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Abstract

Ce mémoire présente de maniere détaillée la construction de la trace
de Dixmier donnée en appendice dans [CM].

Notations

Soit ‘H un espace de Hilbert séparable muni d’un produit scalaire (.|.) an-
tilinéaire & droite. Pour n € N, on note R, le sous espace de L(H) formé
des opérateurs de rang < n.

Si E est un sous-espace vectoriel fermé de H, on note aussi E le pro-
jecteur orthogonal associé.

Si € est un vecteur de norme 1, on note |£)(¢| le projecteur orthogonal
sur la droite engendrée par £ (notation de Dirac).

On note K l'idéal bilatere fermé des opérateurs compacts de H et on
note £! I'idéal bilatere des opérateurs a trace de L£(H). On rappelle que
si T € L(H) est un opérateur a trace, alors pour toute base orthonormée
(&n),>0 de H la série :

o

> (| Tnn),

n=0

est absolument convergente et sa somme est indépendante du choix du choix
de la base(§,),>o- On note cette somme Trace(T'). Cela définit une trace
sur £!, et Papplication définie par :

T\, = Trace(|T]) VT € £,

est une norme, la norme trace, qui fait de £! un espace de Banach.



1 Traces sur une C*-algebre

Dans toute cette section on désigne par A une C*-algebre unifére, et par
X un espace topologique localement compact. De plus, on note A, le cne
(positif) des élements positifs de A.

Définition 1 On dit qu’une partie B de A est C*-stable si, pour tout x € B,
on a aussi x* € B et |z| € B.

Proposition 1 Tout idéal bilatére de L(H) est une partie C*-stable.

Démonstration. Soit I un idéal bilatere de L£(H), et soit T € I. Notons
T = U|T| la décomposition polaire de T'. Comme I est un idéal bilatere, les
opérateurs |T'| = U*T et T* = U*TU* sont dans I. O

Définition 2 On appelle C*-idéal de A tout idéal bilatére I de A qui est
C*-stable et qui est munit d’une norme || .||1 pour laquelle I est un espace
de Banach, de telle sorte que :on ait :

Nzl =l = llzllr Vo el,
et qu’on ait :
lazbllr < [lalllz] o] Vo €I, Y(a,b) € A%

Exemples. 1. Gree a la théorie des unités approchées, on montre que tout
idéal bilatere fermé de A est C*-stable. Il en résulte qu’'un tel idéal est un
C*-idéal pour la norme de A.

2. Soit p une mesure de Radon sur X et p € [1,00[. Alors, LL(X) N
L7°(X), vu comme idéal bilatere de la C*—algebre L3°(X), est un C*-idéal
pour la norme définie par :

= ([ 1f@Paue) )" v e o,

3. Idéauzr de Schatten. Soit p € [l,00[. Alors, I'ensemble LP des
opérateurs compacts tels que :

0
ZMn(T)p < o0,
n=0

0 (tn(T)n),>o est la suite des valeurs propres de |T'|, est un idéal bilatere
de L(H) . C’est un C*-idéal pour la norme donnée par :

1T, = (Zun(T)p> VT € LP.
n=0

Dans toute la suite de cette section, on désigne par I un idéal bilatere de A
et on note I, = I N Ay le cne des élements positifs de I.



Définition 3 On appelle trace sur I toute forme linéaire positive T sur I
telle que :

T(az) = 7(za) Vo €I Va € A.

Définition 4 On appelle poids sur I toute application T : I+ — Ry qui est
additive et homogéne. On dit que le poids T est tracial si, pour tout x € 1,
et u € A unitaire, on a :

T(u*zu) = 7(x).
Lemme 1 Tout éléement de A est combinaison linéaire de quatre unitaires.

Démonstration. Comme pour tout z € A on a :

x = %(w +a*) + z%(x — "),
on se ramene & montrer que tout élément auto-adjoint de A est combinaison
linéaire de 2 unitaires.
Soit z € A auto-adjoint. Quitte & diviser x par sa norme, on peut en
outre supposer que x est de norme < 1. Dans ce cas, son spectre est inclus
dans [-1,1], et les applications :

t+ V1 —t2
2 ?

t —

envoient Spax dans U(1), le groupe des nombres complexes de module égale
a 1. Par calcul fonctionnel continu, les élements de A :

_x+\/1—1:2 z—V1—x2

Uy = 2 et U-=—%5

sont alors deux unitaires dont la somme est égale a x. O

Lemme 2 Soit I un idéal bilatére C*-stable. Alors, tout x € I admet une
écriture de la forme :

x = (1 —x2) + i(xs—x4),
o les x; appartiennent a 1.

Démonstration. Soit z € I. On a :

1 1
x = §(x+x*) + zﬂ(x —x").

Mais comme I est C*-stable, (z + 2*) et 5:(z — 2*) sont des élements

auto-adjoints de I. Il en résulte qu’il suffit de montrer que tout élement
auto-adjoint de [ est égal a la différence de deux éléments de 1.



