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Abstract

Ce mémoire présente de manière détaillée la construction de la trace
de Dixmier donnée en appendice dans [CM].

Notations

Soit H un espace de Hilbert séparable muni d’un produit scalaire 〈.|.〉 an-
tilinéaire à droite. Pour n ∈ N, on note Rn le sous espace de L(H) formé
des opérateurs de rang ≤ n.

Si E est un sous-espace vectoriel fermé de H, on note aussi E le pro-
jecteur orthogonal associé.

Si ξ est un vecteur de norme 1, on note |ξ〉〈ξ| le projecteur orthogonal
sur la droite engendrée par ξ (notation de Dirac).

On note K l’idéal bilatère fermé des opérateurs compacts de H et on
note L1 l’idéal bilatère des opérateurs à trace de L(H). On rappelle que
si T ∈ L(H) est un opérateur à trace, alors pour toute base orthonormée
(ξn)n≥0 de H la série :

∞
∑

n=0

〈ηn|Tηn〉,

est absolument convergente et sa somme est indépendante du choix du choix
de la base(ξn)n≥0. On note cette somme Trace(T ). Cela définit une trace

sur L1, et l’application définie par :

‖T‖1 = Trace(|T |) ∀T ∈ L1,

est une norme, la norme trace, qui fait de L1 un espace de Banach.
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1 Traces sur une C
∗-algèbre

Dans toute cette section on désigne par A une C∗-algèbre unifère, et par
X un espace topologique localement compact. De plus, on note A+ le cne
(positif) des élèments positifs de A.

Définition 1 On dit qu’une partie B de A est C∗-stable si, pour tout x ∈ B,
on a aussi x∗ ∈ B et |x| ∈ B.

Proposition 1 Tout idéal bilatère de L(H) est une partie C∗-stable.

Démonstration. Soit I un idéal bilatère de L(H), et soit T ∈ I. Notons
T = U |T | la décomposition polaire de T . Comme I est un idéal bilatère, les
opérateurs |T | = U∗T et T ∗ = U∗TU∗ sont dans I. �

Définition 2 On appelle C∗-idéal de A tout idéal bilatère I de A qui est
C∗-stable et qui est munit d’une norme ‖ . ‖I pour laquelle I est un espace
de Banach, de telle sorte que :on ait :

‖|x|‖I = ‖x∗‖I = ‖x‖I ∀x ∈ I,

et qu’on ait :

‖axb‖I ≤ ‖a‖‖x‖I‖b‖ ∀x ∈ I, ∀(a, b) ∈ A2.

Exemples. 1. Grce à la théorie des unités approchées, on montre que tout
idéal bilatère fermé de A est C∗-stable. Il en résulte qu’un tel idéal est un
C∗-idéal pour la norme de A.

2. Soit µ une mesure de Radon sur X et p ∈ [1,∞[. Alors, Lp
µ(X) ∩

L∞
µ (X), vu comme idéal bilatère de la C∗−algèbre L∞

µ (X), est un C∗-idéal
pour la norme définie par :

‖f‖p =

(
∫

X

|f(x)|pdµ(x)

)
1

p

∀f ∈ Lp
µ(X).

3. Idéaux de Schatten. Soit p ∈ [1,∞[. Alors, l’ensemble Lp des
opérateurs compacts tels que :

∞
∑

n=0

µn(T )p ≤ ∞,

o (µn(T )n)n≥0 est la suite des valeurs propres de |T |, est un idéal bilatère
de L(H) . C’est un C∗-idéal pour la norme donnée par :

‖T‖p =

(

∞
∑

n=0

µn(T )p

)
1

p

∀T ∈ Lp.

Dans toute la suite de cette section, on désigne par I un idéal bilatère de A
et on note I+ = I ∩ A+ le cne des élèments positifs de I.
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Définition 3 On appelle trace sur I toute forme linéaire positive τ sur I
telle que :

τ(ax) = τ(xa) ∀x ∈ I ∀a ∈ A.

Définition 4 On appelle poids sur I+ toute application τ : I+ → R+ qui est
additive et homogène. On dit que le poids τ est tracial si, pour tout x ∈ I+

et u ∈ A unitaire, on a :

τ(u∗xu) = τ(x).

Lemme 1 Tout élèment de A est combinaison linéaire de quatre unitaires.

Démonstration. Comme pour tout x ∈ A on a :

x =
1

2
(x + x∗) + i

1

2i
(x − x∗),

on se ramène à montrer que tout élément auto-adjoint de A est combinaison
linéaire de 2 unitaires.

Soit x ∈ A auto-adjoint. Quitte à diviser x par sa norme, on peut en
outre supposer que x est de norme ≤ 1. Dans ce cas, son spectre est inclus
dans [-1,1], et les applications :

t 7→ t ±
√

1 − t2

2
,

envoient SpAx dans U(1), le groupe des nombres complexes de module égale
à 1. Par calcul fonctionnel continu, les élèments de A :

u+ =
x +

√
1 − x2

2
et u− =

x −
√

1 − x2

2
,

sont alors deux unitaires dont la somme est égale à x. �

Lemme 2 Soit I un idéal bilatère C∗-stable. Alors, tout x ∈ I admet une
écriture de la forme :

x = (x1 − x2) + i(x3 − x4),

o les xj appartiennent à I+.

Démonstration. Soit x ∈ I. On a :

x =
1

2
(x + x∗) + i

1

2i
(x − x∗).

