
ANALOGUES OF THE HOLOMORPHIC MORSE INEQUALITIES
IN CR GEOMETRY

RAPHAËL PONGE

This talk is a preliminary report about a joint project with George Marinescu
on extending to the CR setting Demailly’s holomorphic Morse inequalities together
with some applications to complex geometry, including a generalization of the
Grauert-Riemenschneider criterion to the noncompact setting.

The talk is divided into 3 sections. In Section 1 we briefly review the holomor-
phic Morse inequalities. In Section 2 we recall the main definitions and properties
concerning CR manifolds, CR vector bundles, CR connections and the ∂b-complex.
In Section 3 we present our main results.

1. Holomorphic Morse Inequalities

By Kodaira’s embedding theorem a compact complex manifold is projective alge-
braic iff it carries a positive holomorphic line bundle. The Grauert-Riemenschneider
conjecture was an attempt to generalize Kodaira’s embedding theorem to compact
Moishezon manifolds. Recall that the latter are compact complex manifolds which
are projective algebraic up to a proper modification or, equivalently, have maximal
Kodaira dimension.

Conjecture (Grauert-Riemenschneider). A compact complex manifold is Moishe-
zon if it carries a holomorphic line bundle which is positive on a dense open set.

This was conjecture was first proved by Siu ([Si1], [Si2]) using elliptic estimates
together with the Hirzbruch-Riemann-Roch formula. Subsequently, Demailly [De]
gave an alternative proof based on a holomorphic version of the classical Morse
inequalities as follows.

Let Mn be a complex manifold and let L be a Hermitian holomorphic line bundle
over M with curvature FL. It is convenient to identify FL with the section of
EndT0,1 such that ∂

∂zj → F ( ∂
∂zj , ∂

∂z̄k
) ∂

∂zk .

For q = 0, . . . , n we let Oq denote the open set consisting of points x ∈ M such
that FL(x) has q negative eigenvalues and n − q positive eigenvalues and we set
O≤q = O0 ∪ . . . ∪Oq.

Theorem 1.1 (Demailly). As k →∞ the following asymptotics hold.
(i) Weak Holomorphic Morse Inequalities:

(1.1) dim H0,q(M,Lk) ≤ (−1)q(
k

2π
)n

∫
Oq

detFL + o(kn).

(ii) Strong Holomorphic Morse Inequalities:

(1.2)
q∑

j=0

(−1)q−j dim H0,j(M,Lk) ≤ (−1)q(
k

2π
)n

∫
O≤q

detFL + o(kn).
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(iii) Asymptotic Hirzbruch-Riemann-Roch formula:

(1.3) χ(M,Lk) =
n∑

j=0

(−1)j dim H0,j(M,Lk) = (
k

2π
)n

∫
M

detFL + o(kn),

where χ(M,Lk) is the holomorphic Euler characteristic with coefficients in Lk.

In particular, for q = 1 we get

(1.4) −dim H0,0(M,Lk) + H0,1(M,Lk) ≤ −1
n!

(
k

2π
)n

∫
O≤1

detFL + o(kn).

Thus,

(1.5) dim H0,0(M,Lk) ≥ 1
n!

(
k

2π
)n

∫
O≤1

det FL + o(kn).

If
∫

O≤1
detFL > 0 (e.g. if L is semi-positive and is > 0 at a point) then we get:

(1.6) dim H0,0(M,Lk) & kn,

which implies that M has maximal Kodaira dimension, i.e., M is Moishezon.
In [Bi] Bismut gave a heat kernel proof of Demailly’s inequalities. Bismut’s

approach can be divided into 2 main steps.
Step 1: For q = 0, . . . , n let ∆0,q

Lk denote the Dolbeault Laplacian acting on sec-
tions of Λ0,qT ∗M ⊗ Lk. We let FL be the Clifford lift of FL, i.e, the section of
End(Λ0,∗T ∗M) so that locally we have FL = F ( ∂

∂zj , ∂
∂z̄k

)ε(dz̄j)ι(dzk). Then Bismut
proved:

Theorem 1.2 (Bismut). For any t > 0 we have

(1.7) Tr e−
t
k ∆0,q

Lk = (
k

2π
)n

∫
M

det[
FL

1− e−tF L ] Tr|Λ0,q
e−tFL

+ o(kn).

Step 2: By taking the limit as t →∞ in the integral in (1.7) Bismut recovered the
inequalities (1.1)–(1.3), via linear-algebraic arguments similar to that of his earlier
proof of the Morse inequalities.

2. CR manifolds and the ∂b-complex

2.1. CR Manifolds. A CR structure on an orientable manifold M2n+1 is given
by a rank n vector bundle T1,0 ⊂ TCM such that:

(i) T1,0 is integrable in Froebenius’ sense;
(ii) T1,0 ∩ T0,1 = {0}, where T0,1 = T1,0.

