultats de [BG] et I’approche de [KV], on
en a une description tres simple en termes de la singularité du noyau pres de la digonale. Plus précisement la
trace tr kp(z,y) du noyau de P admet pres de la diagonale un développement asymptotique de la forme

0

tkp(z,y) = Y aj(z,z—y) —cp(z)log|z —y|+ O(1),
j=—(m+n)

ol a;j(z,y) est homogene de degré j en y et cp(z) est une densité intrinséque sur M. Localement,

ep(z) = (27)" / tr 00w (P)(z, £)d™ €,

Sn—1

olt o_n(P)(x,£) est le symbole de degré —n de P et la sphere S™~! est munie de sa métrique induite. On a alors:

resP = /M cp(x).

On présente ici cette description. Apres avoir rappellé les principales définitions et proprietés des opérateurs
pseudo-différentiels (section 1), on montre en utilisant ’approche de [BG] que le noyau d'un DO a pres de la
diagonale une singularité logarithmique dont le coefficient définit une densité intrinseque (cf. section 2). Dans la
section suivante on construit le résidu de Wodzicki en s’inspirant de [KV]. Enfin on utilise cette description pour
relier tres simplement les résidus de Wodzicki des puissances d’un opérateur de Dirac sur une variété spinorielle
aux coefficients de son développement de la chaleur de son carré. Ceci étend les réultats de [Ka] et [KW].
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1 Opérateurs pseudo-différentiels

Soit U un ouvert de R™ et m € C. On appelle symbole sur U x R® d’ordre m une fonction o(z, &) lisse sur
U x R™ telle que, pour tout couple de multi-indices « et 3, on ait:

1) 10507 o(2,€)| < Cap(a)(1 + €)1,

ot Cy3() est localement bornée sur U. On demande de plus que o(z, ) admette un développement asymptotique,

o(z, &) ~ Zam_j (z,8), o (z, &) homogene de degré k en &.
Jj20

Ici le signe ~ signifie que, pour tout entier N > 0 tout couple de multi-indices o et 3, on a:

2) 020 (0 = ) om-3)(2,6)| < Cnap(@)[€*™ NI, pour ¢ > 1,
J<N

ol Cnap(z) est une fonction localement bornée sur U.
Soit S™(U x R") l’espace des symboles d’ordre m. on rappelle que si ¢ € S™(U x R"), on note o(z,D)
Popérateur continu C° — C*°(U) donné par:

o(z, D) = (27)~" / oz, O)a()e™de,  ue OO ).

Ainsi pour o(z,£) = > an(2)€, on obtient 'opérateur différentiel )" a, (z)DS, D, = —id,. Le noyau de o(z, D)
est lisse en dehors de la diagonale et donné par G¢_,, (2, — y) oll G¢_,, est la transformée de Fourier inverse en
la variable £ de 0. En effet 6¢_,, est lisse en dehors de I'origine car elle y est représentée par Iintégrale oscillante

(2m)" / o(z,)eEdE,  y#0,

qui est obtenue comme la valeur de I’intégrale absolument convergente
ery [(Pro)©em<de,

ol k est un entier > Rm + n et P, = P(y,D¢) est un opérateur différentiel tel que Pf(e¥¢) = e (e.g.
Py = s Zize;)

Un opérateur pseudo-différentiel (¥ DO) d’ordre m sur U est un opérateur continu P : C°(U) — C*(U) de
la forme:

Pu(z) = o(z,D) + R,

ou o € S™(U x R") et R est un opérateur régularisant sur U. En particulier le noyau de P est lisse en dehors
de la diagonale et donc déterminé par ces restrictions aux voisinages des points de U modulo des opérateur
régularisants, i.e. que P est pseudo-local.

Si P, et P, sont des DO d’ordres m; et ms dont I’un est proprement supporté, alors P, P, est un Y DO
d’ordre m; + mo et de symbole:

o(P)#o(Ps)(w8) ~ 3~ Do () (z, )05 0(Py) ).

La notion de ¥DO est stable par difféomorphisme ce qui permet de 1’étendre aux variétés et aux opérateurs
agissant agissant sur les sections d’un fibré. Un ¥DO P d’ordre m surune variété M qui agit sur les sections
d’un fibré £ est un opétrateur continu P : T'.(M,E) — I'(M, €) qui dans toute carte locale trivialisante s’exprime
comme une matrice de ¥DO d’ordre m sur un ouvert de R”.

On note ¥™ (M, &) V'espace des symboles d’ordre m. Si P € ™ (M, ) le symbole dépend a priori de la carte
locale sauf le terme principal dans son dévoloppement asymptotique qui peut étre intrinsequement défini comme
une section o, (P) € T(T*M \ 0,7 End £), ot 7 est la submersion canonique de T*M sur M. C’est le symbole
principal de P.

On dit que P € ¥™ (M, £) est elliptique si son symbole principal o,,(P)(z,£) est inversible pour £ # 0. Dans
ce cas il admet une parametrix appartenant ¥="(M,E), i.e. qu’il existe Q € ¥V~™(M,E) tel que PQ — I et
QP — I soient régularisants.
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On montre qu tout P € ¥™ (M, £) s’étend en un opérateur continu H (M, £) — HEER™ (M, €). En particulier
pour ®m < 0 et M compacte, P s’étend en un opérateur borné de L?(M, £) et cet opérateur est compact pour
Rm < 0.

De plus si M est compacte, tm > 0 et P est elliptique son spectre est formé d’une suite de valeurs propres
tendant en valeur absolue vers +oc. S’il est en outre auto-adjoint (pour un produit scalaire sur L?(M, ) défini
par des métriques données sur M et £), il admet une base formée d’élements de I'(M, £).

2 Singularité du noyau d’un DO pres de la diagonale

Dans cette section on montre, en suivant ’approche de [BG] et de [CM], que le noyau d’un ¥DO admet
pres de la diagonale un développement asymptotique dont le coefficient du terme logarithmique est une densité
intrinseque.

Le point de départ est le probleme de ’extension d’un symbole homogene a priori défini sur R* \ 0 en une
distribution homogene sur R”.

Précisons ce qu’on en entend par distribution homogene. L’action de R} sur S par homothéties, fi(£) = f(A§),
s’étend en une action 7 — 7 sur S’ définie par:

(Ta, [ = A1, famr), pour A >0, et f €S.
On dit ainsi que 7 € S' est homogene de degré m, m € C, si 7» = A™7 pour tout A > 0.
Lemme 1 Soit o € C*(R" \ 0) un symbole homogéne de degré k, k € Z. Alors:

i) Si k > —n, alors o définit une distribution homogéne.

i1) Si k = —n il y a une unique obstruction i étendre o en une distribution homogéne,

) Gl

ot la sphére S~ est munie de sa métrique induite. Plus précisément on peut au mieuz étendre o en une
distribution tempérée T vérifiant :

(4) Ta = A" 4+ ¢, A7 " log Ado YA > 0.

Démonstration. Si k > —n le symbole o est intégrable pres de I'origine et a croissance tempérée pres de ’infini.
Il définit ainsi une distribution tempérée sur R" qui est 'unique distribution homogene le prolongeant.

Supposons maintenant que k = —n. Vu comme une distrubution sur R” \ 0 le symbole o s’étend en une forme
linéaire continue

L) = [ 1©o)az,
qui est définie sur le sous-espace fermé:

So ={f€S; f(0)=0}.

Grace au théoreme de Hanh-Banach on peut prolonger L en une forme linéaire continue sur S et donc en une
distribution tempérée. Une telle distribution appartient au sous-espace affine

E={reS8; 7|s, =L},

dont la direction est celle de la droite engendrée par dg.
Maintenant soit A > 0 et 7 € E. Si f appartient a Sp, alors aussi fy—1 et on a:

AUTa, f) = A7, fa-1) = L(fa-1).

Mais ’homogénéité de o implique :

L(fys) = / FOLE)o(€)de = / F(©o(©)de = L(f).
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Ainsi E est stable par ’endomorphisme 7 — A"75. Comme A" (dp)x = do, on en déduit qu’il existe c¢(A) € C tel
que

™" = AT 4+ (M)A Vr e E.

Pour déterminer ¢() il suffit de calculer 74 — A~"7 pour un éléement particulier de E. On obtient une distribution
T € E par exemple en considérant ¢ € C2°([0,00)) valant 1 pres de 0 et en définissant 7 par:

(5) (7.0) = L(f = O(D) = [(F€) = 100D, fes.
Soit f € S telle que £(0) = 1. Alors:
W) = (rfh)—(nf)
= [uoto - vieno©d — [(#€) - v

[ - vieno(©ds,
h — du Cy = o(&)d !
or [ WO —v) L o= [ oloae

Mais comme

A [7 wom = w2 =x [ v = w(0) -

on voit que ¢(\) = ¢, log A. Ainsi:
T = A" 4+ ¢, A7 " log Adg Vr € E.

Il en résulte que si ¢, = 0, tout élement de E est une distribution homogene sur R prolongeant le symbole o.
Réciproquement soit 7 € S’ une distribution homogene prolongeant o et soit 7/ € E. Comme le support de
7 — 7' est inclus dans {0}, ona 7 =7'+ 3", N @000 avec aq € C. Ainsi

0=7y— A" =c, A" "log Moo + Z agA~ (Aol —1)9%48,,
1<[a|<N

ce qui implique que ¢, = 0 et que 7 € E. Ainsi la condition ¢, = 0 est une condition nécessaire et suffisante
pour qu’on puisse étendre ¢ en une distribution homogene. Dans le cas général on peut au mieux ’étendre en
une distribution vérifiant (4), ce qui est uniquement réalisé par les élements de E. O

Maintenant soit 7 € S'. En écrivant

T=pr+(1—9)T,

ol ¢ € C*(R™) est une fonction plateau valant 1 prés de P’origine, on peut séparer son comportement infra-

rouge au voisinage de l’origine, de son comportement ultra-violet prés de l'infini. Ainsi comme la transformée de

Fourier inverse d’une distribution & support compact est une fonction lisse & croissance tempérée, la régularité

de la transformée de Fourier inverse de 7 ne dépend que de son comportement ultra-violet, i.e. de (1 — ¢)7.
Gardant ceci & l'esprit et utilisant le lemme précédent on obtient :

Proposition 1 Soit U un ouvert de R* et P un YDO sur U d’ordre m, m € Z. Alors, prés de la diagonale son
noyau kp(z,x') a un comportement de la forme

(6) kp(z,2')= Y a2 —2') —cp(z)log|z — 2’| + O(1),

—(m+n)<j<0

avec aj(x,y) € C°(U x R™ \ 0) homogéne de degré j en y et cp(x) € C>(U) donnée par

™) cole) = r)" [ o alwOd
Sn-
ot o_p(z,€) est le symbole de degré —n de P.
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Démonstration. Soit o(z,§) ~ 3, <), 0;(2,€) le symbole de P. Comme modulo un noyau C* on a kp(z',z) =
Fe—y(z,x — '), il suffit de regarder le comportement de G¢—,,(z,y) quand y — 0.

Supposons dans un premier temps que o(z,&) = o(&) ~ Ejgk 0;(€) ne dépende pas de z. Pour -n < j <m
on étend le symbole o (§) en une distribution tempérée 7;. Pour j > —n cette extension est unique et homogene.

Pour j = —n on peut supposer que 7_,, vérifie (4). Maintenant la distribution
m
T=0— Z Tj,
j=—n

a le comportement ultra-violet d’'un symbole intégrable, donc sa transformée de Fourier inverse est continue.
Ainsi pres de origine,
m

5(y)= Y 7y +0(1).

j=—n

La transformée de Fourier inverse de la partie infra-rouge de chaque distribution 7; est une fonction lisse sur R™.
Quant a la partie utra-violette c’est celle d’un symbole sur U x R" dont la transformée de Fourier inverse est
lisse en dehors de l'origine et donc la distribution 7; est lisse en dehors de l’origine.

D’autre part, on a (7)y = A™™(7»)" pour 7 € 8" et A > 0 Ainsi pour j > —n la distribution 7; est homogene
de degré —(n + j) tout comme la fonction qui la représente en dehors de ’origine.

Lorsque j = —n, par (4) qu’on a

Tn(My) = AT(-n)r-11V(y)
[T — ¢co-n log Ado] V (&)
#-n(y) = (27) "o log

Prenant A = |y|™!, on en déduit que

Fonly) = Fon(77) = (2m) "co=r logu),
Il en résulte le développement asymptotique (6) dans le cas ot le symbole ne dépend pas de z.

Lorsque le symbole o(z,£) dépend de z, on obtient un développement asymptotique ot interviennent des
familles (7 )zcv et (7j2)zcu de distributions tempérées. Leurs comportements ultra-violet sont ceux de symboles
lisses sur U x R™, ils donnent donc des fonctions lisses sur U x R"™ \ 0 et en ce qui concerne (7,) une fonction
continue sur U x R™ tout entier.

Quant aux parties infra-rouges, on a des applications lisses U — £(R™)’, donc lorsque’on applique la trans-
formée de Fourier inverse on obtient des fonctions lisses sur U x R™. Pour j > —n, cela provient de ce que 7;,
est la distribution définie par (2, &) qui est un symbole homogene de degré intégrable pres de lorigine,

(i f) = / FO0(E)0;(2,6)dE,  feS.

Lorsque j = —n cela résulte de ce que grace a (5) on peut définir 7y, , de telle sorte que p7_p, , soit donnée par

(T ) = (s 0f) = / PO (F(E) — F(O))o_n(z,)dE, | € S.

Ainsi application  — ¢7_p, , est lisse U — &£'.
Il en résulte qu’on a

€ ylwy)= Y.  ax(z,y) —cp(x)loglyl + R(z,y), y#0,
—(m4n)<k<O0

ol ar(z,y) est une fonction lisse sur U x R” \ 0 homogene de degré k en y, cp(z) est donné par (7) et R(z,y)
est une fonction continue sur U x R™, ce qui donne le développement asymptotique. O

Théoréme 1 Soit M une variété de dimension n et P un VDO sur M d’ordre m, m € Z, agissant sur les
sections d’un fibré £ au-dessus de M. Alors, dans des coordonnées locales trivialisantes, la trace tr kp(z,z') du
noyau de P a un comportement prés de la diagonale de la forme

0
(8) trkp(z,z') = Z ap(z,x — z') — cp(z)log |z — z'| + O(1),
j=—(m+n)
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ot ag(z,y) est une fonction homogéne de degré k en y, et cp(x) est une densité intrinséque sur M localement
donnée par

(9) ep(z) = @m)" / tro_n(z, €))d" 1€,

Sn—1

ot 6_p(z,€) est le symbole de degré —n de P.

Démonstration. Grace a la proposition 1 on a un développement asymptotique de la forme (8). L’essentiel
ici est de montrer le caractére intrinseque du coeeficient cp(z), i.e. U'invariance vis & vis d’'un changement de carte
locale trivialisante.

Supposons tout d’abord que £ est un fibré en droites trivial et que P est un ¥ DO scalaire. Examinons ’effet
d’un changement de carte locale y = ¢~ (z),

kp(2,2') 25 kgep(,9)) = [ Js(0) [kp(8(0), (1"))-

Alors:
0

kper(,0) = Y 1Te@)la(6(), 6(y) — ¢(") — 115 (4" )lcp(¢(v)) log|6(y) — ¢(y")| + O(1).

—(m+n)

Mais la fonction ay(¢(y),.) est lisse en dehors de 1’origine, donc en faisant un développement de Taylor on voit
que la fonction

o
Rt SR

ly — o'l
ne donne que des termes homogenes ou continus. La seule contribution au terme logarithmique provient donc
nécessairement de

1J6(¥")ar (6(), d(y) — 6(y") = 1J6W")ly — v'[*a; (6 (y), &' ()

| (y")lep(6(y)) log [8(y) — ¢(y")| = |Js(y)|cp(4(y)) log |y — y'| + O(1).
Ainsi

coop(y) = [JsW)lep(e(y)), yeU.

Ceci montre que cp(z) se transforme comme une densité. Les densités étant des objets locaux formant un faisceau
il en résulte que cp(z) peut étre globalement défini sur M en une densité qui est intrinseque.

Lorsque P agit sur les sections d’un fibré il faut regarder l'effet d’un changement de trivialisation, ce qui
conjugue l'action de P fibre par fibre par une matrice de transfert lisse A(x),

kp(z,z') — A(z) Ykp(z,z')A(z").

Lorsque z' tend vers z, on peut développer A(z') & I’aide de la formule de Taylor. Mais comme on ne s’interesse
qu’au terme logarithmique dans le développement asymptotique du noyau, seul compte le terme d’ordre 0 dans
le développement de Taylor de A(z'). Ainsi tr A(z) 'kp(z,2')A(z") a la méme singularité logarithmique pres de
la diagonale que

tr A(z) Ykp(z, 2" )A(z) = trkp(z, 2').
Il en résulte que le coefficient c¢p(x) ne dépend pas du choix de la trivialisition locale. Ensuite de méme que dans
le cas scalaire on montre que cp(z) défini une densité intrinseque sur M. O
Remarque. Supposons que la variété M soit munie d’une métrique riemannienne et soit d(z,z') la distance
géodésique. Localement il existe ¢ > 0 tel que
C_1|.Z' - xll < d(.’l?,.’l?l) < C|.Z' - xl|a

donc dans le développement asymptotique (8) on peut remplacer le terme log |z — 2’| par log d(z, z'). Autrement
dit :
0
trkp(z,z') = Z ag(z,x —2') — cp(x)d(z,z") + O(1),
j=—(m-+n)

ou ag(z,y) et cp(z) sont comme précédemment.
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3 Construction du résidu de Wodzicki

Lemme 2 Soit 0 € C®(R™ \ 0) homogéne de degré m, m € C\ Z. Alors, o s’étend de maniére unique en une
distribution homogéne.