Mais comme I est C∗-stable, 1
2(x + x∗) et 1

2i
(x − x∗) sont des élèments

auto-adjoints de I. Il en résulte qu’il suffit de montrer que tout élèment
auto-adjoint de I est égal à la différence de deux éléments de I+.
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Maintenant soit x ∈ I auto-adjoint. Comme I est C∗-stable, les élèments
de A :

x± =
1

2
(x ± |x|),

sont des élèments de I dont la somme est égale à x. De plus, ils sont auto-
adjoints et leurs spectres sont inclus dans R+, donc ils appartiennent à I+.
�

Proposition 2 Soit I un idéal bilatère C∗-stable de A, et τ un poids sur
I+. Alors :

a) τ s’étend de manière unique en une forme linéaire τ̄ sur I dans B.

b) Si τ est tracial, alors τ̄ est une trace sur I.

c) Supposons que I soit un C∗-idéal pour la norme ‖.‖I , et qu’il existe
une constante C > 0 telle que :

|τ(x)| ≤ C‖x‖I ∀x ∈ I+.

Alors, τ̄ est une forme linéaire continue sur I (pour ‖.‖I).

Démonstration. a) Soit x ∈ I, et soit deux écritures de x données par par
le lemme 2 :

x = (x1 − x2) + i(x3 − x4),

x = (x′
1 − x′

2) + i(x′
3 − x′

4),

o les xj et les x′
j appartiennet à I+. Comme :

1

2
(x + x∗) = x1 − x2 = x′

1 − x′
2,

on a :

x1 + x′
2 = x′

1 + x2.

Appliquant τ dans cette dernière égalité, et utilisant l’ additivité de τ , on
obtient :

τ(x1) − τ(x2) = τ(x′
1) − τ(x′

2).

De mme, on a :

τ(x3) − τ(x4) = τ(x′
3) − τ(x′

4).
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Par conséquent, le nombre complexe :

τ̄(x) = τ(x1) − τ(x2) + i(τ(x3) − τ(x4)),

ne dépend que de x et pas des xj . On obtient ainsi une application τ̄ de I
dans C qui est additive et homogène, et qui plus vérifie les égalités :

τ̄(ǫx) = ǫτ̄(x) ∀x ∈ I, ∀ǫ ∈ {±1,±i}.

Il en résulte que τ̄ est C-linéaire. Par construction, c’est l’unique forme
linéaire sur I qui prolonge τ .

b) Supposons que τ soit un poids tracial, et soit u ∈ A unitaire. L’unitaire
invariance de τ montre que les applications de I dans C :

x 7−→ τ̄(x) et x 7−→ τ̄(u∗xu),

sont deux prolongements linéaires de τ sur I. Par conséquent, elles concident
sur I. On en déduit que :

τ̄(ux) = τ̄(xu) ∀x ∈ I.

Or, par le lemme 1 tout élément de A est combinaison linéaire d’unitaires,
donc par linéarité τ̄ est une trace sur I.

c) Soit x ∈ I auto-adjoint. On a :

|τ̄(x)| ≤ |τ(
x + |x|

2
)| + |τ(

x − |x|
2

)|,

≤ C(‖x + |x|
2

‖I + ‖x − |x|
2

‖I),

≤ 2C‖x‖I .

On en déduit que, pour tout x ∈ I, on a :

|τ̄(x)| ≤ |τ̄(
x + x∗

2
)| + |τ̄(

x − x∗

2
)|,

≤ 4C‖x‖I .

�

Exemples. 1. Toute mesure µ sur X définit une trace sur L1
µ ∩ L∞

µ .
2. La trace usuelle sur L1 est une trace au sens de la définition précédente.

En dimension finie L1 correspond à L(H) et toute trace est proportionnelle
à Trace. Ce n’est plus le cas en dimension infinie comme le montre l’exemple
de la trace de Dixmier.
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2 Valeurs caractéristiques.

Définition 5 Soit n ∈ N et T ∈ K. On appelle n-ième valeur caractéristique
de T, le réel :

µn(T ) = inf{‖T |E⊥‖ ; dimE = n}.

Lemme 3 Soit n ∈ N et T ∈ K. Alors :

µn(|T |) = µn(T ),

dist(|T |,Rn) = dist(T,Rn).

Démonstration. On a ‖Tξ‖ = ‖|T |ξ‖ ∀ξ ∈ H, donc µn(|T |) = µn(T ).
Maintenant, soit T = U |T | la décomposition polaire de T . De l’inclusion
URn ⊂ Rn on déduit que :

dist(T,Rn) = dist(U |T |,Rn) ≤ dist(U |T |, URn) ≤ ‖U‖dist(|T |,Rn).

Mais ‖U‖ ≤ 1, donc dist(T,Rn) ≤ dist(|T |,Rn). Puis, comme |T | = U∗T ,
on obtient de la mme manière l’inégalité inverse. �

Proposition 3 (principe du min-max) Soit n ∈ N et T ∈ K. Alors :

µn(T ) = dist(T,Rn),

= n + 1 − ième valeur propre de |T |.

Démonstration. Comme K est un idéal bilatère de L(H), il est C∗-stable
par la proposition 1. En particulier, l’opérateur positif |T | est compact. Par
l’alternative de Fredholm, son spectre est alors formé d’une suite de valeurs
propres, positives, de multiplicités finies et tendant vers 0. On peut ainsi
les ranger en une suite décroissante (λn)n≥0 ; ce qui permet de parler de
“n + 1-ième valeur propre de |T |”.

Maintenant, le lemme 3 permet de se ramener au cas o T est positif. Il
existe alors une base orthonormée (ξn)n≥0 de H telle que Tξn = λnξn pour
tout n ∈ N. Autrement dit, on a :

T =
∞
∑

n=0

λn|ξn〉〈ξn|.