The main examples of CR manifolds include:
- Boundaries of complex domains;
- Circle bundles over complex manifolds;
- Boundaries of complex hyperbolic spaces.
Given be a global non-vanishing real 1-form θ annihilating T1,0 ⊕ T0,1 the asso-

ciated Levi form is given by

(2.1) Lθ(Z,W ) = −idθ(Z,W ), Z,W ∈ C∞(M,T1,0).

We say that M is strictly pseudoconvex when we can choose θ so that at every
point Lθ is positive definite. Similarly, we say M is κ-strictly pseudoconvex when
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we can choose θ so that at every point Lθ has exactly κ-negative eigenvalues and
n− κ positive eigenvalues.

2.2. The ∂b-complex. Let N be a supplement of T1,0 ⊕ T0,1 in TCM and define:

Λ1,0 = annihilator in T ∗CM of T0,1 ⊕N ,

Λ0,1 = annihilator in T ∗CM of T1,0 ⊕N ,

Λp,q = (Λ1,0)p ∧ (Λ0,1)q, p, q = 0, . . . , n.

This gives rise to the splitting,

(2.2) Λ∗T ∗CM = (
n⊕

p,q=0

Λp,q)⊕ (θ ∧ Λ∗T ∗CM).

If α ∈ C∞(M,Λ0,q), then we can write

(2.3) dα = ∂bα + ∂bα + θ ∧ β,

with ∂bα ∈ C∞(M,Λ1,q) and ∂bα ∈ C∞(M,Λ0,q+1).
We have ∂

2

b = 0, so ∂b : C∞(M,Λ0,∗) → C∞(M,Λ0,∗+1) is a chain complex
whose cohomology groups are denoted H0,q

b (M), q = 0, . . . , n.
Endowing TCM with a Hermitian metric, the Kohn Laplacian is

(2.4) �b = ∂
∗
b∂b + ∂b∂

∗
b .

Proposition 2.1. We have H0,q
b (M) ' ker �b,q.

For x ∈ M let κ+(x)and κ−(x) be the number of positive and negative eigenval-
ues of the Levi form Lθ at x.

Definition 2.2 (Condition Y (q)). The condition Y (q) is satisfied when for all
x ∈ M we have:

(2.5) q 6∈ {κ−(x), . . . , n− κ+(x)} ∪ {κ+(x), . . . , n− κ−(x)}.

Examples. 1) If M is strictly pseudoconvex then the condition Y (q) means q 6= 0, n.
2) If M is κ-strictly pseudoconvex then the condition Y (q) means q 6= κ, n− κ.
3) The condition Y (0) means that Lθ has at least one positive and one negative

eigenvalue.

Proposition 2.3 (Kohn). Under condition Y (q) the operator �b,q is hypoelliptic
with gain of 1 derivative, i.e., for any compact K ⊂ M we have estimates,

(2.6) ‖u‖s+1 ≤ CKs‖�b,qu‖s ∀u ∈ C∞K (M,Λ0,q).

Corollary 2.4. If the condition Y (q) holds then dim H0,q
b (M) < ∞.

2.3. CR vector bundles and CR connections. In the sequel we say that a map
φ = (φkl) : M → Mp(C) is CR when ∂bφkl = 0.

Definition 2.5. A CR vector bundle E over M is a vector bundle given by a
covering of M by trivializations τi : E|Uj

→ Uj × Cp whose transition maps τij =
τi ◦ τ−1

j : Ui ∩ Uj → GLp(C) are CR maps.

Given a vector bundle E over M for p, q = 0, . . . , n we let Λp,q(E) = Λp,q ⊗ E .
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Proposition 2.6. If E is a CR vector bundle then there exists a unique operator,

(2.7) ∂b,E : C∞(M,Λ0,∗(E)) → C∞(M,Λ0,∗+1(E)),

such that ∂
2

b,E = 0 and for any local CR frame e1, . . . , ep of E and any section
s =

∑
siei we have

(2.8) ∂b,Es =
∑

(∂bsi)⊗ ei.

The cohomology groups of the complex ∂b,E : C∞(M,Λ0,∗(E)) → C∞(M,Λ0,∗+1(E))
are denoted H0,q

b (M, E), q = 0, . . . , n. As before if the condition Y (q) holds then
dim H0,q

b (M, E) < ∞.
Next, let E be a CR vector bundle endowed with a Hermitian metric and let

∇ : C∞(M, E) → C∞(M,T ∗M ⊗ E) be a connection. Recall that ∇ is said to be
unitary when we have

(2.9) d〈ξ, η〉 = 〈∇ξ, η〉+ 〈ξ,∇η〉

for sections ξ and η of E .
On the other hand, thanks to the splitting we can write:

(2.10) ∇ = ∇1,0 +∇0,1 + θ ∧D,

where = ∇1,0 and ∇0,1 map to sections of Λ1,0(E) and Λ0,1(E) respectively.