Démonstration. Si ®m > —n, alors o(£) est intégrable prés de Porigine et définit ainsi une distribution tempérée
qui est 'unique distribution homogene le prolongeant.

Dans le cas général on considére un entier k¥ > R®m + n — 1 et une fonction ¢ € C.([0,c0)) valant 1 pres de
de 0. On étend alors ¢ en une distribution tempérée T en posant :

(10) w0 = [11O - ¥ Sr0ueo©d  fes.
|al<k
Soit A > 0. Alors:
sy =) = a7 [uotte - 5 S @ e
lo| <k '
+om [4© - 3 S roouigeeas
laj<k

avec

cen= [ Ea@ds )= [ - v

On a pa(1) =0et

d @ m-r+n o m-r+n— (67 m-+n
o) = = [ Opd = Aottt [ pletmny iy,

Ainsi 7 est homogene si, et seulement si, on a

(11) / p' (udp =0  poura=m-+mn,..., m+n+k.
0

On est donc ramené & chercher une fonction v vérifiant la condition ci-dessus. On la cherche sous la forme

¥(p) = h(log p),
avec h € C*(R) valant 1 pres de —oo et 0 preés de +o00. Dans ce cas la condition (11) devient
+oo d +o0
0= / u®—(h(log p))dp = / e h'(s)ds, a=m+n,..., m+n+k.
0 dp’ —oo

Maintenant si g € C°(R), alors

[ et +antiar= [ Setani=o.

/(% +a)g(t)dt = a/g(t)dt.

Comme (m +n),...,(m + n+ k) sont non nuls, on voit que si [ g(t)dt = 1, la condition (11) est vérifiée par
¥(u) = h(log ) si h'(s) est donnée par

m+n+k d
(12) h'(s) = ( H (a_lﬁ +1)g(s), s€eR

a=m-+n
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Dans ce cas la distribution 7 donnée par (10) est une extension homogene de o.
Enfin, si 7' est une autre distribution homogene prolongeant o, alors 7—7' est supportée dans {0} et homogeéne
de degré non entier. Or ceci n’est possible que si 7 = 7, donc 7 est 'unique extension homogene de o. O

Définition 1 Soit U un ouvert de R™ et Q un ouvert de C. On dit qu’une application o : Q — S*(U x R™) est
holomorphe quand :

i) Pour tout x € U et £ € R™, la fonction z — o(2)(z,§) est holomorphe sur Q.
it) L’ordre m(z) de o(z) est une fonction holomorphe sur ().

i) Les bornes (1) et (2) du développement asymptotique o(2) ~ ) 0p(z)—;(2) sont localement uniformes par
rapport a z.

Soit o : 2 = S*(U x R™) holomorphe. Ponctuellement on a:

Om(x)=i(2)(@,€) = lim NP [o(2)(2,2) =Y omz—i(2)(@, X)), j>0.

A—+400
<j

Mais grace aux axiomes i) & iii) les termes ci-dessus sont holomorphes et convergent uniformément par rapport aux
parametres. On en déduit que o,,(;)—;(2) dépend holormorphiquement de 2, i.e. que ’application z — o, (z)—;(2)
est holomorphe de © dans C*° (U x R™ \ 0).

On peut de plus dériver le développement asymptotique o(z) ~ > Op(z)—;(2). Ainsi 9,0(z)(,&) est un
symbole classique sur U x R™ et on a:

§) ~ Z 020 m(2)—j(2)(z,&).
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Définition 2 Soit U un ouvert de R™ et Q un ouvert de C. On dit que P : Q — ¥*(U) est holomorphe si P(z)
se met sous la forme

P(z) = o(2)(z, D) + R(2),
0u0:Q—S*(UxR") et R:Q — C®(U xU) sont des applications holomorphes.

On sait que les théoremes classiques du calcul pseudo-différentiel tels que 'invariance par difféomorphisme et la
stabilité par le produit s’étendent sans difficulté aux ¥DO avec parametre. Les raisons sont d’'une part qu’au
niveau des symboles et des noyaux ces opérations sont continues. D’autre part les symboles et les noyaux qui
résultent de ces opérations sont donnés par des intégrales qui une fois régularisées convergent dans 1’espace associé
au paramétre (e.g. Hol(2)).

Ainsi on peut définir les applications holomorphes & valeurs dans ’espace ¥*(M, £) des ¥DO sur une variété
M agissant sur les sections d’un fibré £ et lorsque M est compacte le produit de ¥*(M, ) est holomorphe.

Un exemple d’application holomorphe & valeurs dans ¥ (M, &) lorsque M est compacte est donné par les
puissances complexes d'un ¥DO elliptique [Se].

Soit @ € ¥*(M,E) d’ordre m, ®m > 0, elliptique et dont le spectre est discret et disjoint du demi-axe réel
négatif. On considére une courbe I' ne rencontrant pas le spectre de ) et qui part de 1’0o, longe le demi-axe réel
négatif jusqu’a lorigine qu’elle entoure pour revenir ensuite vers I’co. Lorsque Rs < 0 on peut alors définir )°,
au moins en tant qu’opérateur borné de L?(M,£), par I'intégrale curviligne

1

RACAE Ldx.
5 [ M@=

QS
En fait Q% est un ¥ DO sur M d’ordre ms. Localement la résolvante (Q — X)~! s’écrit :

Q=N =q(\ z,D) + R().

Ici R()\) est un opérateur régularisant dont le noyau est un O(A\?) pour la topologie C® et (A, z,£) est un
symbole lisse par rapport & A admettant un développement asymptotique de la forme:

qg(A,z, &) ~ Zq m—i (A, 2,6),  qe(A z,§)homogene de degré k en (Y™ g).
Jj=20
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Ainsi lorsqu’on intégre par rapport & A on obtient une application holomorphe sur {s < 0} & valeurs dans
U*(M,E). Clest un semi-groupe et grace & ’holomorphie du produit de ¥*(M,E) il s’etend en un groupe a
1-paramétre holomorphe sur C, s — Q*, qui contient Q° = I et Q' = Q.

Maintenant sur I’espace S'™(R") des symboles o () ~ Y 0p,—;(€) intégrables sur R", on considere la fonc-
tionnelle holomorphe

Lo) = 5(0) = (n) " [ o(e)de

Lemme 3 La fonctionnelle L ci-dessus a un unique prolongement holomorphe L sur Vespace SC\Z (R™) des
symboles d’ordre non entier. Sa valeur en o(§) ~ > opm—;(§), m € C\ Z, est donnée par

£0) == 3 ) O = 0" [0 = 3 rn)(@ds 0 €597,
J<N J<N

ot N est un entier > R¥m +n, dont la valeur est indifférente, et T,,—; est l'unique distribution homogéne prolon-
geant op,—; donnée par le lemme 2. De plus, si o : C — S*(R") est holomorphe et que ordo(z) = z pour tout z,
alors L(o(z)) est méromorphe sur 7 avec au plus des poles simples et des résidus donnés par :

(13) Res.oy Lo(2) = =)™ [ ooa()(©ds,  pel.

Démonstration. Soit 0 € SO (R?), 6 ~ Y 0y,—;. Par le lemme 2 il existe une unique distribution homogene
Tm—j prolongeant o,,_;. Soit N un entier > R®m + n. Alors, la distribution

T=0— Z Tm—j»
J<N
a le comportement ultra-violet d’un symbole intégrable. Sa transformée de Fourier inverse est continue et on peut
donc définir 7(0):
#0)= (0 — 3 Tmy)"(0) = (2m)" / (0= 3 Tmj)(€)de.
J<N j<N

Maintenant si ¥m —j < —n, la distribution 7,,—; a un comportement utra-violet intégrable, et 7,,,_; est continue.
Or 7p,—; est homogene, donc certainement 7,,,—;(0) = 0. Ainsi la valeur de N n’a aucune incidence sur celle de
7(0). On peut donc étendre L sur S\Z(R") en posant :

Lo)=(0 =) mm—y)"(0) = (QW)_"/(U =Y Tm—g)(©)dE, o€ SOH(RY).

JEN JE<N

Il reste & vérifier que L est holmorphe. Soit Q ouvert de C et ¢ : © — S*(U x R") holomorphe, o(z) ~
> Om(z)—;j(2). On peut supposer qu'il existe un entier p € Z tel qu’on ait

p—1<Rm(z)<p+1, z €.

Dans ce cas on peut choisir N = n + p dans la définition de L(o(z)). Mais le comportement ultra-violet de

T(Z) = O'(Z) - Z Tm(z)—j(z)a

j<n+p

est celui d’un symbole 6(z) [ S int qui dépend holomorphiquement de z, donc il suffit de regarder le comportement
infra-rouge des 7p,(z)—;(2). Il résulte de (10) et (12)) que z + Tpy(z)—;(2) est un holomorphe de Q dans &', donc
certainement la fonction

(PTm(2)=3)" (0) = (27) "™ (Tin(2) 5> )

est holomorphe. Ainsi L est un prolongement holomorphe de L sur SC\Z (R™). C’est le seul car tout élement de
SC\Z(R™) peut étre connecté & S (R"™) par un chemin holomorphe & I’intérieur de SO\ (R™).
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Ensuite la forme de h/(s) dans (12) montre que si m(z) est holomorphe pres de m(z) = p, alors L(o(z)) est
méromorphe pres de m(z) = p.

Investissons la singularité pres de m(z) = p lorsque m(z) = z. On se place dans le demi-plan {fz < p}. Comme
la partie ultra-violette de 7(z) donne un terme holomorphe pres de z = p, il suffit de regarder le comportement
infra-rouge des 7,_;(2).

Maintenant pour 0 < j < n +m et Rz < p, le symbole o,_;(2)(£) est intégrable pres de I'origine et définit
ainsi 'unique distribution homogene le prolongeant. Aussi I’éventuelle singularité pres de z = p provient des
intégrales

-n (2 _ _(271.)—71 o s
~en [ e@ed= T2 [ o

z—j+n

On a un terme singulier seulement pour j = n + p et dans ce cas c’est un pole simple dont le résidu est égal a:
~en [ o am)©de
Sn—

Ainsi lorsque m(z) = z la fonction L(o(2)) a au plus des péles simples prés de Z avec des résidus qui sont donnés
par (13). a

Dans toute la suite on désigne par M une variété compacte de dimension n et par £ un fibré vectoriel au-dessus
de M.

Théoréme 2 Soit D € *(M,E) elliptique d’ordre 1. Alors :

1) La fonctionnelle P — Trace P sur ¥'" = {P € ¥*(M,&) ; Rord P < —n} a un unique prolongement
analytique P — TR P sur $O\Z(M, ).

2) Pour tout P € WZ(M, &) la fonction z — TR P|D|™* a au plus des péles simples sur Z. En z = 0 son résidu
est donné par

(14) Res,—o TR P|D|™* =/ cp(x),
M

ot cp(x) est la densité qui apparait dans (8) comme le coefficient de la singularité logarithmique du noyau
de P prés de la diagonale.

8) La formule (14) définit une trace sur l’algébre $Z(M,E),

Res,—o TR P, P,|D|™* = Res,—o TR P2 P|D|™?, P; € 4(M,¢E).

Démonstration. Soit P € ¥O\Z(M, £). Alors I’application z + P|D|~* est holomorphe sur C et connecte P
Tint(M, £) dans $AOZ (M, £) de sorte qu’un prolongement analytique de Tracegint est nécessairement unique.
Comme Trace est holomorphe sur les opérateurs régularisants, on peut & ’aide d’une partition de 'unité se
contenter de travailler dans une carte locale trivialisante avec des symboles scalaires compactement supportés
avec z. Plus précisément il suffit d’étudier, pour U ouvert de R” et ¢ € C°°(U), la fonctionnelle
L, (o) = Trace po(z, D), o € SU x R™).

Sioe SU xR*) et P=o0(z,D), on a:

Trace pP = /go(m)kp(m,x)dm = (271)_"/90(m)a(93,£)d§dm = /go(a:)L(U(a:,.))da:.
On obtient ainsi un prolongement de L, sur SO (U x R*) & I’aide de la fonctionnelle L du lemme précédent :
L,(0) = / o(@)i(o(z, ))ds, o€ SPU x RY).

Maintenant si o(z,§) = o(2)(z,£) dépend holomorphiquement de z, on a des bornes uniformes uniformes par
rapport & z et les résultats du lemme 2 pour L(o(z)(z,.)) sont uniformes par rapport a z et s’etendent & L, (o (z)).
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Ainsi L, (a(2)) est holomorphe sur C\ Z. Si ord ¢(z) = z, alors L,(c(2)) a au plus des péles simples sur Z et son
résidu en z = k, k € Z, est donné par:

Res.s L(o(2) = =)™ [ [ p@ora®i@ et = [ plojen, @)ds.

La derniere égalité résultant de (9) pour P = Py = ok (x,§).

Recollant les cartes locales trivialisantes et tenant compte des opérateurs régularisants, on obtient un pro-
longement holomorphe de Trace sur ¥%(M,&). Ce prolongement est unique et on le note TR. De plus si
P : C — W%(M,E&) est holomorphe et telle que ord P(2) = z, alors TR P(z) a au-plus des péles sur Z dont
les résidus sont donnés par :

(15) Res,— TR P(2) = — / cow(@), ke
M

On obtient ainsi le 2) en prenant P(z) = P|D|~%.
Enfin soit P, et P, dans W%(M, ). Comme TR est une trace sur W7 (M, &) et que (15) ne dépend que de
la valeur de P(z) en z =k, on a:

ReSz:() TR 131]32”)'_Z = ReSz:() TR P2|D|_ZP1 = Resz:() TR P2P1|D|_z.
Par conséquent la formule (14) définit une trace sur WZ(M, E). O

Définition 3 Soit M une varité compacte de dimension n et & un fibré au-dessus de M. On appelle résidu de
Wodzicki et on note res la trace sur W£(M,E) définie par

res P = Res,—o TR P|D|™%, P e ¥%4(M,¢),
ot D € WZ(M, &) est elliptique d’ordre 1.
Proposition 2 Soit M une varité compacte de dimension n et & un fibré au-dessus de M. Alors :

1) Le résidu de Wodzicki est invariant par difféomorphisme, c.a.d. que si ¢ : M — M' est un difféomorphisme
on a:

resy P =respyy ¢ P pour tout P € WZ(M,E).

2) Le résidu de Wodzicki est 'unique trace sur l’algébre W7(M, E) a coefficient multiplicatif prés si M est connezxe
et de dimension > 1.

8) Soit P € VL(M,E) d’ordre < —n. Alors P est un opérateur mesurable au sens de [Col] et on a l’égalité :

1
][P: —res P.
n

Démonstration. Le 1) résulte de I’invariance par diffmorphisme de la densité cp(z). Le 2) a été démontré par
Wodzicki [Wo] et Brylinski-Getzler [BGe] (voir aussi [FGLS]). Le 3) est le contenu du théoréme 1 de [Co2].

Remarque. Dans la définition du résidu de Wodzicki on aurait pu remplacer opérateur |D| par n’importe quel
¥ DO elliptique @) satisfaisant aux hypotheses de Seeley, quitte & multiplier par ’ordre de @), car on a:

ord@.Res,—o TR PQ™* = / cp(z) =res P, VP € V(M €).
M

4 Résidu de Wodzicki et développement de la chaleur

Soit M une variété compacte riemannienne spinorielle de dimension n paire, £ un module de Clifford sur M
et D Vopérateur de Dirac sur M attaché & une connexion de Clifford unitaire sur £. On sait [LM] que pour ¢ > 0
Iopérateur e~tD” est régularisant et que son noyau k;(z,y) admet un développement asymptotique pour ¢ petit :

_n . —d(z,)?
ki(z,y) ~ (4nt) ™2\ /g(2) Y kj(a,y)tie™ 5
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ou d(z,y) est la distance géodésique et k;(z,y) est une section lisse de £* ® €. Alors:
Trace(e_tDQ) ~i—0+ Z tj_TnaJ (D?
Jj20
avec:

a2j(D2) = (477)_"/2 /M trk;(z, 2)v/g9(x)dz, a2j+1(D2) =0, j>0.