Pour tout m ≥ 1, notons Em le sous-espace vectoriel engendré par ξ0 . . . ξm−1.
Le projecteur En est donné par :

En =
∑

k<n

|ξk〉〈ξk|.

Comme on a :

T (1 − En) =
∑

k≥n

λk|ξk〉〈ξk|,
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on voit que :

‖T |E⊥
n
‖ = ‖T (1 − En)‖ = λn.

Mais dimEn = n et rgTEn ≤ n, donc :

µn(T ) ≤ λn et dist(T,Rn) ≤ λn.

Réciproquement, soit E est un sous espace de dimension n. Comme
En+1 est de dimension n + 1, la restriction du projecteur E à En+1 ne peut
tre injective. Il existe alors ξ ∈ E⊥ tel que ξ ∈ En+1 et ‖ξ‖ = 1. Comme
‖T |E⊥‖ ≥ ‖Tξ‖ et ξ ∈ En+1, on a :

‖Tξ‖2 =
∑

k≤n

λ2
k|〈ξ|ξk〉|2 ≥ λ2

n

∑

k≤n

|〈ξ|ξk〉|2 ≥ λ2
n‖ξ‖2 ≥ λ2

n.

Il en résulte que ‖T |E⊥‖ ≥ λn, puis que µn(T ) ≥ λn.
D’autre part, soit R un opérateur de rang ≤ n. On a :

‖T − R‖ ≥ sup{‖(T − R)ξ‖; ξ ∈ kerRet‖ξ‖ ≤ 1}
≥ ‖T |ker R‖.

Comme R est un isomorphisme linéaire de kerR⊥ sur imR, le sous-espace
ker R⊥ est de dimension ≤ n. Il existe alors un sous-espace E de dimension
n le contenant. Mais kerR étant fermé, on a :

E⊥ ⊂ (ker R⊥)⊥ = kerR.

D’o on déduit que :

‖T − R‖ ≥ ‖T |E⊥‖ ≥ µn(T ) ≥ λn.

On ainsi montré que dist(T,Rn) ≥ λn. �

Corollaire 1 Soit T ∈ K. Alors, T ∈ L1 si et seulement si :

∑

n≥0

µn(T ) < ∞.

Dans ce cas on a :

‖T‖1 = Trace(|T |) =
∞
∑

n=0

µn(T ).

Proposition 4 Soit n ∈ N et T ∈ K(H), et soit H′ un (autre) espace de
Hilbert. Alors :
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a) µn(|T |) = µn(T ∗) = µn(T ).

b) Pour A ∈ L(H,H′) et B ∈ L(H′,H), on a :

µn(ATB) ≤ ‖A‖µn(T )‖B‖,

c) Pour U ∈ L(H,H′) unitaire, on a :

µn(U∗TU) = µn(T ).

Démonstration. Le lemme 3 dit que µn(|T |) = µn(T ). En outre, l’involution
T 7→ T ∗ induisant une involution de Rn(H) on a :

dist(T ∗,Rn) = dist(T ∗,R∗
n) = dist(T,Rn).

D’o µn(T ∗) = µn(T ).

b) Soit R ∈ Rn(H). Comme rg(ARB) ≤ n, on a :

µn(ATB) ≤ ‖ATB − ARB‖ ≤ ‖A‖‖T − R‖‖B‖

Il en résulte que µn(ATB) ≤ ‖A‖µn(T )‖B‖.

c) Comme ‖U∗‖ = ‖U‖ = 1, le b) montre que :

µn(U∗TU) ≤ µn(T ),

et que ;

µn(T ) = µn(U(U∗TU)U∗) ≤ µn(U∗TU).

�

Définition 6 Soit N ∈ N et T ∈ K. On appelle trace partielle d’ordre N,
le réel :

σN (T ) =
∑

n<N

µn(T ).

Lemme 4 Soit N ∈ N et T ∈ K. Alors :

i) σN (T ) = sup{‖TE‖1 ; dimE = N}.

ii) Si T est positif, on a :

σN (T ) = sup{Trace(TE) ; dimE = N}.
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Démonstration. Si E est un projecteur orthogonal on a ||T |E| = |TE|,
car :

(TE)∗TE = ET ∗TE = (|T |E)∗|T |E.

Il en résulte que les deux membres de la première égalité ne dépendent que
de |T |. On peut ainsi supposer que T est positif.

Soit (ξn)n≥0 une base orthonormée telle que Tξn = µn(T )ξn ∀n ∈ N.
Notons EN le sous-espace vectoriel engendré par ξ0 . . . ξN−1. On a :

Trace(TEN ) = ‖TEN‖1 =
∑

n<N

µn(T ) = σN (T ).

Réciproquement, soit E est un sous espace de dimension N . Comme TE
est de rang au plus égal à n, on a :

µn(TE) = dist(TE,Rn) = 0 ∀n ≥ N.

Par conséquent :

Trace(TE) ≤ ‖TE‖1 =
∞
∑

n=0

µn(TE) =
N−1
∑

n=0

µn(TE).

Mais par la proposition 4, le dernier membre est majoré par :

‖E‖
N−1
∑

n=0

µn(T ) ≤ σN (T ),

donc Trace(TE) ≤ σN (T ). �

Remarque. Pour N ∈ N non nul, σN est le sup d’une famille de semi-normes
sur K, donc c’est une une semi-norme sur K. Mais comme µ0(T ) = ‖T‖, on
a :

‖T‖ ≤ σN (T ) ≤ N‖T‖,

et par conséquent, σN est une norme sur K quie est équivalente à ‖.‖.

