ANALOGUES OF THE HOLOMORPHIC MORSE INEQUALITIES
IN CR GEOMETRY

RAPHAEL PONGE

This talk is a preliminary report about a joint project with George Marinescu
on extending to the CR setting Demailly’s holomorphic Morse inequalities together
with some applications to complex geometry, including a generalization of the
Grauert-Riemenschneider criterion to the noncompact setting.

The talk is divided into 3 sections. In Section 1 we briefly review the holomor-
phic Morse inequalities. In Section 2 we recall the main definitions and properties
concerning CR manifolds, CR vector bundles, CR. connections and the 0j-complex.
In Section 3 we present our main results.

1. HOLOMORPHIC MORSE INEQUALITIES

By Kodaira’s embedding theorem a compact complex manifold is projective alge-
braic iff it carries a positive holomorphic line bundle. The Grauert-Riemenschneider
conjecture was an attempt to generalize Kodaira’s embedding theorem to compact
Moishezon manifolds. Recall that the latter are compact complex manifolds which
are projective algebraic up to a proper modification or, equivalently, have maximal
Kodaira dimension.

Conjecture (Grauert-Riemenschneider). A compact complex manifold is Moishe-
zon if it carries a holomorphic line bundle which is positive on a dense open set.

This was conjecture was first proved by Siu ([Sil], [Si2]) using elliptic estimates
together with the Hirzbruch-Riemann-Roch formula. Subsequently, Demailly [De]
gave an alternative proof based on a holomorphic version of the classical Morse
inequalities as follows.

Let M™ be a complex manifold and let L be a Hermitian holomorphic line bundle
over M with curvature FL. It is convenient to identify F¥ with the section of
End T ; such that aZJ — F( 577 5% )agk'

For ¢ =0,...,n we let O, denote the open set consisting of points x € M such
that FL(z) has q negative eigenvalues and n — g positive eigenvalues and we set

qu :O()U...UOq.
Theorem 1.1 (Demailly). As k — oo the following asymptotics hold.
(i) Weak Holomorphic Morse Inequalities:

(1.1) dim H*Y(M, L*) < (- 2 /detFL o(k™).
™

(i) Strong Holomorphic Morse Inequalities:

1V i 70 Ry < (_1ya( L yn ot L & of k"
(1.2) ;( 1)1 dim HI (M, LF) < (=1)*(5) /O<thF + o(k™).
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(iii) Asymptotic Hirzbruch-Riemann-Roch formula:

n

0y ko, n
(1.3) X(M,Lk):jz:%(—l)JdnnH’(M,Lk)_(%) /MdetFL+o(k ),

where x(M, L*) is the holomorphic Euler characteristic with coefficients in L*.

In particular, for ¢ = 1 we get

-1,k
(1.4) —dim H%O(M, LF) + H* (M, L*) < 7(7)11/ det FL + o(k™).
TL' 27T Ogl
Thus,
1,k
(1.5) dim H*O(M, L*) > 7(7)71/ det F¥ + o(k™).
n' 2w OSl

If ngl det FE > 0 (e.g. if L is semi-positive and is > 0 at a point) then we get:

(1.6) dim H*O(M, L*) > k",

which implies that M has maximal Kodaira dimension, i.e., M is Moishezon.

In [Bi] Bismut gave a heat kernel proof of Demailly’s inequalities. Bismut’s
approach can be divided into 2 main steps.
Step 1: For ¢ = 0,...,n let AOL’,? denote the Dolbeault Laplacian acting on sec-
tions of A%IT*M ® L*. We let FL be the Clifford lift of F, i.e, the section of
End(A%*T*M) so that locally we have FL = F (52, %)E(d,gj)L(dzk). Then Bismut
proved:

Theorem 1.2 (Bismut). For anyt > 0 we have

_t A% k FL _ 7L
(17) ’I‘I‘e ET Lk = (%)n /M det[l_eﬁ] ’I\rlAqu e tF +O(kn)
Step 2: By taking the limit as ¢ — oo in the integral in (1.7) Bismut recovered the
inequalities (1.1)—(1.3), via linear-algebraic arguments similar to that of his earlier
proof of the Morse inequalities.

2. CR MANIFOLDS AND THE 0p-COMPLEX

2.1. CR Manifolds. A CR structure on an orientable manifold M?2"*+! is given
by a rank n vector bundle 77 o C TcM such that:

(i) T1,0 is integrable in Froebenius’ sense;

(11) TI,O N T071 = {0}, where T()’l = m
The main examples of CR manifolds include:

- Boundaries of complex domains;

- Circle bundles over complex manifolds;

- Boundaries of complex hyperbolic spaces.