Maintenant soit un entier p, 0 < p < n, et calculons le résidu de Wodzicki de D™P en déterminant le coefficient
de —logd(z,y) dans le développement asymptotique de la trace de son noyau pres de la diagonale.
Comme le projecteur orthogonal sur son noyau est régularisant, on peut supposer que D est inversible. Par
la formule de Mellin on obtient
D? — 1 /oO t%e—tDzﬁ‘
) Jo

T2 t

Ceci-dit pour tout T' > 0, la fonction z — f;o t%e_tz% est dans la classe de Schwartz, donc l'opérateur

P 2 7 . . —
f;o tze~tD % est régularisant. On peut ainsi remplacer D~? par

]. T P 2dt
D—Pz—/ t2e D" —, T > 0.
T T3 Jo t

On choisit 7' assez petit pour qu’il existe C' > 0 tel que pour 0 < t < T et x et y assez proches on ait:

(n—p)/2 )
k() — (4nt) 2 Y 3/g@)k(w,p)e—F| < Ot~
j=0

Ainsi pour z et y distincts et assez proches on a:

T

» dt

F(g)trkD;(m,y) = /ﬁtrkt(l‘,y)Ta
0

(" p)/2

—n —d(=)? di T 2
= = /g Z trk;(z,y / BT e = T+O(/ e~ dt).
0

Maintenant pour m entier et g > 0 on a:

T — dt oo P polyn. en i +0(1) sim <0,
/ tMe t — /"’m/ t_me—t? — —log'u + O(]_) sim = 0’
0 »T =0(1) sim > 0.

Il en résulte que la singularité logarithmique de I'(§) tr kpz (z,y) provient de

T

_n —d(=»? dt

(4m) Vo@D s (a) [ T
0

t
- <4w)%"\/g<m> trkas (2,9)(~log 220 o(1)

= —2(4n) 7 \/g(x) trka- n=p (z,z)logd(z,y) + O(1).

Ainsi le résidu de Wodzicki de D%, et donc celui de DP, est égal a:

(47f)_7n/ 2
2 T2 trka— nep (z,2)v/g(z)dz = g an »(D?).

On a par conséquent démontré le théoreme suivant :

Théoreme 3 Soit M une variété compacte riemannienne spinorielle de dimension n paire, & un module de
Clifford sur M et D l'opérateur de Dirac sur M attaché a une connezion de Clifford unitaire sur £. Alors:

2 2
resD™P = ——a,_,(D? :,17/ trkn—p (z,2)\/ 9(x)dx, 0<p<n,
o) )= amErg) Sy, e VI

ol an_,(D?) et knp(z,7) sont les coefficients de t~P dans les développements de la chaleur de la trace et du
2

2
noyau de e~ 0",
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Remarque. Les calculs précédents sont en fait valables pour n’importe quel opérateur elliptique d’ordre > 0
dont le symbole principal est défini positif.
Si p = n, on obtient:

2
D2y = 2% o

resD™" = = -
(47r)§I‘(§)

2
T%)GO(

Mais comme Tracee tP° ~;_o+ t= ag(D?), il résulte du théoreme taubérien de Hardy-Littlewood (cf.[CM],
appendice) que D~ est un opérateur mesurable et que sa trace de Dixmier est égale a:

1 2y _ rgé
I(1+ g)“O(D )= (4m)3T(1 + 1)’

En particulier {£D~" = %res D" et on retrouve la proposition 2.3) dans ce cas.

Supposons que D = 9y soit 'opérateur de Dirac qui agit sur les sections du fibré des spineurs de M. Comme

—(4m)—"/?

o | rulena@s,

ou 7y désigne la courbure scalaire de M pour la métrique g, on voit que

res(9y,/1?) = —cn /M ru(z)/ g9(z)dz, Cn = i%’

az(dyy) =

Ainsi le résidu de 8;,1""'2 redonne ’action d’Hilbert-einstein pour la métrique g.
Ceci a été précedemment démontré dans [Ka] et [KW]. En fait il résulte de la théorie des invariants [Gi] que

@) = [ o0 4)(@,9),

est proportionnel & la courbure scalaire car c¢’est un invariant dont ’action des difféomorphismes ne dépend que
de leurs jets d’ordre < 2.
En géométrie non commutative 'opérateur ds = 8;41 est I’élement infinitésimal de volume. Ainsi pour n = 4,

resds® = —04/ rau(z)V/g(x)d z,
M

s’interpréte comme aire de la variété M de dimension 4 (cf. [Co3]).
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Formule de Feynman-Kac

exposé de premiere année de magistere

30 septembre 1994

1 Introduction

Soit une particule de masse m soumise au potentiel V. Son opérateur hamiltonien est :

—h?
H=—A+YV.
2m

On sait grace a ’équation de Schrédinger que si ¢ est la fonction d’onde de la particule a ’instant initial, alors
sa fonction d’onde & I’instant ¢ est :

oi(@) = (€7 ) ().

Dans sa thése, Richard Feynman montre heuristiquement Pexistence d’une probabilité dw sur I’espace Q, des
trajectoires continues qui ont la position z a l'instant ¢ = 0, de telle sorte qu’on ait :

(¥ Ho)a) = [ b5,
Qa

ol S;(w) est action de la trajectoire w a l'instant ¢ :

s = [ (iWV(w(s))F-l—V(w(s))) ds.

Utilisant la méthode de la phase stationnaire, on voit que lorsque A7 — 0, les seules trajectoires qui comptent
sont celles dont I’action est stationnaire. A la limite semi-classique, on retrouverait alors le principe de moindre
action.

En dépit de nombreux efforts, on a toujours pas pu démontrer rigoureusement la formule de Feynman.
Néanmoins, grace & la mesure de Wiener, on peut exprimer e~*"H au moyen d’une intégrale fonctionnelle ; c’est
la formule de Feynman-Kac.

La mesure de Wiener est en fait une famille de probabilités (u.),ecr~ sur I'espace 2 des fonctions de [0, 00) &
valeurs dans RY , le compactifié d’Alexendrov de R" , mais grace au théoréme de Wiener, chaque y, est concentrée
sur l’espace (), des fonctions continues de [0,00) & valeurs dans RV prennant la valeur z en 0. On démontre
I’existence de la mesure de Wiener et la continuité des trajectoires section 2. A la section 3 on démontre la formule
de Feynman-Kac. Le point de départ de la démonstration est la formule de Trotter qu’on démontre section 1
apres avoir dit des généralités sur les opérateurs semi-bornés.

2 Formule de Trotter

2.1 Opérateurs non bornés

Soit H un espace de Hilbert séparable. On appelle opérateur (non borné) de H la donnée d’un sous espace
vectoriel D(A) de H et d’une application linéaire A : D(A) — H. Ceci est équivalent & la donnée du graphe de
A:

G(A) ={(=,Ty) ; y € D(A)},
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qui est un sous espace de H x H tel que la projection de G(A) dans H (z,y) — x est injective.
Si A et B sont des opérateurs de H, on définit A+ B comme 'opérateur de domaine D(A+ B) = D(A)ND(B)
tel que:

(A+ B)x = Az + Bz Vz € D(A) N D(B).
On dit que opérateur A est densément défini si D(A) est dense dans H. Dans ce cas le sous espace:
{(y,2); (zly) = (Tz|z) Vze D(A)},

est le graphe d’un opérateur. On dit que cet opérateur est 1’adjoint de A et on le note A*.
On dit que 'opérateur A est auto-adjoint si on a A = A*. Dans ce cas:

SpA ={\e C; T — An’est pas bijectif de D(A) dans H},

est un fermé inclus dans R. On dit alors que A est positif si SpT est inclus dans [0, o[, et qu’il est semi-borné
s’il existe ¢ > 0 tel que opérateur A + ¢ soit positif.

Si Popérateur A est auto-adjoint, le théoreéme spectral affirme alors qu’il existe un espace localement compact
X, une mesure de Radon p sur X, un opérateur unitaire U de H dans L2(X, ) et une fonction continue & valeurs
réelles f sur X de telle sorte que UAU* soit I'opérateur de multiplication par f sur L2(X, u), i.e.:

D(UAU*) =D(f) ={g € L*(X,p) ; fg € L*(X,w)},

(UTU*)g=fg Vg€ D(f).

En particulier Sp A = f(X). On peut alors définir un calcul fonctionnel pour A & valeurs dans L£(H): & toute
fonction g dans l'algébre B°°(Sp A) des fonctions boréliennes bornées sur Sp A on asocie I'opérateur borne’ g(A)
de H tel que:

9(A)z = U*(gof.Ux) Ve H.

Ce calcul fonctionnel est un morphisme d’algébres qui est continu au sens suivant : si (g,,) est une suite d’élements
de B*(Sp A) convergeant simplement vers g € B*(Sp A), alors les opérateurs g, (A) convergent fortement vers

9(A).

2.2 Formule de Trotter

Si A est un opérateur semi-borné, on peut définir e=¢4 pour tout ¢ > 0. On obtient alors un semi groupe a
1-paramétre qui vérifie les proprietés suivantes :

i) e~ (s+D4 = ¢=34¢=t4 pour tout s et t dans [0, oo[;
ii) lle7*4|| < e Vt>0,aveca=infSp A;
iii) pour tout z € 7, ’application ¢ — e~*4z est continue de [0, co[ dans # et son image est incluse dans D(A) ;

iv) pour tout z € D(A), ’application t — e~4x est dérivable, et on a:

—tA
. € r—X
llm _— = —A:E.
t—0+ t

La formule de Trotter peut s’énoncer comme suit :

Théoréme 1 Soit A et B des opérateurs semi-bornés tels que l’opérateur A + B soit semi boné. Alors:

lim (e_%e_%)"x = ¢ HA+B)y Ve € H, Vi > 0.
n—oo
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Démonstration.On peut supposer que t = 1. Soit z € H. On a:
) x|

_A _B\p_ _A _B _A+B, _n—k
e I L e o ]

||e_(A+B)m - (e_%e_%

k=1
n
—A - k=1 _A _B _A+B _n—k(yg
< STl A llle BN T llem e — e~ e A By,
k=1
< max(L, e~ [|[le”Z]). sup [n(eme™n — e~ e A B,
0<s<1
D’autre part, pour tout y € D(A + B), on a:
n(e_%e_% — e_A#)y
- _A _A+B
A _aeTny—y eThy—y e Tw y—y
=e =B e n — B — .
v ( 1/n y) + 1/n 1/n

D’ou:

lim = By+0+ Ay — (A+ B)y = 0.

n—oo
Maintenant, G(A + B) = G((A + B)*) étant fermé dans H x H on munit D(A + B) d’une structure d’espace de
Banach grace a la norme-graphe:

lyllass = llyll + I(A+ Byl Vy € D(A+ B).

B A+4B

Pour cette norme les opérateurs n(e™ = e~ = —e~ "= ) (n > 1) forment une suite d’opérateurs continus de D(A+B)
dans H convergeant simplement vers 0. Par le théoreme de Banach-Steinhaus il existe alors une constante C' > 0
telle qu’on ait :

A+B

_A _B _A+B
[n(e™me™» —em =)yl < Cllyllavs  Vy € D(A+ B).

On voit ainsi que la convergence est uniforme sur tout compact de D(A + B). Mais application s — e~ *(4+B)g
étant continue de [0, co[ dans D(A + B), 'ensemble:

{e7*z; 0<s <1},
est un compact de D(A + B). Par conséquent :

B A+B
n

sup ||n(e_%e_ —e~n )em A Bl — 0 quand n — oo.

0<s<1

Il en résulte que limn_ﬂx,(e_%e—%)"g; = e—(A+B) 4. O

Remarque. Ceci n’est qu’une version faible de la formule de Trotter. La véritable formule de Trotter se démontre
dans le cas ou l'opérateur A+ B n’ést plus supposé auto-adjoint, mais seulement essentiellement auto-adjoint (i.e.
que G(A+ B) est un sous-ensemble dense de G((A+ B)*). En fait, Kato a démontré la formule de Trotter dans le
cas ou les opérateurs ne sont plus supposés densément définis, mais positifs au sens ot (Az|z) € Rt Vz € D(A).

Supposons maintenant que H = L?(RY) et appliquons la formule de Trotter & I’opérateur de Schrédinger
H=Hy+V,ouV € C.(RV) agit par multiplication et Hy = —A est 'opposé du laplacien sur RV et est défini
sur:

D(Hy) = {f € L>(RY) ; Af € L*(RN) au sens des distributions}.
La formule de Trotter peut s’appliquer et on obtient :

e HHAV) £ — Jim (e~ wHoe=nV)nf  Vfe L*RYN), Vi > 0.

n— oo

La convergence étant dans L?(RY), il existe une sous-suite (n;) C N telle que:
(e HHotV) £)(20) = lim ((e_ﬁHOe_ﬁV)”’“f)(xo) p.p-
k—o0
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D’autre part, opérateur e *H0 ayant pour noyau:

p(z,y;t) = { (4nt) = eXp(—%) sit>0,

do(z —y) sinon,
on a:
t n
_tg, _t
(e=nHoe=w V)" f(zg) = /.../exp —EEV(J:]-) fzn)
J:
t t
(20,15 =) .. . P(Tp—1,Tn; —)dT1 ... dTyy.
n n
Maintenant, soit x1,...,2, dans RV et soit w une trajectoire continue de [0,00[ dans RV de telle sorte que,
w(%) = z; et que w soit affine sur l'intervalle [%, W] pour tout j =0,1,...,n — 1. Alors, la somme:
t — t — jt
S Vi) =) V),
n “ , n
J=1 Jj=1
est une somme de Riemman, qui lorsque n devient infini, tend vers:
t
/ V(w(s))ds.
0
De plus, on peut interpréter la probabilité :
t t t
(@0, 215 —)p(@1, %25 =) - . . P(Tn—1,Tn; —)dz1 ... dTy,
n n n

comme une probabilité sur toutes les trajectoires qui & n fixé ont la méme forme que w ci-dessus. Mais lorsque
n devient grand les trajectoires continues ont tendance a étre toutes de cette forme. Intuitivement, on devrait
obtenir une probabilité dw sur ’espace toutes les trajectoires continues partant de zg, et de telle sorte qu’on
aurait :

t t t
lim/ /e_FE:’zlv(zj)f(z")p(xo,ml;E)...p(xn_l,xn;ﬁ)dxl...d.rn

n—oo
= / o iV ()ds £(4(4)) du
Il en résulterait alors la formule:

(1Y) £) (z0) = / exp(— /0 V(w(s))ds) fw(t))dw.

Cette probabilité c’est la mesure de Wiener, et la formule, la formule de Feynman-Kac.

3 La mesure de Wiener

Dans toute cette section on désigne par 2o un élément de RV .

3.1 Construction de la mesure de Wiener

zo € RN . Pour construire la mesure de Wiener il est commode d’introduire RV = RV U {oo}, le compactifié
d’Alexendrov de RY, et Q = [[RY, le produit d’un nombre infini de copies de RY indexées par [0, o[, c.a.d.
Pensemble de toutes les applications w de [0, co[ dans RY . On munit © de la topologie produit, qui est la topologie
la moins fine rendant continue les projections w — w(t) (¢t > 0). Par le théoreme de Tichonoff,  est un espace
compact. Il résulte alors théoréeme de Riesz que toute mesure borélienne finie sur {2 correspond alors & une forme
linéaire positive sur C(f2).

Maintenant soit ¢ une fonction continue sur 2 de la forme:

p(w) = F(w(t1),... ,w(ty)) Yw € Q,
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avecn € N, 0<t <...<t,et F € C((RV)"). Utilisant la propriété de semi-groupe :

/p(w,y;S)p(y,Z;t)dy = p(z,z;s+1)  V(z,z) € RY)?, V(s,t) € (Ry)?,

on montre que la valeur de l'intégrale:

/ /F Tiyen , Z0)P(Z0,213t) .. P(Tne1,Tn;t)dxy . .. dzy,

ne dépend que de ¢. On note cette valeur L, (). On définit de cette fagon une forme linéaire sur 'espace Cqn ()
des fonctions continues sur Q qui sont de la forme ci-dessus pour n arbitraire. Par construction L,, est une forme
linéaire positive telle que L, (1) = 1, donc c’est une forme linéaire sur Cf, (2) qui est continue pour la norme de
C(Q) et dont la norme d’opérateur est égale & 1.

D’autre part Chn(f2) est une sous algebre unitale de C'(2) qui sépare les points. Par le théoréme de Stone-
Weierstrass elle est dense dans C(f2) et on peut alors prolonger L,, par continuité en une forme linéaire sur
C(€Q) qui est positive et de norme égale & 1. Le théoréme de Riesz permet ensuite de représenter L,, par une
probabilité sur ) définie sur les boréliens. On note cette mesure p,, : c’est la mesure de Wiener.

Par exemple, si By, ..., B, sont des boréliens de RN et si 0 < t; < ... < t,, alors:

poo({w ; w(t;) € Bjpour j =1,...,n})

/ / p(zo,x1;t) - - . p(Tn—1,Tn;t)dzy - .. dzy
B

En particulier, on a:
pao({w; w(0) = zo}) = 1.

3.2 Continuité des trajectoires

La propriété fondamentale de 1la mesure de Wiener c’est qu’elle est portée par les trajectoires continues qui
sont 3 valeur dans RV . Il s’agit du théoréme de Wiener. Pour le démontrer on introduit la notation :

pe(0) = Sup/ p(z,y;t)dy >0, €>0.
t<8 J|z—y|>e

Cela ne dépend pas de z € RV . Si t €]0,4[, on a:

/ p(z,y;t)dy = W‘N/z/ e~ ay,
lz—y|>e |z—y|>e/2t1/2
< e‘f/‘“l/zw_N/Z/ —ly? =y,
RN
< e9/48129N/2.