Proposition 5 Soit T1 et T2 des opérateurs compacts. Alors :

a) On a :

σN (T1 + T2) ≤ σN (T1) + σN (T2) ∀N ∈ N.

b) Si T1 et T2 sont positifs, on a :

σN1+N2
(T1 + T2) ≥ σN1

(T1) + σN2
(T2) ∀(N1, N2) ∈ N

2.
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Démonstration. a) σN est une norme sur K ; en particlier elle est sous-
additive.

b) Pour i=1,2, soit Ei un sous espace de dimension Ni. Considérons un
sous espace E de dimension N = N1 + N2 contenant E1 + E2. Soit (ξn)n≥0

un base orthonormée de H telle que ξn appartienne à E1 pour n < N1 et à
E pour n < N . Comme T1 est positif, on a :

Trace(T1E1) =
∑

n<N1

〈ξn|T1ξn〉 ≤
∑

n<N

〈ξn|T1ξn〉 = Trace(T1E).

De la mme manière on montre que Trace(T2E2) ≤ Trace(T2E). D’o :

Trace(T1E1) + Trace(T2E2) ≤ Trace(T1E) + Trace(T2E),

≤ σN (T1 + T2).

Mais T1 et T2 sont positifs, donc par le lemme 4 :

σN1+N2
(T1 + T2) ≥ σN1

(T1) + σN2
(T2).

�

3 Le C∗-idéal L(1,∞)

On construit l’espace L(1,∞) qui est le C∗-idéal sur lequel seront définies les
traces de Dixmier. Le point crucial est le lemme suivant :

Lemme 5 Soit N ∈ N et T ∈ K. Alors :

σN (T ) = inf{‖x‖1 + N‖y‖ ; (x, y) ∈ L1 ×K et x + y = T}.

Démonstration. Posons :

σ̃N (T ) = inf{‖x‖1 + N‖y‖ ; (x, y) ∈ L1 ×K et x + y = T}.

Si x ∈ L1 et y ∈ K sont tels que x + y = T , alors la sous-additivité de σN

implique :

σN (T ) ≤ σN (x) + σN (y) ≤ ‖x‖1 + N‖y‖.

D’o il résulte que σN (T ) ≤ σ̃N (T ).
Réciproquement, soit (ξn)n≥0 une base orthonormée de H de telle sorte

que |T |ξn = µn(T )ξn ∀n ∈ N. Posons :

xN = (|T | − µN (T ))EN et

yN = µn(T )EN + |T |(1 − EN ),
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o EN est le projecteur spectral relatif aux N premières valeurs propres de
|T | :

EN =
∑

n<N

(µn(T ) − µn(T ))|ξn〉〈ξn|.

Soit T = U |T | la décomposition polaire de T . Alors, T = UxN + UyN et
(UxN , UyN ) ∈ L1 ×K. D’o :

σ̃N (T ) ≤ ‖UxN‖1 + N‖UyN‖,
≤ ‖xN‖1 + N‖yN‖,
≤

∑

n<N

(µn(T ) − µn(T )) + Nµn(T ),

≤ σN (T ).

�

Remarque. Dans cette démonstration on a montré qu’il existait x ∈ L1

et y ∈ K de telle sorte que :

‖x‖1 = σN (T ) − Nµn(T ) et ‖y‖ = NµN (T ).

Ce lemme permet de définir des traces partielles d’ordre réel :

Définition 7 Pour λ ≥ 0 et T ∈ K, on appelle trace partielle de T d’ordre
λ le réel :

σλ(T ) = inf{‖x‖1 + λ‖y‖ ; (x, y) ∈ L1 ×K et x + y = T}.

Lemme 6 Soit T ∈ K. Alors, la fonction λ 7→ σλ(T ) est concave sur R+.

Démonstration. Soit λ et µ des réels positifs, et α ∈ [0, 1]. Si x ∈ L1 et
y ∈ K sont tels que x + y = T , alors :

‖x‖1 + (αλ + (1 − α)µ)‖y‖ ≥ α(‖x‖1 + λ‖y‖) + (1 − α)(‖x‖1 + λ‖y‖),
≥ ασλ(T ) + (1 − α)σµ(T ).

D’o σαλ+(1−α)µ(T ) ≥ ασλ(T ) + (1 − α)σµ(T ). �

Proposition 6 Soit λ ≥ 0 et T ∈ K. Alors :

σλ(T ) = σN (T ) + αµn(T ),

= (1 − α)σN (T ) + ασN (T ),

=

∫ λ

0
µ[u](T )du , N = [λ], α = λ − N.
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Démonstration. Les trois dernières égalités résultent de la définition de
σN (T ). Ceci dit, on sait par le lemme 6 que la fonction λ 7→ σλ(T ) est
concave, donc :

σλ(T ) ≥ (1 − α)σN (T ) + ασN (T ),

≥ σN (T ) + αµn(T ).

Réciproquement, on sait aussi par la remarque après le lemme 5, qu’il
existe x ∈ L1 et y ∈ K tels que :

‖x‖1 = σN (T ) − Nµn(T ) et ‖y‖ = NµN (T ).

Par conséquent σλ(T ) ≤ ‖x‖1 + λ‖y‖ ≤ σN (T ) + αµn(T ). �

Remarques. 1. La proposition dit que la fonction λ 7→ σλ(T ) est affine
entre deux entiers consécutifs : c’est l’interpolation affine des traces par-
tielles d’ordre entier.

2. Pour tout entier N > 0, la fonction σN est une norme sur K équivalente
à ‖.‖, donc pour tout λ > 0, la fonction σλ : T 7→ σλ(T ) est aussi une
norme sur K équivalente à ‖.‖. En particulier, σλ est sous-additive.