Given be a global non-vanishing real 1-form 6 annihilating 7% o @ 7,1 the asso-
ciated Levi form is given by

(2.1) Lo(Z,W) = —id0(Z,W), Z,W € C>(M,T1p).
We say that M is strictly pseudoconver when we can choose 6 so that at every

point Ly is positive definite. Similarly, we say M is k-strictly pseudoconver when
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we can choose 6 so that at every point Ly has exactly x-negative eigenvalues and
n — Kk positive eigenvalues.

2.2. The Jj-complex. Let N be a supplement of T1,0® Tp,1 in Te M and define:
AY0 = annihilator in TEM of Ton ® N,
A%! = annihilator in TgM of Th o © N,
APT = (AMYP A (APNY9 pg=0,...,n.

This gives rise to the splitting,

(2.2) ATEM = (D AP & (0 A A TEM).
p,q=0
If a € C°°(M, A%9), then we can write
(2.3) do = Opa + Dpar + 0 A B,

with dpa € C°(M, A1) and Oy € O (M, A%9+1).

We have 552) =0, s0 0y : C®°(M,A\%*) — C°°(M,A%**1) is a chain complex
whose cohomology groups are denoted HZ?""’(M)7 q=0,...,n.

Endowing Te M with a Hermitian metric, the Kohn Laplacian is

(2.4) O, = gng + 5552
Proposition 2.1. We have H,"(M) =~ ker (Jj,,.

For x € M let k4 (z)and £_(z) be the number of positive and negative eigenval-
ues of the Levi form Ly at x.

Definition 2.2 (Condition Y (q)). The condition Y (q) is satisfied when for all
x € M we have:

(2.5) g€ {r-(2),....,n—kp(x)} U{ks(x),...,n—Kk_(z)}.
Ezamples. 1) If M is strictly pseudoconvex then the condition Y (¢) means g # 0, n.

2) If M is k-strictly pseudoconvex then the condition Y (¢) means q # k,n — k.

3) The condition Y (0) means that Ly has at least one positive and one negative
eigenvalue.

Proposition 2.3 (Kohn). Under condition Y (q) the operator O, , is hypoelliptic
with gain of 1 derivative, i.e., for any compact K C M we have estimates,

(2.6) [ulls+1 < Cksl|Opqulls  Vu € CF (M, A07q)~
Corollary 2.4. If the condition Y (q) holds then dim Hg’q(M) < 00.

2.3. CR vector bundles and CR connections. In the sequel we say that a map
¢ = (o) : M — M,(C) is CR when 0p¢p; = 0.

Definition 2.5. A CR wvector bundle £ over M is a vector bundle given by a
covering of M by trivializations 7; : £, — U; x CP whose transition maps 7;j =
J

T; © T{l :U;NU; — GL,(C) are CR maps.
Given a vector bundle £ over M for p,q =0,...,n we let AP4(E) = APIQE.
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Proposition 2.6. If £ is a CR vector bundle then there exists a unique operator,

(2.7) Opg : C°(M,A\°*(&)) — C®(M,A"*T1(E)),

such that 5;5 = 0 and for any local CR frame ei,...,e, of € and any section
s=>"s;e; we have

(2.8) 5[;758 = Z(gbsl) X e;.

The cohomology groups of the complex 9y, ¢ : C*°(M, A%*(E)) — C°(M, A**+1(€))
are denoted Hl?’q(M, €),q=0,...,n. As before if the condition Y (¢) holds then
dim Hy(M, &) < .

Next, let £ be a CR vector bundle endowed with a Hermitian metric and let
V:C®(M,E) — C®°(M, T*M ® &) be a connection. Recall that V is said to be
unitary when we have

(2.9) d(€,my = (V&) + (& Vn)

for sections £ and 7 of €.
On the other hand, thanks to the splitting we can write:

(2.10) V=V vel 4 oaD,
where = V1Y and V%! map to sections of AL0(E) and A%1(E) respectively.
Definition 2.7. V is a CR connection when V%! = 0y ¢.

Now, let Endg, £ the bundle of selfadjoint endomorphisms of £. Then we have:

Proposition 2.8. The space of unitary CR connections is a non-empty affine space
modelled on 10 @ C*°(M,Endg, ).