Definition 2.7. ∇ is a CR connection when ∇0,1 = ∂b,E .

Now, let Endsa E the bundle of selfadjoint endomorphisms of E . Then we have:

Proposition 2.8. The space of unitary CR connections is a non-empty affine space
modelled on iθ ⊗ C∞(M,Endsa E).

3. CR Morse Inequalities

Let M2n+1 be a compact CR manifold together with a Hermitian metric on
TCM (not necessarily a Levi metric) and with a global real non-vanishing 1-form
θ annihilating T1,0 ⊕ T0,1 and let L is a Hermitian CR line bundle over M with
unitary CR connection of curvature FL.

Our goal is to obtain analogues of the asymptotics (1.1)–(1.7) in this setting.
There are several earlier related results in this direction.

First, in [Ge] Getzler proved an analogue of heat kernel asymptotics (1.7) for
strictly pseudoconvex CR manifolds with Levi metric and conjectured that such an
asymptotics should hold for more general CR manifolds. Nevertheless, he didn’t
derive asymptotic inequalities for dim H0,q

b (M,Lk). There seems to be a mistake
in Getzler’s final formula (compare Theorem 3.1 below).

Later on, as a consequence of his version of the holomorphic Morse inequalities
for pseudoconcave complex manifolds, Marinescu [Ma] obtained a lower bound for
H0,0

b (M,L⊗
k

) when M is the boundary of a strictly q-concave domain on a q-
concave complex manifold X2n with n ≥ 3 and q ≤ n− 2.

In addition, Berman [Be] proved a version of Demailly’s inequalities for complex
manifold with nondegenerate boundary and Fu has announced during his talk at the
symposium analogues of the weak holomorphic Morse inequalities (1.1) on bounded
finite type pseudoconvex domains in C2.
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3.1. Heat kernel version. Let �0,q

b,Lk be the Kohn Laplacian acting on sections

of Λ0,q(Lk). As before it will be convenient to identify FL and Lθ with the sections
of EndC T1,0 such that, for any orthonormal frame Z1, . . . , Zn of T1,0, we have:

(3.1) FLZj = FL(Zj , Zk̄)Zk, LθZj = Lθ(Zj , Zk)Zk.

Furthermore, for µ ∈ R we set

(3.2) FL
θ (µ) = FL − µLθ,

and we let FL
θ (µ) denote the Clifford lift of FL

θ (µ) to Λ0,∗, i.e., the section of
EndC Λ0,∗ such that, for any orthonormal frame Z1, . . . , Zn of T1,0 with dual coframe
θ1, . . . , θn, we have

FL
θ (µ) = [FL(Zj , Zk)− µLθ(Zj , Zk)]ε(θj̄)ι(θk).(3.3)

Theorem 3.1 (GM+RP). Assume that the condition Y (q) holds. Then for any
t > 0 we have

Tr e
−t�0,q

b,Lk = (
k

4π
)n+1

∫
M

G0,q(x, t)dν(x) + O(kn),(3.4)

G0,q(x, t) =
∫ ∞

−∞
det[

FL
θ (µ)

1− e−tF L
θ (µ)

] Tr e−tFL
θ (µ)dµ,(3.5)

where dν(x) denotes the volume form of M .

Remark 3.2. We actually have a complete and local asymptotics in k, so this might
yield a CR analogue of the Tian-Yau-Zelditch-Catlin asymptotics on (0, q)-forms.

3.2. Cohomological version (in progress). We make the following extra as-
sumptions:

- M is κ-strictly pseudoconvex;
- We can choose FL and dθ and the Hermitian metric of TCM so that we have

(3.6) [FL, Lθ] = 0.

This condition is automatically satisfied when M is strictly pseudoconvex by taking
the metric to be the Levi metric.

Proposition 3.3 (GM+RP). Under the above assumptions for q 6= κ, n − κ we
have:

(3.7) lim
t→∞

G0,q(x, t) = (−1)q

∫ λq+1(x)

λq(x)

det(L−1
θ FL(x)− µ)dµ,

where λj(x) denotes the j’th eigenvalue of L−1
θ FL(x) counted with multiplicity.

Thanks to this result we may argue as in [Bi] to get:

Proposition 3.4 (GM+RP). Under the same assumptions for q 6= κ, n − κ we
have:

1) If λq+1(x0) > λq(x0) for some x0 ∈ M , then we have:

(3.8) dim H0,q(M,Lk) & kn+1.

2) If λq+1(x) = λq(x) at every point, then we have:

(3.9) dim H0,q(M,Lk) = 0(kn).
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3.3. Application to complex geometry (in progress). As an application to
the previous results we obtain:

Theorem 3.5. Let M be a complex manifold (not necessarily compact) together
with a Hermitian holomorphic line bundle L such that:

(i) L is positive outside a Stein domain;
(ii) FL degenerates with multiplicity at least 2 on ∂D.

Then M is Moishezon.
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