De plus, on vérifie que la boule unité de K pour la norme σλ est l’envelloppe
convexe de B∞, la boule unité de K pour la norme ‖.‖, et de λ−1B1 ( B1

désigne la boule unité deL1) :

Bσλ
= {T ∈ K ; σλ(T ) ≤ 1} = Conv(B∞ ∪ λ−1B1)

3. La dernière égalité dit que :

σλ(T ) =

∫

u≤λ

µ[u](T )du.

Ainsi, lorsque T est positif, σλ(T ) est un cut-off (intégral) de :

Trace(T ) =

∫ ∞

0
µ[u](T )du,

par le paramètre scalaire λ.

Lemme 7 Soit λ1 et λ2 dans R+, et soit T1 et T2 dans K∩L(H)+. Alors :

σλ1+λ2
(T1 + T2) ≥ σλ1

(T1) + σλ2
(T2).

Démonstration. La proposition 5 dit que l’inégalité est vraie lorsque λ1 et
λ2 sont tous deux des entiers.

Pour i=1,2, on pose Ni = [λi] et αi = λi−Ni. On pose aussi λ = λ1+λ2,
N = [λ] et α = λ − N . On a soit N = N1 + N2, soit N = N1 + N2 + 1.
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Supposons que N = N1 + N2. Alors α = α1 + α2, et on a :

σλ(T1 + T2) = (α1 + α2)σN1+N2+1T1 + T2

+ (1 − α1 − α2)σN1+N2
(T1 + T2).

D’o on déduit que :

σλ(T1 + T2) ≥ α1(σN1+1(T1) + σN2
(T2)) + α2(σN1

(T1) + σN2+1(T2))

+ (1 − α1 − α2)(σN1
(T1) + σN2

(T2)),

≥ (1 − α1)σN1
(T1) + α1σN1+1(T1)

+ (1 − α2)σN2
(T2) + α2σN2+1(T2),

≥ σλ1
(T1) + σλ2

(T2).

Si N = N1 + N2 + 1, alors α = α1 + α2 − 1, et on a :

σλ(T1 + T2) = (1 − α1 + 1 − α2)σN1+N2+1(T1 + T2)

+ (α1 + α2 − 1)σN1+1+N2+1(T1 + T2),

≥ (1 − α1)(σN1
(T1) + σN2

(T2))

+ (1 − α2)(σN1+1(T1) + σN2
(T2))

+ (α1 + α2 − 1)(σN1+1(T1) + σN2
(T2)),

≥ (1 − α1)σN1
(T1) + α1σN1

(T1)

+ (1 − α2)σN2
(T1) + α2σN2

(T2),

≥ σλ1
(T1) + σλ2

(T2).

�

Définition 8 On appelle interpolé réel de L1 et de K, le sous-espace :

L(1,∞) = {T ; sup
u≥e

σu(T )

log u
< ∞},

o e = exp(1) est le nombre de Neper.

Proposition 7 L1 un C∗-idéal pour la norme :

‖T‖(1,∞) = sup
u≥e

σu(T )

log u
∀T ∈ L(1,∞).

Démonstration. Tout d’abord, ‖.‖(1,∞) est le sup d’une famille de normes,
donc cést une norm. D’autre part, par la proposition 6 on a :

sup
u≥e

σu(T )

log u
≤ sup

N≥2
sup

0≤α≤1

∑N−1
n=0 µN (T ) + αµN (T )

log(N + α)
∀T ∈ K.
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Il résulte alors de la proposition 4 que L(1,∞) est un idéal bilatère de L(H)
et qu’on a :

‖ATB‖(1,∞) ≤ ‖A‖‖T‖(1,∞)‖B‖ ∀T ∈ L(1,∞), ∀(A, B) ∈ (L(1,∞))2.

En outre, par la proposition 3, l’idéal L(1,∞) est C∗-invariant et par la propo-
sition 4 on a :

‖|T |‖(1,∞) = ‖T ∗‖(1,∞) = ‖T‖(1,∞) ∀T ∈ L(1,∞).

Maintenant, soit (Tn)n≥0 une suite dans L(1,∞) qui est de Cauchy pour
‖.‖(1,∞). Alors, cette suite est de Cauchy pour chacune des normes σλ.
Comme ces normes sont toutes équivalentes à ‖.‖, on voit qu’il existe T ∈ K
tel que :

lim
n→∞

σλ(Tn − T ) = 0 ∀λ ≥ e.

Soit ǫ > 0. Pour n et p assez grands on a :

σλ(Tn − Tp) < ǫ ∀λ ≥ e.

Faisant tendre p vers l’infini, on obtient :

σλ(Tn − T ) < ǫ ∀λ ≥ e.

Il en résulte que T ∈ L(1,∞) et que ‖Tn − T‖(1,∞) → ∞. �

Proposition 8 Soit H′ un autre espace de Hilbert et soit S ∈ L(H′,H) in-
versible. Alors,γS, l’opérateur de conjugaison par S de L(H) dans L(H′),induit
un isomorphisme continu de L(1,∞)(H) vers L(1,∞)(H′).

Démonstration. Comme γS est une bijection de L(H) vers L(H′), d’inverse
γS−1 : T ′ 7→ ST ′S−1, il suffit de prouver que γS envoit continument L(1,∞)(H)
dans L(1,∞)(H′).

La proposition 4 dit que :

µn(S−1TS) ≤ ‖S−1‖‖S‖µn(T ) ∀T ∈ L(1,∞)(H), ∀n ∈ N,

donc γS(L(1,∞)(H))) ⊂ L(1,∞)(H′), et on a :

‖γS(T )‖(1,∞)′ ≤ ‖S−1‖‖S‖‖T‖(1,∞) ∀T ∈ L(1,∞)(H).