3. CR MORSE INEQUALITIES

Let M?"*+! be a compact CR manifold together with a Hermitian metric on
TcM (not necessarily a Levi metric) and with a global real non-vanishing 1-form
¢ annihilating 779 @ Tp,; and let L is a Hermitian CR line bundle over M with
unitary CR connection of curvature F'L.

Our goal is to obtain analogues of the asymptotics (1.1)—(1.7) in this setting.
There are several earlier related results in this direction.

First, in [Ge] Getzler proved an analogue of heat kernel asymptotics (1.7) for
strictly pseudoconvex CR manifolds with Levi metric and conjectured that such an
asymptotics should hold for more general CR manifolds. Nevertheless, he didn’t
derive asymptotic inequalities for dim Hz? “Y(M, L*). There seems to be a mistake
in Getzler’s final formula (compare Theorem 3.1 below).

Later on, as a consequence of his version of the holomorphic Morse inequalities
for pseudoconcave complex manifolds, Marinescu [Ma] obtained a lower bound for
Hz? ’O(M , L®k) when M is the boundary of a strictly g-concave domain on a g¢-
concave complex manifold X 2" with n > 3 and q<n-—2.

In addition, Berman [Be] proved a version of Demailly’s inequalities for complex
manifold with nondegenerate boundary and Fu has announced during his talk at the
symposium analogues of the weak holomorphic Morse inequalities (1.1) on bounded
finite type pseudoconvex domains in C2.
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3.1. Heat kernel version. Let Dg:zk be the Kohn Laplacian acting on sections
of A%4(L¥). As before it will be convenient to identify F'* and Ly with the sections
of Endc T1 ¢ such that, for any orthonormal frame 71, ..., Z,, of T} o, we have:
(3.1) FL7Z; = FY(Z;, Z;)Z, LoZ; = Le(Z;, Zi) Zk.

Furthermore, for u € R we set

(3.2) Ff(n) = F* — Ly,

and we let FL(u) denote the Clifford lift of Ff (i) to A%*, i.e., the section of
Endc A%* such that, for any orthonormal frame Z1, . .., Z,, of T} o with dual coframe
f',...,0", we have

(33) Fi(n) = [FY(Z;, Zx) = nLo(Z;, Zi)]e(07)u(6").

Theorem 3.1 (GM+RP). Assume that the condition Y (q) holds. Then for any
t > 0 we have

4104 k
(3.4) Tre e = () / GO, )dv(z) + O(K™),
™ M
~  FHw ,
0,q _ 0 —tFy (1)
(3.5) G (x’t)_/_oodet[l—e*thL(#)]Tre o dy,

where dv(z) denotes the volume form of M.

Remark 3.2. We actually have a complete and local asymptotics in k, so this might
yield a CR analogue of the Tian-Yau-Zelditch-Catlin asymptotics on (0, ¢)-forms.

3.2. Cohomological version (in progress). We make the following extra as-
sumptions:

- M is k-strictly pseudoconvex;

- We can choose F© and df and the Hermitian metric of Te M so that we have

(3.6) [FE Ly) = 0.

This condition is automatically satisfied when M is strictly pseudoconvex by taking
the metric to be the Levi metric.

Proposition 3.3 (GM+RP). Under the above assumptions for ¢ # k,n — Kk we
have:

Agt1()
(3.7 lim G%(x,t) = (fl)q/ det(Ly ' F*(x) — p)dpu,
A

e a(®)
where \;j(x) denotes the j’th eigenvalue of Le_lFL(x) counted with multiplicity.
Thanks to this result we may argue as in [Bi] to get:

Proposition 3.4 (GM+RP). Under the same assumptions for q # k,n — Kk we

have:
1) If Ag+1(zo) > Ag(xo) for some xg € M, then we have:
(3.8) dim H®9(M, L*) > k"t

2) If Ag11(x) = Ag(x) at every point, then we have:

(3.9) dim H®4(M, L*) = 0(k™).
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3.3.

Application to complex geometry (in progress). As an application to

the previous results we obtain:

Theorem 3.5. Let M be a complex manifold (not necessarily compact) together
with a Hermitian holomorphic line bundle L such that:
(i) L is positive outside a Stein domain;

(ii) FL degenerates with multiplicity at least 2 on OD.
Then M s Moishezon.

[Be]
(Bi]

[De]
[Ge]
[Ma]
[Si1]

[Si2]
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