D’ou on déduit que:

1
lim gpe(é) =0 Ve>0.

§—0+

Lemme 1 Soit 6 >0, €>0,et0<t; <...<t, avect, —t1 <. Alors:
peo | J Aws —w(ty)] > 26} | < 2pca(9).
1<j,k<n

Démonstration.On pose:

U {w; —w(te)| > 2e€},

1<j,k<n

B ={w; |w(t1) — w(ty)| > €/2}.
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Pour j =1,...,n on pose:

[j={w; |w(ty) —w(ta)l > €/2},

Aj ={w; |w(t1) —w(t;)] >€/2 et |w(ti) —w(ty) <esik<j}.

Soit w € A. Il existe des indices j et k tels que |w(t;) — w(tx)| > 2e. Comme on a:

—

max {|w(t1) —w(t;)], lwt) —wte)l} 2 S(wlts) —wt)] + |wt) —wte)],
>

n

il existe au moins un indice [ tel que |w(t1) — w(#)| > €. Soit p le plus petit petit de ces indices. Par définition
w € Ay, Mais si w € B, alors |w(t1) —w(t,)| < €/2,et on a:

lw(tp) —w(tn)l > |w(tp) —w(t)] — |w(ti) — w(tn)l,
> €2,

i.e. w€T'p. On en déduit que w € BU (I', N A,). 11 en résulte 'inclusion :

AcB |J mna

1<j<n

A fortiori:

:u'wo(A) < :U‘EO(B) + Zﬂmo(rj n AJ)

=1
D’autre part, on a:
Hao(B) = // (20, 21;t1)p(T1, Tty — t1)dT1dTp,
lz—y|>e/2
= /p(mOaml;tl) / p(ml,mfﬁtn _tl)dmn d.Z'l,
|z—y|>e/2

< ps(9).
Puis, soit D; la fonction telle que:

1 siweA;,
Dj(w(t),... ,w(t;)) = { 0 sinon. ’

)U‘CEO / /D T1,.---,T ) ($07x17t1)

(‘/BJ lax_ﬂt ] l)dxl d.T],

Alors on a:

,umO(I‘jﬂAj) = // Dj(.’L'l,... ,.’L‘j)p(.’lfj,ﬂ}n;tn —tj)
|[Tj—2n|>e/2
p(To,z1;t1) ... p(xj—1, 25t — tj—1)d21 ... dzjden,,
< Pg(0)pao(4y).

Mais les A; sont disjoints 2 a 2, donc:

D ho(Tinay) <

j=1

Z :U/-'Eo

mm

IN
)
wlm
—
(=9
~



D0t iy (A) < oo (B) + 2071 Hao (T N A) < 25 (9). m

L’idée qui est derriere la démonstration du lemme, c’est que la trajectoire n’a pas de mémoire: le passé (w
est dans A;) n’a aucune influence sur le présent (w est dans I';).

Lemme 2 Soit § >0, € >0,0<a<bavechb—a<§, et soit:
Eupes = {w; As,t) € [a, ), |w(s) —w(t)] > 2€}.
Alors :
tao (Babe,s) < 2pg ().
Démonstration.Notons ¥ I’ensemble de toutes les parties finies de l'intervalle [a,b]. Pour S € ¥ on pose:
Os = {w; 3(s,t) € S?, |w(s) — w(t)]| > 2¢}.

La famille (Og)ses est une famille d’ouverts de Q dont la réunion est Eq p ¢ 5.
D’autre part, p, est une mesure borélienne finie sur ’espace compact €2, donc elle est réguliere et on a:

bzo (Eapes) = sup{pize (K); K compact inclus dans Eqpes}-

Maintenant, si K est un compact inclus dans E, ; . ¢, alors il est contenu dans la réunion des Og, et par compacité
il existe X! C ¥ finie telle que:

K C U Os.
Sex’

Mais une réunion finie de parties finies est une partie finie, donc:
SO = USEE’SJ

est une partie fine de [a, ], de telle sorte que Os, contienne K. Or le lemme 1 dit que pz,(Os,) < 2p¢(6), donc
o (K) < 2p5(6), et a fortiori, pa, (Eap,es) < 2p5(0). O

Ce lemme 2 exprime que la probabilité pour qu’on ait une variationde 2¢ sur un intervalle donné de longueur
d est un o(d). Il en résulte que la probabilité pour qu’on ait une variation de 2e sur un intervalle donné est un
o(1). C’est ce que dit le lemme suivant :

Lemme 3 Soit k € N;§d >0, ¢ >0 et soit:
®pes ={w; I(s,t) €[0,K]?, |s—t| <6 et |w(s) —w(t)| > 4e}.

Alors :

k

o (Pr,es) < 2(1+ S)Pg((s)-

Démonstration.Pour j < k/d on pose a; = jd. Soit w € Py 5. Il existe s et ¢t dans [0, k] tels que s < t <
s+ 0 et |w(s) — w(t)] > 4e. Soit j la partie entiere de ¢t/6. On a t € [aj,a;41] et s € [aj—_1,a;4+1]. Comme
|w(s) — w(t)| > 4e, on a soit |w(s) — w(a;)| > 2, soit |w(t) — w(a;)| > 2e. D’ol, avec les notations du lemme 2
W€ Eo;_,05,6,6 U FEaj ;1,66 On a ainsi montré que:

(Pkyfyé C U Eajyaj+17€y6'
0<j<k/s
Mais par le lemme 2 on a pzq(Ea;,a;41,e,6) < 2pg () pour tout j, donc pray (Pr,e,s) < 2(1 + %)p%(d). O

Théoréme 2 (Wiener) Soit Qg le sous ensemble de Q formé des fonctions continues qui sont 4 valeurs dans
RN . Alors Qo est un borélien de Q, et on a:

Hazq (QO) =L
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Démonstration.On a:

[ el e o lNe o}

Q=) Ulw; ¥(s,t) € [0,k |s —t| <1/g= |w(s) — w(t)| < 1/p}.

k=1 p=1q=1

Ceci exprime le fait qu’une fonction est continue sur [0, oo[ si, et seulement si, elle est uniformément continue sur
chacun des intervalles [0, k]. En particulier, Qg est un borélien et avec les notations du lemme 3 on a:

oo oo o0

N\ % =U U N 2eame

k=1p=1g¢=1
Comme une réunion dénombrable d’ensemble de mesure nulle est de mesure nulle, il nous suffit de montrer que:

qll)rgo :umo(q)k,l/p,l/q) =0 V(k,p) € Nx N*

Or, c’est justement ce qu’affirme le lemme 3. O

Remarque. On peut démontrer un résultat encore plus fort : soit a > 0 et soit 2, ’espace formé des w € Q qui
sont holderiennes d’exposant a;, i.e.:

3C > 0 tel que Y(s,t) € [0,00)% |w(s) — w(t)| < C|s —t|*.
Alorson a :
1 sia< %,

pao(Ya) = { 0 sinon.

4 La formule de Feynman-Kac

Théoréme 3 (Feynman-Kac) Soit V une fonction continue sur RN a valeurs réelle et qui s’annulle & linfini.
Alors, pour toutt >0 et f € L2(RY), on a:

(e ) f)(a0) = [

Q

t
exp (= [ V@wlo)ds) f@@)nzn) v

0 0

Démonstration.On sait déja qu’il existe une sous suite (ny) C N telle que:

(7 Ho+V)) f(zg) = Tim (e e V)™ )(m))  pp.

k—o00

Fixons zo € RY. Comme V se prolonge en une fonction continue sur RY, on a:

1

(e iV ) = [ feon |-

n
t
n-
=

t t
(20, %15 =) - P(Tpn—1,Tn; —)dT1 ... dTp,
n n

e (2 V) | ), w)

=1 "
Maintenant, pour tout w € 2y, on a:
n t
Jim exp | =2 S V() | ) = e [ V(@) f)

De plus:



Mais la fonction e=*s"P IVI| f(w(t))| est ug,-intégarable sur Q, car on a:

e VI £ ) |dpe, (W) < e PSP IVI(e=tHo| £1) (),
Qo

< +oo.

Par conséquent, le théoreme de convergence dominée s’applique, et on obtient :

n—)O

i [ e (=23 VL) | F)dha @)
= [ e (= [ Ve)ds) eO)inn )

Il en résulte que:

(et HOHV) ) () = /

Qo

exp (— / V(w(s))ds) F@()ds @) .
O

De la méme maniére qu’on a construit la mesure u,, on peut construire, pour tout y € RV et ¢ > 0, une
probabilité conditionnelle i, ;¢ sur Q de telle sorte qu’on ait :

[t = [ ( 5 F@Mie@) ) dy V] € C@),

Cette mesure est supportée par les trajectoires continues w telles que w(0) = z et w(t) = y. Par exemple, si
t1 <t <ty et F est une fonction continue sur R, on a:

F(w(tl)aw(t2))duw,y;t(w)
Qo
://F(xlimZ)p(maxl;tl)p(mlay;t_tl)p(yax2§t2_t)dmldm2-

Gréce & cette probabilité conditionnelle, on peut exprimé le noyau K;(z,y) de e~ t(Ho+V) au moyen d’une intégrale
fonctionnelle :

Kiw) = [ e (— / t V(w(s))ds) Qe 1 ().

Considérons maintenant une particule de masse m, soumise au potentiel V', a la température 7. En mécanique
statistique classique la fonction de partition qui lui est associée est :

zcz//e—ﬂ%“’(m))d?’pd%,

ou 8 =1/kT, k étant la constante de Boltzmann.
En mécanique statistique quantique, la fonction de partition est :

Zg(h) = Trace (exp(—ﬂ(—:—mA + V))) .

zaw=[ (] e (5 [ Vends) dunir)) o

ou on a posé 7 = Af. On montre alors que:

On voit que:

lim ZQ(h) = Zc.

h—0

En d’autres termes, a la limite semi-classique, on retrouve la mécanique satistique classique.
Pour d’autres applications de la formule de Feynman-Kac on pourra consulter le livre de B. Simon.
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Opérateurs de Dirac

Exposé au G.T. ”Théoremes d’indice,
opérateurs de Dirac et géométrie non commutative”

13 décembre 1995

Dans tout cet exposé on désigne par M une variété compacte riemannienne, et par £ un fibré vectoriel sur
M.

1 Opérateurs de Dirac et modules de Clifford.

Définition 1 On appelle opérateur différentiel sur £ d’ordre k un élément du sous espace vectoriel de End(T'(M, E)) :
D* = I'(M,End(€)) Vect{Vx, ---Vx, ; j < ket X; € T(M,TM)},

ot I'(M,End(£)) agit par multiplication sur T'(M,E) et V est une connexion sur &.

Soit 7 la submersion canonique de T* M sur M. On note 7* End(€) le fibré vectoriel sur T* M, image réciproque
du fibré End(£) par =.

Définition 2 Soit P € D*. On appelle symbole principal de P la section o (P) € T(T*M,7* End(£)) définie
par:

ok(P)(x,€) = lim t~*e~ () P(e’f)(x),

oux €M, E€T M et f est une fonction lisse sur M telle que d, f = &.
La définition a bien un sens car si P € D*, alors pour tout z € M et tout f € C*°(M), la fonction :
t —s e~ @ peith(g),

est un polynome de la variable réelle ¢, & valeurs dans End(€,), de degré < k, et dont le coefficient dominant ne
dépend que de d, f.
On a les propriétés suivantes du symbole principal :

Proposition 1 Soit P € D* et Q € D'. Alors on a:

0r11(PQ) = 0k (P)o1(Q),

ox(P)df) = s (ad))F(P)  Vf € O(h),

ot pour tout f € C°(M) on convient d’encore noter f lopérateur de multiplication par f sur T'(M,E), et ot on
désigne par ad la représentation adjointe de End(I'(M,€)) (i.e. adr =[.,T] VT).

Exemple. Sur & = AT*M la différentielle extérieure d est un opérateur différentiel d’ordre 1 et son symbole
principal est donné par:

o1(d)(w) = ie(w) Ywe T*M,
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ou g(w) désigne l'opérateur de multiplication extérieure & gauche par la 1-forme w.

Supposons maintenant que £ soit muni d’une métrique hermitienne. On définit alors un produit scalaire sur
I'(M,€) en posant:

(s1]s2) = /M<Sl($)|32($))m|d$| V(s1,52) € D(M, )2,

ou |dz| est la densité riemannienne de M.

Proposition 2 Si P € D*, son adjoint P* pour ce produit scalaire est un opérateur différentiel d’ordre k dont
le symbole principal vérifie :

ox (P (W) = o(P)(w)*  Yw e T*M.

Exemple. Rappellons qu’on munit A 7*M d’une métrique hermitienne de la facon suivante: si ej,... e, est
une base orthonormée de T, M on munit AT;M du produit scalaire tel que les e; A...Ae;, (i1 < ... <ip)
forment une base orthonormée. On obtient alors un produit scalaire sur I'(M, A T*M) L’adjoint de d a pour
symbole principal :

o1(d*)(w) = —i.(w) YweT*M,
ol t(w) est 'opérateur de contraction par la 1-forme w.
Définition 3 On dit que P € D? est un laplacien généralisé, si et seulement si, on a:
o2 (P)(z,€) = |¢)?ide, Vo € M,V€ € T M.
Remarque. Si P € D? alors c’est un laplacien généralisé si, et seulement si, il s’écrit en coordonnées locales :

P =Y ¢9@)39; + op. diff. d'ordre 1.
4]

On suppose désormais que £ est un super-fibré: £ = EXt @ £~.

Définition 4 On dit que Uopérateur différentiel D d’ordre 1 impair :

0 D
D—(D— 0 )

avec D* : T(M,EF) = T'(M,EF), est un opérateur de Dirac si, et seulement si, Uopérateur différentiel d’ordre
2:
DD+t 0
2 _
D™= ( 0 DtD- ) ’

est un laplacien généralisé.
Exemple. Sur AT*M = \® T*M & \°“ T* M, Popérateur de Rham d+d* est un Dirac. Son carré (d+ d*)? =
dd* + d*d est appellé 'opérateur de Laplace-Beltrami.

On rappelle que le fibré en algebre de Clifford de M est le fibré vectoriel C1(M) sur M dont la fibre en z € M
est l’algebre de Clifford CI(T%).

Définition 5 On dit que € est un module de Clifford s’il existe une action Za-graduée de Cl(M) sur I'(M,E),
laquelle est notée :

¢:T(M,Cl(M)) — End(I'(M,E)).

La proposition suivante établit qu’il y a une correspondance biunivoque entre actions de Clifford et symboles
principaux d’opérateurs de Dirac.

Proposition 3 Supposons que £ soit un module de Clifford, alors tout opérateur différentiel D d’ordre 1, impair,
tel que:

[D, fl=c(df)  VfeC™(M),

est un opérateur de Dirac sur &.
Réciproquement, si D un opérateur de Dirac sur &, alors il existe une action de Clifford c sur & telle que:

cdf) =[D,f]  VfeC*(M).
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Démonstration. Supposons que £ soit un module de Clifford et soit D un opérateur différentiel d’ordre 1,
impair, tel que:

[D, fl=c(df)  VfeC®(M).
Soit x € M et E€ Ty M. Si f € C®(M) est telle que d, f = &, alors on a:

02(D?)(2,€) = (01(D)(2,8))* = (01(D)(df)(2))* et

o1(D)(df) = —i.[D, f] = —i.c(df).-

On en déduit que o4(D)(z, &) = —(c(df)(z))? = —|€£|. 11 en résulte que D? est un laplacien généralisé et que D
est un opérateur de Dirac.
Réciproquement, soit D un opérateur de Dirac sur €. Pour tout f € C°° (M) on pose:

c(df) = [D, f].

La définiton a bien un sens, car D étant un opérateur différentiel d’ordre 1, si f € C°(M), alors pour tout x € M
I’endomorphisme de &, :

[D, fl(z) = i.01(D)(df)(z) = i.01(D)(z,d: f),

ne dépend que de d f. Cette remarque permet de plus de prolonger ¢ & T*M tout entier en posant pour tout
x € Mettout E€TM:

c(z,§) = c(df)(z) = [D, fl(z) = i.01(D)(x, ),

ou f est une fonction lisse sur M telle que d, f = €. On voit qu’en outre, pour x € M fixé, I'application & — ¢(z, &)
est une application linéaire de Ty M dans End(&,) vérifiant :

c(z,)* = —01(D)(2,€)* = —02(D)(z,€) = —[¢|*,  VE€T; M.

Elle se prolonge par conséquent en un morphisme d’algebres de Cl(T; M) dans End(&,). On obtient ainsi une
action de Clifford sur €. O
Exemple. Le fibré A T*M est un module de Clifford pour l’action :

c(a) =¢(a) — va) Vo€ T*M.
Cette action provient de I'opérateur de Rham car pour tout f € C*°(M) on a:

[d+d*, f] = i(ou(d)(df) — o1(d")(df)) = e(df) — o(df).