�

Remarque. 1. L(1,∞)est l’espace vectoriel normé dont la boule unité est :

B(1,∞) =
⋂

u≥e

log u. Conv(B∞ ∪ u−1B1).

14



Ainsi on a les inclusions :

L1 ⊂ L(1,∞) ⊂ K,

et les inégalités (lorsqu’elles ont un sens) :

‖T‖ ≤ ‖T‖(1,∞) ≤ ‖T‖1.

2. En tant qu’idéal L(1,∞) est égal à l’idéal de Macaev :

L∞+ = {T ; L(1,∞) sup
N≥2

σN (T )

log N
< ∞}.

Ce dernier est un C∗-idéal pour la norme :

‖T‖1+ = sup
N≥2

σN (T )

log N
.

Cependant cette norme ne concide pas avec la norme ‖.‖(1,∞), bien qu’elle
lui soit équivalente.

4 Trace de Dixmier

On va maintenant se concentrer sur la divergence logarithmique de σλ(T )
et évaluer son expansion logarithmique. Ceci nous amènera à la trace de
Dixmier.

Définition 9 Pour λ ≥ e et T ∈ K on pose :

τλ(T ) =
1

log λ

∫ λ

e

σu(T )

log u

du

u

Remarques. a) Pour T ∈ K fixé, la fonction λ 7→ τλ(T ) est continue et
s’interprète comme la moyenne de Cesāro de σλ(T )/ log λ par rapport à la
mesure de Haar dλ

λ
du groupe localement compact R

∗
+.

b) Si T ∈ L(1,∞), on a σu(T ) ≤ ‖T‖(1,∞) log u∀u ≥ e. D’o :

τλ(T ) ≤ ‖T‖(1,∞) ∀λ ≥ e.

Par conséquent la fonction λ 7→ τλ(T ) appartient à Cb([e,∞)).

Lemme 8 Soit λ ≥ e et soit T1 et T2 dans L(H)+ ∩ L(1,∞). Alors :

|τλ(T1 + T2) − τλ(T1) − τλ(T2)| ≤ ‖T1 + T2‖(1,∞)
(log log λ + 2) log 2

log λ
.
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Démonstration. Comme les σu sont sous-additives on a :

τλ(T1 + T2) ≤ τλ(T1) + τλ(T2).

Il nous faut alors majorer la différence τλ(T1) + τλ(T2)− τλ(T1 + T2). Par la
proposition 5 on a :

σ2u(T1 + T2) ≥ σu(T1) + σu(T2) ∀u ≥ e.

D’o :

τλ(T1) + τλ(T2) ≤ 1

log λ

∫ λ

e

σ2u(T1 + T2)

log u

du

u
,

≤ 1

log λ

∫ 2λ

2e

σu(T1 + T2)

log u/2

du

u
.

On en déduit que :

(log λ)|τλ(T1 + T2) − τλ(T1) − τλ(T2)| ≤ δ + δ′,

avec :

δ =

∫ λ

e

σu(T1 + T2)

log u

du

u
−
∫ 2λ

2e

σu(T1 + T2)

log u

du

u
,

δ′ =

∫ 2λ

2e

σu(T1 + T2)(
1

log u/2
− 1

log u
)
du

u
.

Grce à la relation de Chasles et à l’ inégalité triangulaire on obtient :

δ ≤
∫ 2e

e

σu(T1 + T2)

log u

du

u
+

∫ 2λ

λ

σu(T1 + T2)

log u

du

u

Comme σu(T1 + T2) ≤ ‖T1 + T2‖(1,∞) log u ∀u ≥ e, on voit que :

δ ≤ ‖T1 + T2‖(1,∞)(

∫ 2e

e

du

u
+

∫ 2λ

λ

du

u
) ≤ 2 log 2‖T1 + T2‖(1,∞).

D’autre part on a :

δ′ ≤ ‖T1 + T2‖(1,∞)

∫ 2λ

2e

log u(
1

log u/2
− 1

log u
)
du

u
,

≤ ‖T1 + T2‖(1,∞)

∫ 2λ

2e

log 2

log u/2

du

u
,

≤ ‖T1 + T2‖(1,∞)(log 2)(log log λ).

Rassemblant les inégalités on obtient le lemme. �
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Ce lemme s’interprète en termes de C∗-algébre. Considérons la C∗

algébre:

A = Q([e,∞)) = Cb([e,∞))/Co([e,∞)).

Le lemme 8 dit qu’ on a une application additive de L(1,∞)
+ dans A :

τ : T 7−→ classe de (τλ(T ))λ≥e.

En fait :

Lemme 9 Soit ω un état sur A (i.e. que ω est une forme linéaire positive

sur A telle que ω(1) = 1). Alors, ωoτ est un poids tracial sur L(1,∞)
+ .

Démonstration. Soit T ∈ L(1,∞)
+ . La fonction λ 7→ τλ(T ), donc τ(T ) ∈ A+

et on a ω(τ(T )) ≥ 0.
D’autre part, soit U ∈ L(H) unitaire. Par la proposition 4 on a :

µn(U∗TU) = µn(T ) ∀n ∈ N.

D’o τλ(U∗TU) = τλ(T ) λ ≥ e, et a fortiori, ω(τ(U∗TU)) = ω(τ(T )). �

Comme L(1,∞) est un C∗-idéal, la proposition 2 s’applique : si ω un état

sur A, le poids tracial ωoτ sur L(1,∞)
+ se prolonge canoniquement en une

trace sur L(1,∞). On obtient ainsi la trace de Dixmier.