Maintenant soit x € I auto-adjoint. Comme I est C*-stable, les élements
de A :

1
Tt = i(x + |J,'D,

sont des élements de I dont la somme est égale a x. De plus, ils sont auto-
adjoints et leurs spectres sont inclus dans R, donc ils appartiennent a 1.
O

Proposition 2 Soit I un idéal bilatére C*-stable de A, et T un poids sur
I.. Alors :

a) T s’étend de maniére unique en une forme linéaire T sur I dans B.
b) Si T est tracial, alors T est une trace sur I.

¢) Supposons que I soit un C*-idéal pour la norme ||.|1, et qu’il existe
une constante C > 0 telle que :

r@) < Claly  Vre I,
Alors, T est une forme linéaire continue sur I (pour ||.||1).

Démonstration. a) Soit = € I, et soit deux écritures de z données par par
le lemme 2 :

r = (x1 —x2) + i(x3 — x4),

/ / . / /
z = (2 — x3) +i(zy — 2y),
o les z; et les x; appartiennet a I,. Comme :
1 ®\ R/ /
§($+$ )—$1—$2—x1—x2,
on a :
/ /
T+ Ty = 27 + x2.

Appliquant 7 dans cette derniere égalité, et utilisant 1’ additivité de 7, on
obtient :

7T(21) = 7(22) = 7(2}) — 7(25).
De mme, on a :

7(ws) = 7(24) = 7(23) — 7(2fy).



Par conséquent, le nombre complexe :

T(x) = 7(21) — T(22) +i(7(23) — 7(74)),

ne dépend que de x et pas des x;. On obtient ainsi une application 7 de I
dans C qui est additive et homogene, et qui plus vérifie les égalités :

T(ex) = eT(x) Vo e I, Ve € {£1, £i}.

Il en résulte que 7 est C-linéaire. Par construction, c’est I'unique forme
linéaire sur I qui prolonge 7 .

b) Supposons que 7 soit un poids tracial, et soit u € A unitaire. L’unitaire
invariance de 7 montre que les applications de I dans C :

x — 7(x) et x — T(u*zu),

sont deux prolongements linéaires de 7 sur I. Par conséquent, elles concident
sur /. On en déduit que :

T(uz) = 7(xu) Vo e 1.

Or, par le lemme 1 tout élément de A est combinaison linéaire d’unitaires,
donc par linéarité 7 est une trace sur 1.

¢) Soit x € I auto-adjoint. On a :

x + |z| x — |z

7 <
I7(x)] < |7( 5 )+ 17 ( 5 ),
T+ |z| T — ||
< C(”72 ‘|I+H72 (F3B
< 20|z

On en déduit que, pour tout z € I, on a :

_ x+a* o r—u*
@l < R+ R

< AC||x||z-

)|7

Exemples. 1. Toute mesure p sur X définit une trace sur L}L ALy,

2. La trace usuelle sur £! est une trace au sens de la définition précédente.
En dimension finie £! correspond & L£(H) et toute trace est proportionnelle
a Trace. Ce n’est plus le cas en dimension infinie comme le montre I’exemple
de la trace de Dixmier.



2 Valeurs caractéristiques.

Définition 5 Soitn € N etT € K. On appelle n-iéme valeur caractéristique
de T, le réel :

pin(T) = nf{|T]s || 5 dimPB = n}.
Lemme 3 Soitn e N etT € K. Alors :

pn(|T]) = pn(T),
dist(|T|,Ry,) = dist(T,R,).
Démonstration. On a ||T¢]| = |||T¢|| V€ € H, donc p,(|T|) = pn(T).

Maintenant, soit 7' = U|T| la décomposition polaire de T'. De I'inclusion
UR, C R, on déduit que :

dist(T, Ry) = dist(U|T], Ry) < dist(U[T], URy) < |U]| dist(|T], Ry)-

Mais ||U]| < 1, donc dist(T, R,,) < dist(|T|,Ry). Puis, comme |T| = U*T,
on obtient de la mme maniere I'inégalité inverse. O

Proposition 3 (principe du min-max) Soitn € N et T € K. Alors :

in(T) = dist(T, Ry),

= n+ 1 —ieme valeur propre de |T'|.

Démonstration. Comme K est un idéal bilatere de L£L(H), il est C*-stable
par la proposition 1. En particulier, 'opérateur positif | 7| est compact. Par
I'alternative de Fredholm, son spectre est alors formé d’une suite de valeurs
propres, positives, de multiplicités finies et tendant vers 0. On peut ainsi
les ranger en une suite décroissante (\,),~, ; ce qui permet de parler de
“n + 1-iéme valeur propre de |T|”. -

Maintenant, le lemme 3 permet de se ramener au cas o 1" est positif. Il
existe alors une base orthonormée ({n)n>0 de H telle que T, = \,&, pour
tout n € N. Autrement dit, on a : -

T = Z /\n‘fn><§n|
n=0

Pour tout m > 1, notons E,, le sous-espace vectoriel engendré par &y ... &n—1.
Le projecteur E,, est donné par :

En =Y |&) (&l
k<n

Comme on a :

T(1—En) =Y Melék)(&l,

k>n
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on voit que :
17| ]| = I T(1 = Ea)| = An.
Mais dim E,, = n et rgT E,, < n, donc :
wn(T) < Ay et dist(T, Rn) < Ap.