2 Formule de Mac Kean-Singer.

Soit D un opérateur de Dirac sur £. On suppose que le super-fibré £ = £t @ £~ est muni d’une métrique
hermitienne, pour laquelle £t et £~ sont orthogonaux, et telle que ’opérateur D soit auto-adjoint pour le produit
scalaire induit par cette métrique.

L’opérateur D? est alors ellitique et auto-adjoint. Il existe par conséquent une base orthonormée (e;), -, de

L?(M, E*) formée de fonctions propres de D?:
D2%et = \tet Vm € N

m-m

L’opérateur de Green associé & D2, qui est nul sur kerD?, et qui est I’inverse de D? sur im D? est alors donné
par:

Z Loty +
G = )\j: |em)<em|
+ m
Am>0
Le comportement des valeurs propres en l’infini est donné par ’asymptotique de Weyl:

2
M~ amamm lorsque m — oo.
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Au moyen des fonctions propres on caractérise les éléments de I'(M, £) parmi ceux de L?(M,E*):
Z sted section C® ) & ((sf), >, est a décroissance rapide).

En particulier ker D? est de dimension finie. Comme D est auto-adjoint et que ker D = ker D*D = ker D?, le
super-espace ker D = ker Dt @ ker D~ est aussi de dimension finie. Ceci nous ameéne la définition de 'indice de
D.

Définition 6 On appelle indice de D Uentier défini par :
ind D = dimker Dt — dimker D~ = dimker Dt — dim coker D7.

Exemple. Soit d + d* Voperateur de Rham sur A T*M et A lopérateur de Laplace-Beltrami. Le théoréme
de Hodge-Rham affirme que la cohomologie de Rham H*(M) est isomorphe a ’espace (gradué) des formes
différentielles harmoniques sur M, c.a.d. & ’espace vectoriel ker A = kerd + d*. En particulier les espaces de
cohomologies H* (M) sont de dimensions finies et indd + d* est égal & la caractéristique d’Euler de M :

x(M) = (-1)* dim H*(M).

Définition 7 On appelle semi-groupe engendré par D?, Uapplication de Ry vers les opérateurs bornés de L?(M,£) :

—tD?
9

t—e
ot :

etD? Z e~ leE) (et | vVie R;.

Définition 8 On appelle noyau de la chaleur de D?, le noyau K(z,y) € Hom(E,,E&,) de e~tD* donné par:
Ze men(@) @ e ) V(z,y) € M,
de telle sorte que:
(e —tD* / Ki(z,y).s(y)|dy| Vs € L*(M,€).

La formule de Mac Kean-Singer relie indice de D & une intégrale de K.(z,z); elle est a la base de la
démonstration du théoréme de 'indice par I’équation de la chaleur.

Théoréme 1 (Mac Kean-Singer) . Pour toutt > 0, on a:
ind D = Str(e~*2") = / Str(K, (2, z))|dz|.
M

tD” est un opérateur pair du super-espace L2(M, &) = L2(M,ET) @ L2(M,E7)

_iD-D+
_D? e tD™ D 0
€ = 0 e—tDTD™ |7

Démonstration. L’opérateur e~

ol e~tPTDF et Iopérateur de L2(M, Ei) de noyau L? donné par:
K (z,y) Ze me )@ et (y)* € Hom(E;,t,gf) Y(z,y) € M*.
Il en résulte que:
Str(e™P") = Tr(e7? PT) — (e,

_ / T(KF (2, 2))|da| — / Te(K; (z,2))|dal,
M M

- / Str (K, (, o)) da].
M
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D’autre part, on a:

Str(e_tDz) = Z(nj\' —ny)e vt >0,

A>0
ou pour tout A > 0 on a posé:
ny =dimH  avec HY = ker(D? — \) N L*(M,E%).

Or pour tout A > 0 l'opérateur D induit un isomorphisme de ’H;f sur H, , donc nj\r = n} . Il en résulte que
Str(e=tP%) = ng —ng =ind D.

Corollaire 1 i (D,)ycr est une famille lisse & un paramétre d’ opérateurs de Dirac auto-adjoints, alors ind D,
ne dépend pas de v.

Démonstration. Par Mac Kean-Singer ind D,, = Str(e_tD?J). Mais la formule de Duhamel montre que:

2
6D'u e_tD’ZJ

ov

ol [., .]" est le super-commutateur sur les opérateurs de L?(M,€). O
—tD?

2 2 2
% Str(e=t7%) = —¢ Str(222etP2) = _t Str([Ds,

ov =0

Remarque. On montre que e est un opérateur régularisant, c.a.d. qu’il s’étend en un opérateur continu de
D'(M) dans C*°(M). 1l en résulte que K; est un noyau C*. De plus comme Ky(z,y) vérifie une équation de la
chaleur, c’est en fait une fonction lisse des 3 variables z, y et ¢.

3 Connexions de Clifford.

On suppose que &€ est un module de Clifford.

Définition 9 Soit V une connezion sur €. On dit que V est une connezxion de Clifford si pour tout a €
I'(M,Cl(M)) et tout X e T'(M,TM) on a:

[Vx,c(a)] = (V5 a),
ot VE© est la connerion de Levi-Civita étendue au fibré Cl1(M).
Si V est une connexion de Clifford on lui associe un opérateur de Dirac Dy au moyen des compositions:
T(M,€) s T(M,T*M ® £) -5 T'(M, €),
ot T*M agit sur € via c: a ® s = ¢(a)s. Comme en coordonnées locales on a:
V= Z dx' @ Va,,
on voit que:
Dy = Zc(dmi)vai
Par conséquent pour tout f € C*°(M) on a:
[D,f1 = elda'[Va,, f1 =Y e(ds')d; f = e(df).

ce qui grace a proposition 3 montre que Dy est bien un opérateur de Dirac.
Exemples. 1. La connexion de Levi-Civita sur A T*M est de Clifford et 'opérateur de Dirac associé est ’opé-
rateur de Rham d + d*.

2. Supposons que M soit une variété spinorielle (dim M = 2p): cela signifie qu’il existe un fibré Spin(n)
principal Spin M tel que:

SO(M) ~ Spin M Xgpin(n) SOn -
On a alors:
Cl(M) = SplnM XSpin(n) CI(RH)
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Le fibré spineurs sur M :
S = SpinM XSpin(n) S,

est alors un module de Clifford et la connexion de levi-Civita sur S est de Clifford. L’opérateur de Dirac qui lui
associé est souvent appellé 'opérateur de Dirac sur M.

Remarques. 1. Si M est spinorielle, tout module de Clifford £ sur M est de la forme twistée : £ est isomorphe en
tant que CI(M)-module & un fibré de la forme W®S, ot W est un fibré auxiliaire (on prend W = Endcy) (S, £),
I’isomorphisme étant donné par ’application w ® s — w(s)).

2. Supposons que £ soit muni d’un métrique hermitienne et soit V une connexion de Clifford sur £. On montre
que V est unitaire, au sens qu’on a I’égalité entre 1-formes:

d<51|52) = <V51|32) + <81|V52) V(Sl, 82) S F(M, 5)2,

si et seulement si, 'opérateur de Dirac associé & V est auto-adjoint.
3. On définit de méme les super-connexions de Clifford. Si A est une super-connexion de Clifford, on lui associe
un opérateur de dirac Dy grace aux compositions:

D(M,&) 2 T(M, NT*M © &) A T(M, Cl(M) ® €) -5 T(M, E),
ou c est ’application de quantification de A T*M sur CI(M) définie par:
clarN...hNap)=a1...ap  Y(ai,...,ap) € (T*M)P.

On établit que cela définit une correspondance biunivoque entre opérateurs de Dirac et super-connexions
de Clifford. Ainsi, tous les opérateurs de Dirac sur £ ne viennent pas forcément d’une connexion de Clifford.
Néanmoins ceux pour qui c’est le cas sont seulement ceux pour lesquels on possede des ”théoremes géométriques”.
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Cohomologie cyclique des fonctions C©
sur une variété et du tore non
commutatif

Exposé au G.T. ”Théoremes d’indice,
opérateurs de Dirac et géométrie non commutative”

27 mars 1996

Dans tout cet exposé on désigne par A une algebre sur C unifere.

1 Accouplement entre la cohomologie cyclique et la K-théorie (cas
impair).

Pour tout n € N, on note GL,(A) le groupe des élements inversibles de D’algebre M,(A) = A ® M,(C)
des matrices n x n & coefficients dans \A. On a une inclusion naturelle de GL,(A) dans GL,+1(A), donnée par

I’homomorphisme :
z 0
g— {4 1)

Prenant la limite inductive par rapport & ces inclusions, on obtient un groupe, qu’on note G Lo, (A).

Définition 1 On appelle groupe de Bass-Whitehead de A, et on note K1(A), le groupe abélianisé de G L (A),
c.a.d. le quotient de GLoo(A) par le sous-groupe des commutateurs.

De méme qu’on a un accouplement entre Ko(A) et HC®'(A), la cohomologie cyclique paire de A, on a un
accouplement entre K;(A) et HC°%(A), la cohomologie cyclique impaire de A.

Proposition 1 Soit A une C-algébre unifére. Alors:
a) La formule suivante définit un accouplement bilinéaire entre Ki(A) et HCI4(A) :
([ul.[o]) = A\ (p# Tr)(w™! = Lu—1u™" —1,... ,u—1),
ot u € GL(A), ¢ € Z¥(A) (n impair), et ot on a posé:
An = V2im 2" T'(n + %)_
b) On a:
{u, Sp) = (u, ) Yu € K1 (A) Yo € HC°(A).

¢) Soit B une autre C-algébre unifére. Alors, pour tout p € HC®(A), 1 € HC®(B), e € Ko(A) et u €
Ki(A), on a:

(e@u + (1-€) &L [p#Y]) = (e, [o]){u, []).
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Démonstration. Montrons qu’on a bien un accouplement. Déja, I’additivité par rapport a ¢ et la compatibilité
vis & vis des inclusions, GLy(A) C GLy (A) (k < k') ne posent pas de probléeme. De plus, quitte & remplacer .4
par M, (A) et ¢ par p# Tr, on peut supposer que k = 1.

Considérons 'algebre A = A@® C.1, obtenue en ajoutant une unité a A et munie du produit, ((z, ), (y, 1)) —
(zy + Ay + pz, Ap).

Soit ¢ € C¥(A) donné par 1'égalité:

#((a%, 2, (@' A1), (@™ ") = p(a’,al,...,a™) V(@ M) e A
Montrons que ¢ appartient & Zy (.;1) En effet, pour (a%,\%),...,(a", A\") dans Aona:
P((a°, 1), (@, A) (@™, A, (@™, A))

= p(®,...,d%d", ... a")
+ Xp(@a,...,a"td, ... ,a™) + X, ... et a2, ..., a"™).
D’ou
bE((@%, ), ..., (@A) = bp(a®,... ,am ),

+X%(at, ..., a™t)
+ (=D X(a™,a, ... ,a"),
= 0.
Maintenant, si v € GLi(A) on a:
out—Lu—-1,..., vt —Lu—-1)=@@?a,...,a"*a),
ol i = (u—1,1) € A. On se ramene ainsi au cas oi1 ¢ satisfait & la relation :

o(1,a%,...,a" 1) =0 Va! € A.

1l s’agit alors de montrer que la fonction de GL1(A) dans C:

vérifie la relation:

X(uw) = x(w) + x(v)  V(u,0) € GLy(A)*.

, (w0 _fu O .
Remarquonsquavch—( 0 1>etV_<0 v),ona.

x(wv) = (p# Tr) U™, U,... . UT,U) et

x() + x() = (p# T)(V™LV,...,VTLV).

Mais U et V sont reliés par le chemin :

U =[ Y 0 sint —cost 10 sint  cost
= o1 cost sint 0 v —cost sint /)’
Regardant ce chemin comme un élément du produit tensoriel A ® C*°(R, M2 (C)), on voit que la fonction :
t— ((P# T‘I‘)(Ut_la Uta LR Ut_la Ut):

est lisse sur R. Par conséquent, il nous suffit de montrer que sa dérivée est nulle; ce qu’on vérifie au moyen de la
relation (U; ') = —U;'UIU
Reste & montrer que le résultat est nul si ¢ est un cobord: ¢ = by avec ¥ € Cf\L_l. Comme le cup-produit d’un
cobord donne un /c\ol:)ord, on peut encore supposer que k = 1. Le calcul montrant que ¢ est un cocycle cyclique
montre que ¢ = (b)) = b1/~1. Ceci nous permet de nous ramener au cas ot 9(1,a',... ,a"2) =0 Va/ € A. On
vérifie alors que by(u=t,u,... ,u) =0.
O
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Remarques. 1. L’égalité b) définit un accouplement naturel entre K;(A) et H°4(A), la cohomologie cyclique
périodique impaire de A.

2. Les constantes A, sont déterminées, a un facteur multiplicatif pres, par les égalités b) et c). Le facteur
V2im vient de ce qu’on veut avoir la relation:

(u A, p#P) = (u, p){v, ),

ou A: Ky (A) x K1(B) — Ko(A® B) est un produit défini dans le contexte des pré-C*-algebres (i.e. des algebres
de Banach involutives qui sont isomorphes & une sous-algebre d’une C*-algebre qui est involutive et stable par
calcul fonctionnel holomorphe).

2 Algebres localement convexes.

Supposons que A soit munie d’une toplogie localement convexe, pour laquelle le produit A x A — A est
continu. En d’autres termes, pour toute semi-norme continue p sur A4, il existe une semi-norme continue p’ sur
A telle que:

plab) <p'(a)p'(h)  V(a,b) € A%

On remplace alors le dual algébrique A* de A par le dual topologique, et 'espace C™ (A, A*) des formes (n + 1)-
linéaires sur A par ’espace C" des formes (n + 1)-linéaires continues: ¢ € C™ si, et seulement si, il existe une
semi-norme continue p sur A pour laquelle on a:

le@a®, ... ,a")| < p(a®)...p(a™)  Vd’ € A.

Comme le produit est continu on a bp € C"t!  Vyp € C™. Comme les formules pour le cup-produit des cochaines
ne font intervenir que le produit de 4,elles font toujours sens pour les formes multilinéaires continues, et tous les
résultats précédents sont vrais sans changement dans le cas continu.

Maintenant parlons des résolutions projectives. Comme nous le verrons dans la section suivante, ce sont des
outils particulierement utiles pour calculer la cohomologie de Hochschild. Tout d’abord on peut supposer que
A est complete car C™ n’est pas changé quand on remplace A par son complété, qui est encore une algebre
topologique localement convexe.

Soit B une algebre topologique localement convexe complete. Par module topologique sur B, on entend un
espace vectoriel topologique localement convexe M, qui soit un B-module, et tel que Papplication (b, ) — b€ soit
continue de B x M dans M. On dit que M est topologiquement projectif s’il est un facteur direct d’un module
topologique de la forme M' = B&,E, ou E est un espace vectoriel topologique localement convexe complet et
®, est le produit tensoriel topologique projectif. En particulier, M est complet en tant que sous espace fermé de
P’espace vectoriel topologique localement convexe complet M'.

Si M; et M5 sont deux B-modules topologiques, complets en tant que espaces vectoriels localement convexes,
et p: M; — Ms est une application B-linéaire continue munie d’une section transversale C-linéaire continue
s : Mg — Mji, on peut compléter le triangle d’applications B-linéaires continues:

My
.

p

M—f>M2;

pour toute application B-linéaire continue f : M — M.

Définition 2 Soit M un B-module topologique. Par une résolution projective (topologique) de M, on entend
une suite exacte de B-modules projectifs et d’applications B-linéaire continues :

M(e—Mo(b—lMl(b—gMg(—"‘,
qui admet une homotopie C-linéaire continue s; : Mi — M4, telle que:

biy1s; + s;—1b; =1id pour tout .
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L’algebre A, munie de la structure de module sur B = A®.A° (produit tensoriel de A par son algébre opposée
A®) donnée par:

(a ®b%)c = ach, Y(a,b,c) € A3,
admet la résolution projective canonique (M, b,) suivante :
- M, = B&,E, (en tant que B-module), avec E,, = A% ;
— €: Mo — A est donnée par:
e(a ®b°) = ab Y(a,b) € A?;
- by : My, = M,,_; est donnée par:

h(lRka ®...0a,) = (@1®1)Ra®...Ray
n—1
+ (-1)19l)®a ®...®ajaj41 ®an
i=1
+ (FD)"1®a) @ (@ ®...®an-1),
ounal,... ,a’c appartiennent a A.

La section suivante est continue:
(@) R (01 ®...0a,))=(130°)R(@®a1 ®...Qa,).