Définition 10 Soit ω un état sur A. On appelle trace de Dixmier associée
à ω, et on note Trω, la trace sur L(1,∞) obtenue par prolongement linéaire

du poids tracial ωoτ sur L(1,∞)
+ .

Proposition 9 Soit ω un état sur A. Alors :

a) Trω est une forme linéaire continue sur L(1,∞).

b) Trω ne dépend que de la topologie localement convexe de H, et pas de
son produit scalaire.

c) Soit H′ un autre espace de Hilbert, et S ∈ L(H′,H) inversible. Notons
Tr′ω la trace de Dixmier associé à ω sur H′. Alors :

Tr′ω(S−1TS) = Trω(T ) ∀T ∈ L(1,∞)(H).

Démonstration. a) Soit T ∈ L(1,∞)
+ . D’après la remarque a) après la

définition 9, on a :

τλ(T ) ≤ ‖T‖(1,∞) ∀λ ≥ e.
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Par conséquent, dans A, on a :

0 ≤ τ(T ) ≤ ‖τ(T )‖ ≤ ‖T‖(1,∞).

On en déduit que :

0 ≤ ω(τ(T )) ≤ ‖T‖(1,∞)ω(1) ≤ ‖T‖(1,∞).

De la proposition 2.c), il résulte alors que Trω, le pronlegement linéaire du
poids tracial ωoτ , est une forme linéaire continue sur L(1,∞).

b) Soit 〈.|.〉′ un autre produit scalaire sur H définissant la mme topologie
que 〈.|.〉. Il existe alors S ∈ L(H) inversible tel que :

〈ξ|η〉′ = 〈Sξ|Sη〉 ∀(ξ, η) ∈ H2.

Notons H′ l’espace de Hilbert pour ce produit scalaire, et Tr′ω la trace de
Dixmier associée à ω sur H′. Soit T ∈ K+. Alors S−1TS est un opérateur
compact de H, qui est est positif relativement à 〈.|.〉′, et qui a les mmes
valeurs propres que T . Il en résulte que ses valeurs caractéristiques relative-
ment à 〈.|.〉′ sont :

µ0(T ), µ1(T ), . . . , µn(T ), . . . .

On en déduit que L(1,∞)(H′) = L(1,∞)(H), et qu’on a :

Tr′ω(T ) = Trω(S−1TS) = Trω(T ) ∀T ∈ L(1,∞)(H)+.

D’o Tr′ω = Trω par linéarité.

c) La proposition 8 dit que S−1L(1,∞)(H)S = L(1,∞)(H′). De plus, le b)
ci-dessus, permet de remplacer le produit scalaire de H′ par :

(ξ, η) 7−→ 〈Sξ|Sη〉.

On est ainsi ramené au cas o S est unitaire. Maintenant si T ∈ L(1,∞)(H)+,
alors S−1TS appartient à L(1,∞)(H′)+ et a les mmes valeurs propres que T ,
et par conséquent, Tr′ω(S−1TS) = Trω(T ). Il en résulte que :

Tr′ω(S−1TS) = Trω(T ) ∀T ∈ L(1,∞)(H).

�

Définition 11 Soit T ∈ L(1,∞). On dit que T est mesurable si la valeur de
TrωT est indépendante de l’état ω. On note M l’ensemble des opérateurs
mesurables. On définit alors −

∫

comme la forme linéaire sur M telle que :

−
∫

T = Trω(T ) pour T ∈ M et ω état sur A.
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Proposition 10 On a les propriètés suivantes :

a) M est un sous espace vectoriel fermé de L(1,∞) qui ne dépend pas du
produit scalaire de H.

b) Soit H′ un autre espace de Hilbert, et S ∈ L(H′,H) est inversible.
Alors, S−1M(H)S = M(H′) et on a :

−
∫

H′

S−1TS = −
∫

H
T ∀T ∈ L(∞,∞)(H).

Démonstration. On a :

M(H) =
⋂

ω,ω′ états sur A

{T ∈ L(1,∞)(H) ; Trω(T ) = Trω′(T )}.

Par conséquent, la proposition résulte de la proposition 9. �

Lemme 10 Les états sur A séparent les points.

Démonstration. Soit x ∈ A. Il s’agit de montrer l’existence d’un état ω
sur A tel que ω(x) 6= 0. Si ω est un état sur A, alors ω(x+x∗

2 ) est réel et est
égal à la partie réelle de ω(x). On peut ainsi supposer que x est auto-adjoint.
De plus, quitte à changer x en −x, on peut se ramener au cas o x 6∈ A+.

Maintenant, soit B l’espace de Banach réel formé des élèments auto-
adjoints de A et munit de la norme induite. Appliquons le théorème de
Hanh-Banach dans B au convexe A+ et à C le convexe compact engendré
par −1 et x : il existe une forme linéaire φ sur B et des réels α < β tels
que :

φ(A+) < α et φ(C) > β.

En particulier, φ(A+) est un sous-cne strict de R. Or φ(1) 6= φ(−1), donc
φ(A+) n’est pas réduit à {0} et nécessairement φ(A+) = R+. Il en résulte,
d’une part que φ(1) et φ(x) sont non nuls, et d’autre part que φ|A+

est un
poids sur A+. Appliquant la proposition 2 on peut alors prolonger φ en une
forme linéaire positive φ̄ de sorte que :

ω =
φ̄

φ(1)
,

est un état sur A tel que ω(x) 6= 0. �

Proposition 11 On a les propriètés suivantes :

a) Soit T ∈ L(1,∞)
+ . Alors :

(T mesurable et −
∫

T = L) ⇐⇒ ( lim
λ→∞

τλ(T ) = L).
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b) Soit T ∈ K. Supposons que T est positif et que

lim
N→∞

1

log N

N−1
∑

n=0

µn(T ) = L

Alors T est mesurable et Trω T = L.

c) Le noyau de −
∫

contient L1.