Soit le complexe :

Homp(M,, A*) N Homp(My, A*) — -+,

ou on symbolise par Homp les applications B-linéaires continues. Sa cohomologie coincide avec la cohomologie
de Hochschild continue de .A. On obtient un coisomorphisme entre ces cohomologies, grace au B-morphisme qui
3 tout ¢ € C* associe T, € Homp(M}, A*) donné par:

T,((a®b) ®a' ®...®d")(a") = p(ba’a,d’,... ,a*)  V(a,b,a',... a") e AFF3.
Comparant cette résolution avec une résolution topologique projective quelconque du module 4 sur B, on obtient :

Lemme 1 Pour toute résolution projective topologique (My,by,) du module A sur B = ARA°, la cohomologie
de Hochschild continue H™(A, A*) coincide avec la cohomologie du complexe :

Hompg(M,, A%) i, Homp (M, A*) — - -

3 Exemple 1: A =C>®(V), V variété compacte.

On munit cette algebre A = C*° (V') de sa topologie naturelle d’espace de Fréchet, donnée par les semi-normes
Pn(f) = sup,<,, Oaf (via des cartes locales), et on considére uniquement les formes multilinéaires continues. Pour
tout entier k, on identifie le produit tensoriel topologique:

k

C®(V)&---RC®(V) = C®(V)®,

a l’algebre localement convexe C*° (V).
En particulier ’algebre B = A&.A° s’identifie & ’algebre C (V x V) et le B-module A correspond au B-module
donné par 'inclusion diagonale:

A:V VXV, A(p) = (p,p) VpevV

Proposition 2 Soit V une variété compacte, A l'algébre localement convexre C*° (V') et Dy, lespace des courants
de Rham sur 'V de dimension k. Alors:
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a) Le groupe de cohomologie de Hochschild continue H*(A, A*) est canoniquement isomorphe a l’espace des
courants de Rham de dimension k sur V : ¢ p € Z¥(A, A*) est associé le courant C,, € Dy, donné par la formule :

(Co, fOdf* A ... A df*) = ,Z e(f W, W) VT e Ce(V).

k€S

b) Sous cet isomorphisme l’opérateur IoB : H*(A, A*) — H*~1(A, A*) correspond i k fois le bord de Rham
pour les courants b: Dy — Dy_;.

Démonstration. a) Vérifions que la formule ci-dessus définit bien un éléement de Dy. Tout d’abord, on montre
qu’on définit un opérateur d’assymétrisation totale en les k dernieres variables Ay : C*(A, A*) — C*(A, A*) qui
a ¢ € Ck(A, A*) associe le cocycle:

Arp = 12

k€S

ou pour ¢ € Si, le cocycle ¢ est donné par:
T=o(f0 1M, W) Ve A

On vérifie que le noyau de Ay contient les cobords de Hochschild.
Ensuite, si ¢ € C¥(A, A*) est tel que 97 = €(0)p Vo € Sk, alors il existe un courant C, de dimension k sur
V tel que:

(Co, fOdf* A ANdFFY = (fO, 1, ..., fF) Vi eo=(V).

En effet, ¢ satisfaisant a la condition:

o(fO, 1 1% )
:(p(foflafaa"' afk+1)+(p(f0f25f17--- 7fk+1)a

pour fO,..., f¥*1 dans C*°(V), l'assymétrie de ¢ fait que si on le regarde comme une distribution sur V*+1, son
support est inclus dans la diagonale:

Appr = {(z,2,...,2) ; x € V} C VL

Il en résulte que le probleme de I'existence de C, est local, et qu’il se résout par l'utilisation de coordonnées
locales (ou en étant vérifié pour une variété particuliere pour laquelle c’est facile, par exemple V = T").
Ainsi, & tout ¢ € Z*(A, A*) on associe un courant C, = Cy,, donné par la formule:

(Co, fOdf* A ... N df*) = ,Z e(f W, f7W) VT e o®(V).

k€S

Comme le noyau de Ay contient les cobords de Hochschild, C,, ne dépend que de la classe de ¢ dans H¥(A, A*).
On définit ainsi un morphisme o : H*(A, A*) — Dy.

1l s’agit de montrer que « est un isomorphisme. Déja a est surjectif car il admet l'inverse a gauche 3 : Dy, —
H*(A, A*), ot pour C € Dy la classe 3(C) est celle du cocyle ¢ donné par la formule :

oo = (C, fPdf* A...Adf*)Y  Vfie A

Pour montrer Iinjectivité, on peut remplacer V par V x S' car si A est P’algebre localement convexe
C>(V x S'), ’homomorphisme p : A — A donné par ’évaluation en un point p € S' induit une injection
p*: H¥(A, A*) — H*(A,, A*). Ceci permet de supposer que la caractéristique d’Euler de V est nulle.

Supposons ainsi que x(V) = 0. Pour tout k € N, soit Ey = pra* /\k TV limage réciproque de la k-iéme
puissance extérieure du fibré cotangent complexifié par la seconde projection pra : V x V' — V. Par construction
E} = pry* TV. Comme la caractéristique d’Euler de V' est nulle, il existe un champ de vecteur réel sur V' qui
s’annulle nulle part, au moyen duquel on fabrique une section X (a,b) de E} telle que:

— pour (a,b) assez proche de la diagonale, on a X(a,b) = epr_l(a), ou exp; : TV — V est Papplication
exponentielle associée & une métrique riemmanienne donnée sur V' ;
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- X(a,b) # 0 pour a # b.

Ceci nous permet de construire une résolution projective explicite du module A sur B = ARA° = C®(V x V):
AL MY EE ML EE MYy — o e— ML 0,

ol M), est le B-module C*®(V x V, E}) et tx est la contraction par X.
De plus, on a un isomorphisme naturel :

Co(V XV, E)&cso(vxv)C® (V) = C®(V, A*Ey).

Comme par construction A*Ey c’est A* TV, on obtient un isomorphisme entre Homp( & A*) et Dy. Plus

explicitement, & T' € Hompg(M},, A*) correspond le courant Cr dont I'accouplement avec w € C®(V, /\k TeV)
est donné par:

(Cr,w) = T(W)(1),

ouw' € M), est tel que A*w’ = w. D’autre part, la restriction de X ala diagonale étant nulle, 'opérateur de cobord
% + Homp(M),_;, A*) = Homp(M), A*) est nul. Du lemme 1 il résulte alors l’existence d’un isomorphisme
a: Hk(.A, .A*) — Dy

Pour expliciter cet isomorphisme, il nous suffit d’exhiber un morphisme de complexes F' de la résolution
projective standard (Mp,b,) vers la résolution projective (M;,LX) au dessus de l'identité de A. Ici M, =
C>®(V xV x VP) et F est donné par:

(Fw)(a,b,zt, ... ,2P) = (X(z',b) A... A X(2P,b),w(a,b)),

ot w appartient a M), = C°(V x V, E,) et a, b, zl,...,2? sont dans V. Comme F vérifie la relation b,F = Fix
pour tout p, on a un isomorphisme F* de Homp(M),, A*) vers H k_le k-ieme espace de cohomologie du complexe
(Homp(Mp, A*),b;). L'isomorphisme & est alors donné par les compositions:

HE (A, A7) 25 1Y 2 Homp (M), A*) T257 Dy,
o pour ¢ € Z¥(A, A*) le morphisme 7}, est donné par:
T(fogeffe...o ")) =eff, ' 5 Y(f9,f%..., f*) € A2,
On vérifie alors que & = kla; ce qui montre U'injectivité de a.
b) Soit C' € Dy, et soit p¢ le cocycle de Hochschild correspondant :
eo(fO, f1 e f5) = (C fodf A A dFY), YT e C(V).
On a:

Boo(f% ..., ) = oL, ... ),
(C,dfo A ... AdFFTTY,
(bC, fOdf A ... AdfF).

Comme ¢¢ est par construction assymétrique, on en déduit que:

Byc = ABypc = kBopc = kppe-

Théoréme 1 Soit A lalgébre localement convexe C* (V). Alors:

1) Pour tout entier k, la cohomologie cyclique continue HC*(A) est canoniquement isomorphe a la somme
directe :

ker b(C Dk) S7] Hk_z(V, (C) S7) Hk_4(V, (C) D...,
ot H,(V,C) est ’homologie de Rham de V et b est le bord de Rham.

2) H*(A) est canoniquement isomorphe & I’homologie de Rham (avec la filtration par la dimension).
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Démonstration.!) Décrivons explicitement I’isomorphisme. Soit ¢ € HC*(A). Le courant C = Cj, associé &
I(p) est donné par:

(C P4 A = 1 Y )l 570, £ g e e,
" kESy

11 est fermé car BI(p) = 0, de sorte que la cochaine:

GO S ) =LC fOdf AL ndfr) YT e C(V),

appartient a Z’)f. La classe de ¢ — ¢ est par construction dans le noyau de I. Comme im S = ker I, il existe
Y € HC*2(A) tel que ¢ — ¢ = Sy, et ¢ est unique modulo im B. Ainsi la classe d’homologie de C7, est

univoquement, déterminée. C’est aussi le cas la classe de ¥ — 1/~1 dans HC*~2(A). Répétant ce processus, on
obtient la suite des classes d’homologies w; € Hy_2;(V,C). Par construction ¢ est dans la méme classe dans
HC*(A) que o + > 87 ¢,; ou pour tout courant fermé w; dans la classe, le cocycle ¢, est tel que:

o, (FO o, %) = (wy, fOdf A AdfY) Ve A

Ceci montre que I’application qu’on vient de construire est une injection de HC*(A) dans kerb(C Di) @
H, »(V,CO)® H,—s(V,O) &....
La surjectivité est immédiate.

2) La construction de I’isomorphisme montre que S : HC*(A) — HC*t2(A) correspond & I’application qui
a C € ker b associe sa classe d’homologie. L’inclusion en résulte. D’autre part, ici, la suite spetrale associée a la
suite (I, B, S) de Connes est dégénérée; ce qui fait que son terme Ey est déja ’homologie de Rham. O

4 Exemple 2: Tore non commutatif 4 = Ay, 0 € R/Z.

Soit A = €% Notons S(Z?) I'espace des suites (an,m)(n,m)ez2 & décroissances rapides (i.e. (|n|+ |m|)?|an,m|
est borné pour tout g € N).

Soit Ay I’algebre dont 1’élement générique est une somme formelle, > ap, ,, UTUZ", ol (anm) € S(Z?) et dont
le produit est déterminé par 1’égalité UsU; = AU1Us.

Déterminons explicitement H*(Ag). La premiere étape est de calculer la cohomologie de Hochschild H(Ag, Aj),
ol A est muni d’une structure d’algebre topologique localement convexe via les semi-normes p,(a) = sup(1 +
[l + 1))zl

Selon la valeur 6, il faut distinguer trois cas:

— 0 € Q; cette algebre est alors Morita-équivalente a 1’algebre commutative des fonctions lisses sur le tore
T2. Dans ce cas, le calcul de H*(Ay) résulte de la section précédente.

— 0 ¢ Q et 0 satisfait une condition diophantienne du type:

1= A"t = 0(nk) pour un certain k ;

— 0 ¢ Q et 6 ne satisfait pas une condition diophantienne.
Proposition 3 Soit § & Q. Alors:
a) On a:
H(Ay, Ap) = C.
b) Si 6 satisfait une condition diophantienne, on a:

2 sij=1,

dim H7 (Ag, A}) = { 1 sij=2.

c) Si 6 ne satisfait pas une condition diophantienne, alors H' et H? sont des espaces de dimensions infinies
non Séparés.
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Proposition 4 Si 6 ¢ Q, alors HC°(Ag) = C, et l’application :
I:HC"(Ap) — H'(Ag, A}),
est un isomorphisme.

Sur Ay on a 3 opérateurs remarquables :

— La trace canonique sur Ay, qu’on note 7, et qui est donnée par:

T(Z a,U") = ag,0,
ol on a posé U” = U U2 pour v = (ng,ns).
— Les dérivations basiques de Ay, notées d; et d2, qui sont définies par les relations:
§;(UY) = 2imn; U (j=1,2)
Ces opérateurs permettent de construire des bases explicites de H®V(Ay) et de H°(Ay).

Proposition 5 Soit § un réel quelconque ; alors:

a)On a:
H®(Ag) ~ C? et  H°(Ay) ~ 2.
b) Une base de
H®Y(Ay) = H'(Ap, A})/im(I o B),
est fournie par les cocycles cycliques o1 et w2 sur Ag donnés pour j = 1,2 par:
p;(2%,2") = 7(2%;(z"))  Va* € Ap.

c) On a H®(Ag) = H?(Ap) ; c’est un espace vectoriel dont une base est formée de St et du cocycle cyclique
o sur Ag, donné par:

o(2°, 2t 2?) = (2in) 17 (20 (61 (21 G (2?) — So(2)d1 (%)) vzl € As.

Passons maintenant & 1’accouplement entre H®(Ap) et Ko(Ap). Soit (p,q) € Z? un couple d’entiers premiers
entre eux avec ¢ > 0 et p pouvant étre nul. On construit alors un module projectif de type fini £ = &, , sur Ay.

Soit S(R) V’espace de Schwartz des fonctions & décroissance rapide de la droite réelle et V; et Vs les deux
opérateurs de S(R) définis par:

&)(s) =&(s—¢) et (Vad)(s) = e(s)&(s),

0f1§€$(1R),SER,ezg—Gete(s)ze%”VseR.

Considérons ensuite un espace de Hilbert de dimension fini K, et deux opérateurs unitaires w; et ws sur K,
tels que:

wyw; = &(p/q)wiws et w{ =wi =1
Dans le produit tensoriel £ = S(R) ® K on a:
(Va ® wa) (Vi @ wi) = A(V1 ® wy)(Va ® wa).
On munit alors £ = S(R) ® K d’une structure de Ag-module en posant pour j = 1,2:
U= (V;@w;)§  VEeSR) ®K.
On montre que £ est bien un Ag-module projectif de type fini. En fait :
Proposition 6 Soit £ un module projectif de type fini sur Ag. Alors:

— soit & est libre et & = A} pour un certain p > 0;
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— soit £ est isomorphe & module de la forme S(R) ® K pour la structure de module ci-dessus.

En tant qu’espace vectoriel H®V(Ay) est de dimension égale & 2. Une base est donnée par St et le cocycle ¢
donné par:

o2,z 2?) = (2im) (20 (81 ()2 (2?) — da ()81 (2?))) Va! € Aj.
L’accouplement de K avec ST est le méme qu’avec 7 et est donné par la dimension de Murray-Von Neumann :
(Ep,g,T) =p—Hg.
Pour déterminer I"accouplement de K avec ¢, on considere le cycle 2 de dimension 2 et de caractére ¢ :

— En tant qu’algebre graduée  est le produit tensoriel gradué de Palgebre Ay par ’algebre extérieure \* C?
de l'espace vectoriel C? = Ce; @ Ces.

— Sa différentielle d est déterminée par 1’égalité:
dla®a) =61(a) ® (e1 A a) + dz2(a) ® (e2 A @) Y(a,a) € Ag x /\(C2.
— La trace graduée [ : Q* — C vérifie:

/a ® (e1 A ey) = (2im) " 7(a) Va € Ap.

Une connexion sur un module projectif de type fini £ sur Ay est alors donnée par un couple (V1,Vs) de
dérivées covariantes, satisfaisant a:

Vi(éa) = (Vi€)a+&oj(a) V(& a) € & x Ay
La courbure O s’identifie alors &:
(ViVa = V3aV1) ® (e1 A e2).
Sur &,, = S(R) ® K on définit dans ces conditions une connexion V par les formules:

(Vi) =2im26() et (V2)(s) = T o),

ol £ € S(R) ® K et s € R. La courbure de cette connexion est constante, égale & —2 © (e; A e2). La valeur de
I’accouplement est alors:

1 —2iw
2T’

. 1
(Eparp) = 7(ide, ) = —-(p—b4) = a.
On ainsi prouvé le résultat suivant :

Proposition 7 Soit ¢ € HC?(Ay) le cocycle cyclique défini précédemment. Alors :

<K0(At9)7 (p) CZ.
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Trace de Dixmier

19 octobre 1995

Ce mémoire présente de maniere détaillée la construction de la trace de Dixmier donnée en appendice dans

[CM].

Notations

Soit ‘H un espace de Hilbert séparable muni d’un produit scalaire (.|.) antilinéaire & droite. Pour n € N, on
note R, le sous espace de L(H) formé des opérateurs de rang < n.

Si E est un sous-espace vectoriel fermé de H, on note aussi E le projecteur orthogonal associé.

Si £ est un vecteur de norme 1, on note |£)(£| le projecteur orthogonal sur la droite engendrée par £ (notation
de Dirac).

On note K I’idéal bilatere fermé des opérateurs compacts de # et on note £! I’idéal bilatere des opérateurs 2
trace de £(#). On rappelle que si T' € L£(H) est un opérateur & trace, alors pour toute base orthonormée (£,),,~
de H la série:

o

> | Tnn),

n=0

est absolument convergente et sa somme est indépendante du choix du choix de la base(&,),,5,- On note cette
somme Trace(T'). Cela définit une trace sur £, et I’application définie par:

|IT|ls = Trace|T| VT € £,

est une norme, la norme trace, qui fait de £! un espace de Banach.

1 Traces sur une C*-algebre

Dans toute cette section on désigne par A une C*-algebre unifére, et par X un espace topologique localement
compact. De plus, on note A, le cone (positif) des élements positifs de A.

Définition 1 On dit qu’une partie B de A est C*-stable si, pour tout x € B, on a aussi z* € B et |z| € B.
Proposition 1 Tout idéal bilatére de L(H) est une partie C*-stable.

Démonstration. Soit I un idéal bilatere de L£(#), et soit T' € I. Notons T' = U|T| la décomposition polaire de
T. Comme I est un idéal bilatere, les opérateurs |T'| = U*T et T* = U*TU* sont dans I. O

Définition 2 On appelle C*-idéal de A tout idéal bilatére I de A qui est C™*-stable et qui est munit d’une norme
I . llr pour lagquelle I est un espace de Banach, de telle sorte que :on ait:

lzlllr = llz"llr = llzllz  Vz €,
et qu’on ait :

lazblly < flallllzllZl[bll Yz € I, ¥(a,b) € A*.
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Exemples. 1. Grace ala théorie des unités approchées, on montre que tout idéal bilatere fermé de A est C*-stable.
Il en résulte qu’un tel idéal est un C*-idéal pour la norme de A.

2. Soit p une mesure de Radon sur X et p € [1,00[. Alors, LE(X) N L°(X), vu comme idéal bilatere de la
C*—algebre L°(X), est un C*-idéal pour la norme définie par:

= /. If(w)l”du(w)f Vf € IR().

3. Idéauz de Schatten. Soit p € [1, 00[. Alors, ’ensemble £ des opérateurs compacts tels que:
o
Z Nn(T)p < oo,
n=0

ol (Un(T)n),>o est la suite des valeurs propres de |T|, est un idéal bilatere de £(#H) . C’est un C*-idéal pour la
norme donnée par:

P

1Tl = < Zﬂn(T)p> VT € LP.
n=0

Dans toute la suite de cette section, on désigne par I un idéal bilatere de A et on note I, = I N A, le cone des
élements positifs de 1.

Définition 3 On appelle trace sur I toute forme linéaire positive T sur I telle que:
7(az) = 7(xa) Vz € I Va € A.

Définition 4 On appelle poids sur I toute application T : I — Ry qui est additive et homogéne. On dit que
le poids T est tracial si, pour tout x € I, et u € A unitaire, on a:

T(u*zu) = 7(x).
Lemme 1 Tout élément de A est combinaison linéaire de quatre unitaires.

Démonstration. Comme pour tout z € A on a:
m_i(m—f—m)—kzﬂ(m x*),

on se rameéne 4 montrer que tout élément auto-adjoint de A est combinaison linéaire de 2 unitaires.
Soit z € A auto-adjoint. Quitte a diviser z par sa norme, on peut en outre supposer que z est de norme < 1.
Dans ce cas, son spectre est inclus dans [-1,1], et les applications:

t+VI—1
oy

envoient Spaz dans U(1), le groupe des nombres complexes de module égale & 1. Par calcul fonctionnel continu,
les élements de A:

Tz +V1—22 z—V1-—x2

WETT o s

sont alors deux unitaires dont la somme est égale a x. O
Lemme 2 Soit I un idéal bilatére C*-stable. Alors, tout x € I admet une écriture de la forme :

r = (21 —22) + i(z3 —24),
ot les x; appartiennent a I.
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Démonstration. Soit z € I. On a:
1 1
T = 5(3: +z*)+ 12—2(33 —z").

Mais comme I est C*-stable, L(z+z*) et - (x —z*) sont des élements auto-adjoints de I. Il en résulte qu’il suffit
de montrer que tout élement auto-adjoint de I est égal & la différence de deux éléments de 1.
Maintenant soit z € I auto-adjoint. Comme I est C*-stable, les éléments de A:

1
7s = 5@ £ a),

sont des élements de I dont la somme est égale a z. De plus, ils sont auto-adjoints et leurs spectres sont inclus
dans Ry, donc ils appartiennent & I . O

Proposition 2 Soit I un idéal bilatére C*-stable de A, et T un poids sur I.. Alors:
a) T s’étend de maniére unique en une forme linéaire T sur I dans B.
b) Si T est tracial, alors T est une trace sur I.

¢) Supposons que I soit un C*-idéal pour la norme ||.||1, et qu’il existe une constante C' > 0 telle que:
|7(2)| < Cllzll;  Vz € L.
Alors, T est une forme linéaire continue sur I (pour ||.||1)

Démonstration. a) Soit = € I, et soit deux écritures de z données par par le lemme 2:

x = (21 — z2) + (x5 — 24),
z = () — 7h) +i(zy — 2y),

!

ou les z; et les z

appartiennet & I,.. Comme:

(x+2%) =21 — 29 = 2 — 7,

N =

on a:
1+ xh = 2] + T2

Appliquant 7 dans cette derniere égalité, et utilisant 1’ additivité de 7, on obtient :
(1) — 7(@2) = 7(77) — 7(25).

De méme, on a:
7(z3) — 7(24) = 7(23) — 7(2}).

Par conséquent, le nombre complexe :

7(z) = 7(z1) — 7(22) +i(7(z3) — 7(74)),

ne dépend que de z et pas des ;. On obtient ainsi une application 7 de I dans C qui est additive et homogene,
et qui plus vérifie les égalités:

7(ex) = e7(x) Vo €I, Ve € {£1,+i}.
Il en résulte que 7 est C-linéaire. Par construction, c’est 'unique forme linéaire sur I qui prolonge 7 .

b) Supposons que 7 soit un poids tracial, et soit u € A unitaire. L’unitaire invariance de 7 montre que les
applications de I dans C:

z — T(z) et z — T(u*zu),
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sont deux prolongements linéaires de 7 sur I. Par conséquent, elles coincident sur I. On en déduit que:
T(uz) = T(2u) Vo € 1.
Or, par le lemme 1 tout élément de A est combinaison linéaire d’unitaires, donc par linéarité 7 est une trace sur I.

¢) Soit z € I auto-adjoint. On a:

@l < S,
< o= e 2y,
< 20|l

On en déduit que, pour tout =z € I, on a:

F@l < RSO+ EESDL

< 4Clolr

Exemples. 1. Toute mesure p sur X définit une trace sur LIIL nLy.

2. La trace usuelle sur £! est une trace au sens de la définition précédente. En dimension finie £ correspond
a L(H) et toute trace est proportionnelle & Trace. Ce n’est plus le cas en dimension infinie comme le montre
I’exemple de la trace de Dixmier.

2 Valeurs caractéristiques.

Définition 5 Soitn € N et T € K. On appelle n-iéme valeur caractéristique de T, le réel :
pin(T) = inf{||T|p+|| ; dimE = n}.

Lemme 3 Soitn € N etT € K. Alors:

pa(IT)) = pa(T),
dist (|, Rn) dist (T, Ry).

Démonstration. On a ||T¢|| = |||T|¢|| V€ € H, donc pn(|T|) = pn(T'). Maintenant, soit T' = U|T'| la décompo-
sition polaire de T'. De I'inclusion UR,, C R, on déduit que:

dist(T, R,,) = dist(U|T|, R,,) < dist(U|T|,UR,)

IN

U1 dist(|T'|, Rn)-

Mais ||U]| < 1, donc dist(T, R,) < dist(|T|,Rp). Puis, comme |T| = U*T, on obtient de la méme maniére
I'inégalité inverse. O

Proposition 3 (principe du min-max) Soitn € N et T € K. Alors:

pn(T) = dist(T, Rn),
= n+ 1 —ieéme valeur propre de |T.

Démonstration. Comme K est un idéal bilatere de L(#H), il est C*-stable par la proposition 1. En particulier,
Popérateur positif |T'| est compact. Par I’alternative de Fredholm, son spectre est alors formé d’une suite de valeurs
propres, positives, de multiplicités finies et tendant vers 0. On peut ainsi les ranger en une suite décroissante
(An),>0; ce qui permet de parler de “n + 1-ieme valeur propre de |T'|”.

Maintenant, le lemme 3 permet de se ramener au cas ot T est positif. Il existe alors une base orthonormée
(én) >0 de H telle que TE, = A\,&, pour tout n € N. Autrement dit, on a:

n=0
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Pour tout m > 1, notons E,, le sous-espace vectoriel engendré par & ...&,—_1. Le projecteur E,, est donné par:

En =) [ {l-

k<n

Comme on a :

T(1—En) = > Aelér)(&l,

k>n
on voit que:
IT| gLl = IT(1 = En)|| = An.
Mais dim E,, = n et rgT E,, < n, donc:
wn(T) < Ay et dist(T, Rn) < An-

Réciproquement, soit E est un sous espace de dimension n. Comme E,,4; est de dimension n+ 1, la restriction
du projecteur E & E,11 ne peut étre injective. Il existe alors £ € E+ tel que £ € E,11 et ||| = 1. Comme
IT|pLll 2 IT¢|l et € € Enta, on a:

ITEI? =D ARKEIEN® = A% D K& = ALNEN = A7

k<n k<n

Il en résulte que ||T|gL]|| > Apn, puis que p,(T) > Ay
D’autre part, soit R un opérateur de rang < n. On a:

IT - R sup{[|(T" — R)||; ¢ € ker Ret||¢]| < 1}

1T |ker rI|-

AV,

Comme R est un isomorphisme linéaire de ker R* sur im R, le sous-espace ker R est de dimension < n. II existe
alors un sous-espace E de dimension n le contenant. Mais ker R étant fermé, on a:

E* C (ker RY)* = ker R.
D’ou on déduit que:
IT =Rl 2T |prll Z pn(T) 2 An.
On ainsi montré que dist(T, R,) > Ap. O

Corollaire 1 Soit T € K. Alors, T € L' si et seulement si:

Z wn(T) < o0o.

n>0

Dans ce cas on a:
oo
IT|l = Trace|T| = un(T).
n=0
Proposition 4 Soitn € N et T € K(H), et soit H' un (autre) espace de Hilbert. Alors:

a) pn(|T]) = pn(T*) = pn(T).
b) Pour A€ L(H,H') et B€ L(H',H), on a:

pn(ATB) < [|A[lpn(T)|IB],
c¢) Pour U € L(H,H') unitaire, on a:

pin(U™TU) = pin (T).
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Démonstration. Le lemme 3 dit que p,(|T'|) = pn(T). En outre, l'involution T +— T* induisant une involution
de R,(H) on a:

dist (7%, Rp) = dist (T, R%) = dist(T, Ry).

Dot pn(T™) = pn(T).

b) Soit R € Ry, (H). Comme rg(ARB) < n, on a:

(AT B) < |ATB — ARB|| < [[A[[|IT - R[||B||

Il en résulte que p,(ATB) < ||A||pn(T)||B]-

¢) Comme ||U*|| = ||U|| = 1, le b) montre que:

pn(UTU) < pn(T),

et que;

pn(T) = pn(UUTU)U*) < pn(U*TU).

Définition 6 Soit N € N et T' € K. On appelle trace partielle d’ordre N, le réel :

on(T) = Z pn(T).

n<N
Lemme 4 Soit N €N etT € K. Alors:
i) on(T) = sup{||TE|: ; dimE = N}.
it) Si T est positif, on a:
on(T) = sup{TraceTE ; dimE = N}.
Démonstration. Si E est un projecteur orthogonal on a ||T'|E| = |TE|, car:
(TE)*TE = ET*TE = (|T|E)*|T|E.

Il en résulte que les deux membres de la premieére égalité ne dépendent que de |T'|. On peut ainsi supposer que
T est positif.

Soit (&n),>o une base orthonormée telle que T'¢, = p,(T)& Vn € N. Notons En le sous-espace vectoriel
engendré par & ...{n—1. On a:

TraceTEN = |TEn|i = Y pn(T) = on(T).
n<N

Réciproquement, soit E est un sous espace de dimension N. Comme T E est de rang au plus égal & n, on a:
un(TE) =dist(TE,R,) =0 Vn > N.

Par conséquent :

o] N—-1
TraceTE < |TE|y = > pn(TE) = Y pn(TE).
n=0

n=0

Mais par la proposition 4, le dernier membre est majoré par:

N-1
IEI Y pa(T) < on(T),
n=0
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donc TraceTE < on(T). O

Remarque. Pour N € N non nul, oy est le sup d’une famille de semi-normes sur K, donc c’est une une
semi-norme sur K. Mais comme po(T) = ||T||, on a:

1Tl < on(T) < N|T,
et par conséquent, oy est une norme sur K quie est équivalente & ||.||.
Proposition 5 Soit T; et T> des opérateurs compacts. Alors :
a) On a:
on(T1 +Tp) < on(T) +on(Ty) VYN €N
b) Si Ty et Ty sont positifs, on a:
oni+ns (T + 1) > ony (Th) + ony (To)  V(N1, N2) € N

Démonstration. a) o est une norme sur K ; en particlier elle est sous-additive.

b) Pour i=1,2, soit E; un sous espace de dimension N;. Considérons un sous espace E de dimension N =
N1 + N, contenant E; + Es. Soit (&,),,», un base orthonormée de H telle que &, appartienne & E; pour n < N;
et & E pour n < N. Comme T} est positif, on a:

Trace T\ By = Y (&a|Ti&n) < ) (€nlTién) = Trace T\ E.
n<Ny n<N

De la méme maniere on montre que TraceT>FEs < TraceT>E. D’oui:

Trace T E; + Trace Ty E> Trace T\ E + TraceT> E,

<
< on(Th +T3).
Mais T; et T5 sont positifs, donc par le lemme 4:

ON1+N> (Tl + T2) > ON, (Tl) +on, (T2)

3 Le C*idéal £(1>)

On construit lespace £(1°°) qui est le C*-idéal sur lequel seront définies les traces de Dixmier. Le point
crucial est le lemme suivant :

Lemme 5 Soit N € N etT € K. Alors:

on(T) = inf{||z|s + N|jy|| ; (z,y) €L xK et z+y=T}.
Démonstration. Posons:

on(T) = inf{||z|s + Nyl ; (z,9) € L' xK et z+y=T}.
Size L' ety e K sont tels que z + y = T, alors la sous-additivité de o implique :

on(T) <on(z) +on(y) < lzlls + Nyl
Dot il résulte que on(T) < o5 (T).
Réciproquement, soit (£n),,>, une base orthonormée de H de telle sorte que |T'|p = pn(T)én Vn € N
Posons:
ey = (|T| - pn(T))En et
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yn = pn(T)Ex + |T|(1 - En),

ou Ey est le projecteur spectral relatif aux N premieéres valeurs propres de |T|:

En = Z (ﬂn(T) - /‘n(T))lgn)<§n|

n<N

Soit T'= U|T| la décomposition polaire de T. Alors, T = Uz + Uyn et (Uzy,Uyn) € L1 x K. D’ou:

on(T) < Uzl + N[Uynl;
< llzwll + Ny,
< Z (n(T) — pn(T)) + Npn(T),
n<N
= UN(T).

Remarque. Dans cette démonstration on a montré qu’il existait z € £! et y € K de telle sorte que:
lzlly = on(T) = Npun(T) et [lyll = Nun(T).
Ce lemme permet de définir des traces partielles d’ordre réel :

Définition 7 Pour A\ >0 et T € K, on appelle trace partielle de T d’ordre X le réel :
ox(T) = mf{[|z[ls + Allyll ; (z,9) € L' x K etz +y=T}.
Lemme 6 Soit T € K. Alors, la fonction A — o (T) est concave sur Ry .

Démonstration. Soit A et u des réels positifs, et a € [0,1]. Si x € £ et y € K sont tels que z +y = T, alors:

lzlls + (@A + A —a)wllyll = ezl + Mlyll) + @ = a)(lllls + Allyl),
> aoA(T)+ (1 — a)o,(T).
D’olt oort(1—a)u(T) 2 aox(T) + (1 — a)o,(T). O
Proposition 6 Soit A\ >0 et T € K. Alors:
ox(T) = on(T)+ apn(T),
= (I-a)on(T) + aon(T),
A
= / ) (T)du , N =[\,a=X—-N.
0

Démonstration. Les trois derniéres égalités résultent de la définition de o (7). Ceci dit, on sait par le lemme 6
que la fonction A — o (T') est concave, donc:

ox(T) 1—-a)on(T) + aon(T),

>
> on(T) + apa(T).

Réciproquement, on sait aussi par la remarque apres le lemme 5, qu’il existe z € £! et y € K tels que:
lzlly =on(T) = Npo(T) et |lyll = Nun(T).
Par conséquent ox(T) < ||z]l1 + Al|lyl| < on(T) + apn(T). O

Remarques. 1. La proposition dit que la fonction A — o,(T") est affine entre deux entiers consécutifs: c’est
I'interpolation affine des traces partielles d’ordre entier.