Démonstration. a) Si limλ→∞ τλ(T ) = L, alors τ(T ) = L, et pour tout
état ω sur A on a :

Trω(T ) = ω(τ(T )) = ω(L) = L.

Autrement dit, T ∈ M et −
∫

T = L.
Réciproquement, supposons que T est mesurable et que L = −

∫

(T ). Alors
pour tout état ω sur A on a :

ω(τ(T ) − L) = Trω(T ) − L = 0.

Comme par le lemme 10 les états sur A séparent les points, on en déduit
que τ(T ) = L. D’o limλ→∞ τλ(T ) = L.

b) Soit N un entier ≥ 2. Alors, pour tout λ ∈ [N, N + 1], on a :

(
log N

log(N + 1)
)
σN (T )

log N
≤ σλ(T )

log λ
≤ (

log(N + 1)

log N
)
σN (T )

log N

Par conséquent limλ→∞
σλ(T )
log λ

= L. D’o :

lim
λ→∞

τλ(T ) = lim
λ→∞

1

log λ

∫ λ

e

σu(T )

log u

du

u
= L.

Il résulte alors du a) ci-dessus que T est mesurable et que −
∫

T = L.

c) Si T ∈ L1
+, alors :

lim
N→∞

1

log N

N−1
∑

n=0

µn(T )

Le b) ci-dessus dit alors que T ∈ M et que −
∫

T = 0. Comme L1 est un idéal
bilatère de L(H), la proposition 1 et le lemme 2 disent que tout élèment de
L1 est combinaison linéaire d’élèments L1

+. Il en résulte que L1 est contenu
dans le noyau de −

∫

. �
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Proposition 12 Soit ∆ un opérateur “non borné” tel que ∆ ≥ c > 0, et
tel que :

Trace(e−t∆) ∼ αt−p lorsque t → 0+.

Alors ∆−p est un opérateur mesurable et on a :

−
∫

∆−p =
α

Γ(p + 1)
.

Démonstration. Par hypothèse e−∆ est un opérateur à trace. Il est donc
compact. Comme il est positif, il existe une base orthonormée (ξn)n≥0 de H
telle que :

e−∆ξn = µn(e−∆)ξn∀n ∈ N.

Ecrivons µn(e−∆) = eλn o (λn)n≥0 est une suite croissante de réels stricte-
ment positifs tendant vers +∞. Par calcul fonctionnel, pour tout n ∈ N et
t > 0, on a :

∆ξn = λnξn,

∆−pξn = λ−p
n ξn,

e−t∆ξn = e−tλnξn.

Comme limn→∞ ‖∆−pξn‖ = limn→∞ λn = 0, l’opérateur ∆−p est compact
et on a :

µn(∆−p) = λ−p
n ∀ ∈ N.

D’autre part, on a :

∑

n≥0

e−tλn = Trace(e−t∆) ∼ αt−p lorsque t → 0+.

Il résulte alors du théorème tauberien d’Hardy-Littlewood (cf. [An] et [Ha])
qu’alors on a :

µn(∆−p) = λ−p
n ∼ αn−1

Γ(p + 1)
lorsque n → ∞.

D’o on déduit :

lim
N→∞

1

log N

N−1
∑

n=0

µn(∆−p) =
α

Γ(p + 1)

Il en résulte que ∆−p est un opérateur mesurable et qu’on a :

−
∫

(T ) =
α

Γ(p + 1)
.
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Exemple. Soit ∆ le laplacien (positif) sur le tore T
n = R

n/2πZ
n. On

regarde ∆ comme un opérateur “non borné” positif sur l’espace de Hilbert
H = L2(Tn). L’analyse de Fourier dit qu’une base orthonormée de cet
Hilbert est fournie par les fonctions :

ek(x) =
1√
2π

eik.x x ∈ T
n, k ∈ Z

n.

Dans cette base on a ∆ek = |k|2ek ∀ k ∈ Z
n. On en déduit que pour t > 0

on a :

e−t Trace(e−t(I+∆)) =
∑

k∈Zn

e−t|k|2 = (
∑

k∈Z

e−tk2

)n

On sait que :

|
∫ +∞

−∞
e−txdx −

∑

k∈Z

e−tk2 | ≤ 1,

∫ +∞

−∞
e−txdx =

√

π

t
.

D’o :

Trace(e−t(I+∆)) ∼ (
π

t
)

n
2 lorsque t → 0+.

Il en résulte que (I + ∆)
−n
2 est mesurable et qu’on a :

−
∫

(I + ∆)
−n
2 =

π
n
2

Γ(n
2 + 1)

.

Plus généralement soit M une variété compact riemannienne de dimen-
sion n, et P un opérateur pseudo-différentiel sur M d’ordre −n. Alors P
s’étend en un opérateur compact de l’espace de Hilbert L2(M). On montre
[Co2] que cet opérateur est mesurable et qu’on a :

−
∫

P =
1

n
Res(P ).

Ici Res(P ) est le résidu de Wodzicki de P (ou résidu non commutatif) ; il
est donné par la formule :

Res(P ) = (2π)−n

∫

S∗M

σ−n(P )(x, ξ)dxdξ,

o S∗M est le fibré en sphère du fibré cotangent T ∗M .
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