2. Pour tout entier N > 0, la fonction oy est une norme sur K équivalente a ||.||, donc pour tout A > 0, la
fonction oy : T + o(T) est aussi une norme sur K équivalente a ||.||. En particulier, o est sous-additive.
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De plus, on vérifie que la boule unité de K pour la norme oy est I’envelloppe convexe de By, la boule unité
de K pour la norme |||, et de A™'B;y ( By désigne la boule unité del!):

B,, ={T € K ; ox(T) <1} = Conv(Be U 'By)

3. La derniere égalité dit que:
nT) = [ wa(@du.
uA

Ainsi, lorsque T est positif, o5 (T) est un cut-off (intégral) de:

o
’I‘raceT:/ p) (T)du,
0

par le parametre scalaire .
Lemme 7 Soit A1 et X2 dans Ry, et soit Ty et To dans KN L(H), . Alors:
Ox14+22 (Tl + TQ) >0y (Tl) + 0, (TZ)'

Démonstration. La proposition 5 dit que I’inégalité est vraie lorsque A; et Ay sont tous deux des entiers.
Pour i=1,2, on pose N; = [\;] et @; = A; — N;. On pose aussi A = Ay + Ay, N =[N et a = A — N. On a soit
N = N; + Ng, soit N = N1 + Ny + 1.
Supposons que N = Ny + Ns. Alors a = a; + as, et on a:

ox(Th+T5) = (ou+az)on,+n41T1 +To
+ (1 -1 — ()tz)O’N1+N2 (T1 + Tz).
D’ou on déduit que:
ox(Th +T) 2 ai(on41(Th) +on,(T2)) + az(on, (T1) + ony+1(T3))

+ (1 =y — az)(on, (Th) + on, (1)),

> (I-a)on, (T1) + onon,+1(Th)
+ (1 —a2)on, (T2) + azon,+1(T2),

> O (Tl) + Oy, (T2)'

SiN=N;+Ns+1,alorsa=a; +as—1,et on a:

J)\(Tl + TQ) = (1 —a1 +1— a2)0N1+N2+1(T1 + T2)
+ (a1 + g — Von, 4148041 (T1 + 1),

> (1—a)(on, (Th) + on,(T2))

+ (1= az)(on,4+1(Th) + on, (T2))

+ (a1 + az — 1)(on,+1(Th) + on, (12)),
> (1-a1)on,(Th) + oron, (Th)

+ (1 - az)on,(T1) + ason,(T2),
> ox(Th) + o, (T2).

Définition 8 On appelle interpolé réel de L' et de K, le sous-espace :

L5 = {T; sup —Uu(j;) < oo},

u>e IOg
ot e = exp(1l) est le nombre de Neper.

Proposition 7 £!' un C*-idéal pour la norme :

T
I7'](1,00) = sup T(:é u) VT € £3520),
u>e
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Démonstration. Tout d’abord, ||.|[(1,o0) est le sup d’une famille de normes, donc cést une norm. D’autre part,
par la proposition 6 on a:

N-1
T T
2@ T (D) +apn(T)

VT € K.
ue 10U T N>20<a<i log(N + a)

Il résulte alors de la proposition 4 que £(1:>) est un idéal bilatere de £(H) et qu’on a:
IATBll,00) < ATl BI VT € £, ¥(4, B) € (£0)2.
En outre, par la proposition 3, 'idéal £(1:°) est C*-invariant et par la proposition 4 on a:
T [ll1,00) = 1T l1,00) = T l1,00) VT € L5,

Maintenant, soit (7,), >, une suite dans £(::>) qui est de Cauchy pour lI-l1,00)- Alors, cette suite est de Cauchy

pour chacune des normes 0. Comme ces normes sont toutes équivalentes & ||.||, on voit qu’il existe T € K tel
que:

lim o)\(T,—T)=0 VA > e.

n—oo

Soit € > 0. Pour n et p assez grands on a:
ox(Tn —Tp) <e VA >e.
Faisant tendre p vers 'infini, on obtient:
ox(T,—T)<e VA >e.
I en résulte que T' € L) et que || T, — T'|(1,00) = 0. a

Proposition 8 Soit H' un autre espace de Hilbert et soit S € L(H',H) inversible. Alorsys, lopérateur de
conjugaison par S de L(H) dans L(H'),induit un isomorphisme continu de £(1°°) (M) vers L) (H).

Démonstration. Comme vg est une bijection de £L(H) vers L(H'), d’inverse yg-1 : T' — ST'S™1, il suffit de
prouver que s envoit continument £(1:°°) (#) dans £(1:%°) ().
La proposition 4 dit que:

pn(STITS) < [ISTHIISIun(T) - VT € L&) (H), Ve N,
donc v5(L12) (H))) € LB (H'), et on a:
lvs(T)lla,e0y < ISTHISHIT N,00) VT € L& (H).

Remarque. 1. £(1:®)est 1'espace vectoriel normé dont la boule unité est :

B(1,00) = ﬂ log u. Conv(Bs, Uu™!By).

u>e
Ainsi on a les inclusions:
£t c Lt ck,
et les inégalités (lorsqu’elles ont un sens):
I < 1T Nl 1,00y < NIl

2. En tant qu’idéal £ est égal a I'idéal de Macaev :

T)
£t ={1; £0° gy m < 00}
{ NZI; IOgN }

Ce dernier est un C*-idéal pour la norme:

on(T)
T = su .
171+ SUP Tog N

Cependant cette norme ne coincide pas avec la norme ||.||(1,), bien qu’elle lui soit équivalente.
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4 Trace de Dixmier

On va maintenant se concentrer sur la divergence logarithmique de o (T') et évaluer son expansion logarith-
mique. Ceci nous ameénera a la trace de Dixmier.

Définition 9 Pour A\ > e et T € K on pose:

(T log A log u u

Remarques. a) Pour T € K fixé, la fonction A — 75 (T') est continue et s’interpréte comme la moyenne de Cesaro
de oA (T")/log A par rapport & la mesure de Haar d—;‘ du groupe localement compact RY .

b) Si T € L&), on a 0y(T) < ||T|(1,00) log uVu > e. Dol :
(T) < Tll1,0p VAZeE
Par conséquent la fonction A — 7, (T') appartient a Cy([e, 00)).
Lemme 8 Soit A\ > e et soit Ty et T dans L’(H)+ N L1:) - Alors :

(loglog A +2)log2
log A '

IA(Th + T2) — a(Th) — a(T2)] £ |1 + Tl (1,00
Démonstration. Comme les o, sont sous-additives on a:
Z(Th +T2) < 1A(T1) + T (T5).
11 nous faut alors majorer la différence 75 (T1) + 7A(T2) — TA(T1 + T3). Par la proposition 5 on a:
o2u(Th +T2) 2 0u(Th) + 0u(T2) Vu>e.

D’ou:

A (Th) + ™A (T2)

’

1 /)‘ 0'2u(T1 +T2)d_u
log A logu U

1 [P o,(Ty+T) du
logA Jye logu/2 u’

On en déduit que:
(log)\)|7'>\(T1 + Tz) — T)\(Tl) — T)\(T2)| <d+ 5’,

avec:

7

5 / ou(Ty + Ty) du /2* ou(TL + Ty) du
logu U % logu U

21

1 1 du
- DT+ To) (—— — ——)
0 /Ze ou(Ti + 2)(logu/Q logu)u

Gréce & la relation de Chasles et a I’ inégalité triangulaire on obtient :

5 S /2e O'u(Tl + T2) d_u n /2}\ Uu(Tl + T2) d_u
R logu U A logu U

Comme 0, (T1 + T2) < |[|T1 + T2||(1,00) logu  Yu > e, on voit que:

2e du

2\
du
e U A U

7



D’autre part on a:

5 < I+ /%10 u( _ 1 du
= 12l ee) | & logu/2 logu’ u’
2)
log2 du
< |1y +T —
< T+ Tell1,00) Le Togu/2 u’
< Ty + T2l (1,00) (log 2) (log log A).
Rassemblant les inégalités on obtient le lemme. O

Ce lemme s’interprete en termes de C*-algébre. Considérons la C* algébre:
A = Q([e,0)) = Cy([e, 00))/ Co([e, 0)).
Le lemme 8 dit qu’ on a une application additive de Eg’m) dans A:
7 : T+ classe de (A (T))a>e-

En fait:

Lemme 9 Soit w un état sur A (i.e. que w est une forme linéaire positive sur A telle que w(1) =1). Alors, wor
est un poids tracial sur ES}’OO).

Démonstration. Soit 7' € ES}’OO). La fonction A +— 75 (T'), donc 7(T') € A4 et on a w(r(T)) > 0.
D’autre part, soit U € £(H) unitaire. Par la proposition 4 on a:

pn(U*TU) = p (T) Vn € N.

Dot 7\ (U*TU) = A (T) X > e, et a fortiori, w(r(U*TU)) = w(r(T)). a

Comme £(1:%) est un C*-idéal, la proposition 2 s’applique : si w un état sur A, le poids tracial wor sur Esrl’oo)
se prolonge canoniquement en une trace sur £ On obtient ainsi la trace de Dixmier.

Définition 10 Soit w un état sur A. On appelle trace de Dizmier associée 4 w, et on note Tr,, la trace sur
L) obtenue par prolongement linéaire du poids tracial wor sur ﬁg_l’oo).

Proposition 9 Soit w un état sur A. Alors:

a) Tr, est une forme linéaire continue sur L),

b) Tr,, ne dépend que de la topologie localement convexe de H, et pas de son produit scalaire.

c) Soit H' un autre espace de Hilbert, et S € L(H',H) inversible. Notons Tr', la trace de Dizmier associé d
w sur H'. Alors:

T (S7ITS) = Tr,(T) VT € £ ().
Démonstration. a) Soit T' € ES_I’OO). D’apres la remarque a) apres la définition 9, on a:
A(T) < ITl(1,00) VA >e.
Par conséquent, dans A, on a:
0 < 7(T) < IT7(DI < 171l (1,00)-
On en déduit que:
0 <w(r(T)) < ITl1,000w(1) < Tl (1,00)-

De la proposition 2.c), il résulte alors que Tr,, le pronlegement linéaire du poids tracial wor, est une forme
linéaire continue sur £(1:%),
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b) Soit (.|.) un autre produit scalaire sur H définissant la méme topologie que {.|.). Il existe alors S € L(H)
inversible tel que:

(€ln)" = (S¢|Sm) V(& m) € H™.

Notons H' I’espace de Hilbert pour ce produit scalaire, et Tr/, la trace de Dixmier associée & w sur H'. Soit
T € K4. Alors STITS est un opérateur compact de H, qui est est positif relativement & (.|.)’, et qui a les mémes
valeurs propres que T'. Il en résulte que ses valeurs caractéristiques relativement & {.|.)’ sont:

po(T), pr(T), - .., pn(T), - - -
On en déduit que £ (H') = L) (H), et qu’on a:
T (T) = Tr,(S7'TS) = Tr,(T) VT € L) ().
D’ott Tr/, = Tr,, par linéarité.

¢) La proposition 8 dit que S~1L1:)(H)S = £(1:>)(}"). De plus, le b) ci-dessus, permet de remplacer le
produit scalaire de H' par:

(&,m) V> (S&|Sm).

On est ainsi ramené au cas ou S est unitaire. Maintenant si T € L£1>)(#),, alors S~'TS appartient a
L) (") 4 et a les mémes valeurs propres que T, et par conséquent, Tr! (S7'T'S) = Tr,(T). Il en résulte
que:

T (S7ITS) = Tro (T) VT € L) (H).
Oa

Définition 11 Soit T € L), On dit que T est mesurable si la valeur de Tr,, T est indépendante de ’état w.
On note M Uensemble des opérateurs mesurables. On définit alors - comme la forme linéaire sur M telle que :

][T = Tr,(T) pour T' € M textupet w état sur A.

Proposition 10 On a les propriétés suivantes :
a) M est un sous espace vectoriel fermé de L) qui ne dépend pas du produit scalaire de H.

b) Soit H' un autre espace de Hilbert, et S € L(H',H) est inversible. Alors, ST'M(H)S = M(H') et on a:
S~iTsS =][ T VT e L) (H).
H H

Démonstration. On a:

MH) = [ AT eLB®H); Tro(T) = Tro (T)}-

w,w’ états sur A

Par conséquent, la proposition résulte de la proposition 9. O
Lemme 10 Les états sur A séparent les points.

Démonstration. Soit z € A. I s’agit de montrer l'existence d’un état w sur A tel que w(z) # 0. Si w est un état
sur A, alors w(z'g—z*) est réel et est égal  la partie réelle de w(z). On peut ainsi supposer que z est auto-adjoint.
De plus, quitte & changer x en —z, on peut se ramener au cas ol z ¢ A, .

Maintenant, soit B ’espace de Banach réel formé des élements auto-adjoints de A et munit de la norme
induite. Appliquons le théoreme de Hanh-Banach dans B au convexe A, et & C' le convexe compact engendré
par —1 et z: il existe une forme linéaire ¢ sur B et des réels a < 3 tels que:

p(Ay) <a et ¢(C) > B
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En particulier, ¢(A+) est un sous-cone strict de R. Or ¢(1) # ¢(—1), donc ¢(A+) n’est pas réduit a {0} et
nécessairement ¢(A+) = Ry. Il en résulte, d’une part que ¢(1) et ¢(z) sont non nuls, et d’autre part que @|4,
est un poids sur A,. Appliquant la proposition 2 on peut alors prolonger ¢ en une forme linéaire positive ¢ de
sorte que:

K
$(1)’
est un état sur A tel que w(z) # 0. O

w =

Proposition 11 On a les propriétés suivantes :
a) Soit T € ES}’OO). Alors :
(T mesurable et ][T =L)< ( lim 75(T) = L).

b) Soit T € K. Supposons que T est positif et que
N-1
li T)=L
N log N T;) Hn(T)

Alors T est mesurable et Tr, T = L.

¢) Le noyau de § contient L*.
Démonstration. a) Si limy_,o 7\ (T") = L, alors 7(T') = L, et pour tout état w sur A on a:
Tr,(T) = w(r(T)) =w(L) = L.

Autrement dit, T € M et {T = L.
Réciproquement, supposons que 7' est mesurable et que L = {{T'). Alors pour tout état w sur A on a:

w(r(T) — L) = Tr,,(T) — L = 0.

Comme par le lemme 10 les états sur A séparent les points, on en déduit que 7(T") = L. D’ott limy o, 72 (T') = L.

b) Soit N un entier > 2. Alors, pour tout A € [N, N + 1], on a:

( IOgN )O‘N(T) < U)\(T) < (IOg(N-l‘].))O'N(T)
log(N+1)"logN — logh — log N log N
Par conséquent limy_ . 5 Oé )\) L. D’ou:
Jm, ™) = i log/\ logu w =L

Il résulte alors du a) ci-dessus que 7' est mesurable et que {7 = L.

¢) Si T € £, alors:
N—1
]\Ill—r)noo log N 7;) n(T)
Le b) ci-dessus dit alors que T € M et que £T = 0. Comme L' est un idéal bilatere de £(?), la proposition 1

et le lemme 2 disent que tout élement de £! est combinaison linéaire d’éléements ﬁ}{_. Il en résulte que £ est
contenu dans le noyau de O

Proposition 12 Soit A un opérateur “non borné” tel que A > ¢ > 0, et tel que:

—tA

Tracee ~at™P lorsque t — 0T,

Alors A™P est un opérateur mesurable et on a :
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Démonstration. Par hypothése e est un opérateur & trace. Il est donc compact. Comme il est positif, il existe
une base orthonormée (£,),,~, de H telle que:

e8¢, = ,un(e_A)ann €N

Ecrivons pi,(e™2) = e ott (M), €st une suite croissante de réels strictement positifs tendant vers +oo. Par
calcul fonctionnel, pour tout n € Net ¢ > 0, on a:

Aé-n = )\né-ny
A_pfn = )\;pé-n’
e_tAén — e_t’\" én

Comme lim,,_, [|A7PE, || = limy, o0 A = 0, opérateur A~P est compact et on a:
Un(ATP) = AP VeN
D’autre part, on a:

Z et = Tracee™ ~ at™? lorsque t — 0.
n>0

Il résulte alors du théoréme tauberien d’Hardy-Littlewood (cf. [An] et [Ha]) qu’alors on a:

-1

pn(A7P) = AP ~ % lorsque n — co.
D’ol1 on déduit:
N-1 N
N gy 2 (A7) = 1o

Il en résulte que A~P est un opérateur mesurable et qu'on a:

fo= G
O

Exemple. Soit A le laplacien (positif) sur le tore T" = R"/27Z". On regarde A comme un opérateur “non
borné” positif sur 1’espace de Hilbert # = L?(T™). L’analyse de Fourier dit qu’une base orthonormée de cet
Hilbert est fournie par les fonctions :

e reT", kezm

Dans cette base on a Aeg = |k|%e;,  V k € Z™ On en déduit que pour ¢t > 0 on a:

et Tracee tU+A) = Z e~ tkI® — (Z e—tk2)n

kez® keZ
On sait que:
+o0 5
|/ e dy — Ze‘t’“ | <1,
- kezZ
“+co
™
/ e tdr = —.
- t
D’ou:
T\ n
Tracee tU+A) (?)5 lorsque ¢ — 07.
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Il en résulte que (I + A)= est mesurable et qu’on a:

[NIE]

™

fuenF =y

Plus généralement soit M une variété compact riemannienne de dimension n, et P un opérateur pseudo-
différentiel sur M d’ordre —n. Alors P s’étend en un opérateur compact de I’espace de Hilbert L?(M). On
montre (cf [Co2]) que cet opérateur est mesurable et qu’on a:

][P = %Res(P).

Ici Res(P) est le résidu de Wodzicki de P (ou résidu non commutatif) ; il est donné par la formule:

Res(P) = (2r)"" / 0 n(P)(z, ) dade,

S*M

ot S*M est le fibré en sphere du fibré cotangent 7" M.
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