Réciproquement, soit F est un sous espace de dimension n. Comme
E,+1 est de dimension n + 1, la restriction du projecteur £ a E,,+1 ne peut
tre injective. Il existe alors £ € E+ tel que & € E,yq et ||€]| = 1. Comme
IT|ge]l = I T¢]| et § € Enyr, onac:

ITEN? =D ARNEIRI = A2 D 1€l P = AnliEl® = A7

k<n k<n

Il en résulte que ||T|g1|| > An, puis que (7)) > Ap.
D’autre part, soit R un opérateur de rang < n. On a :

1T = R sup{|[(T" — R)¢||; € € ker Ret|[¢]| <1}

>
> ”T|kerR||'

Comme R est un isomorphisme linéaire de ker R+ sur im R, le sous-espace
ker R* est de dimension < n. Il existe alors un sous-espace E de dimension
n le contenant. Mais ker R étant fermé, on a :

L ¢ (ker RY)* = ker R.
D’o on déduit que :
1T = Rl Z |1 T|pe )l = pn(T) = An.
On ainsi montré que dist(T, R,,) > Ap. O

Corollaire 1 Soit T € K. Alors, T € L' si et seulement si :

Z pn(T) < o0

n>0

Dans ce cas on a :
|70 = Trace(|T]) Zun

Proposition 4 Soit n € N et T € K(H), et soit H' un (autre) espace de
Hilbert. Alors :



a) pin(|T]) = pn(T*) = pn(T).
b) Pour A € L(H, H') et B € L(H,H), on a :
in(ATB) < | Allim(T)| B,
¢) Pour U € L(H,H') unitaire, on a :
n(UTU) = 1 (T).

Démonstration. Le lemme 3 dit que 1, (|T'|) = pn(T). En outre, 'involution
T — T* induisant une involution de R, (H) on a :

dist(T*, Ry) = dist(T%, R%) = dist(T, Ry).

Do pin(T*) = pn(T).

b) Soit R € Ry, (H). Comme rg(ARB) <n, on a :

in(ATB) < | ATB — ARB| < |[A|||T - R||B|

Il en résulte que p,(ATB) < ||Allpn(T)||B]].

c¢) Comme || U*|| = |U|| = 1, le b) montre que :

pn(UTU) < pin(T),
et que ;
pin(T) = pn(UUTU)U") < pin(UTU).
(]

Définition 6 Soit N € N et T € K. On appelle trace partielle d’ordre N,
le réel :

oN(T) =3 1a(D).

n<N

Lemme 4 Soit N e N etT e K. Alors :
i) on(T) =sup{||TE||; ; dimE = N}.

i1) Si T est positif, on a :

on(T) = sup{Trace(TE) ; dimE = N}.



Démonstration. Si E est un projecteur orthogonal on a ||T|E| = |TE|,
car :

(TE)*TE = ET*TE = (|T|E)*|T|E.

Il en résulte que les deux membres de la premiere égalité ne dépendent que
de |T|. On peut ainsi supposer que 7' est positif.

Soit (&,),,~ une base orthonormée telle que T¢, = un(T)&, Vn € N.
Notons Ey le sous-espace vectoriel engendré par &y...&v—1. On a :

Trace(TEy) = |[TEn|1 = Y pn(T) = on(T).
n<N

Réciproquement, soit £ est un sous espace de dimension N. Comme TFE
est de rang au plus égal a n, on a :

pn(TE) = dist(TE,Ry,) =0 Vn > N.

Par conséquent :
Trace(TE) < |TE||; = Z”n (TE) = pn(TE).

Mais par la proposition 4, le dernier membre est majoré par :

1E] Z pn(T) < on(T),

donc Trace(TE) < on(T). O
Remarque. Pour N € N non nul, o est le sup d’une famille de semi-normes
sur K, donc c’est une une semi-norme sur K. Mais comme p(7") = ||T]|, on
a:

1T < on(T) < N|T],
et par conséquent, oy est une norme sur I quie est équivalente a ||.||.
Proposition 5 Soit T et Ty des opérateurs compacts. Alors :
a) On a :
on(Th + To) < on(Th) + on(T2) VN € N.
b) Si Th et T sont positifs, on a :

UN1+N2(T1 + T2) 2 ON, (Tl) + O-NQ(T2) V(Nla N2) € N2'



Démonstration. a) oy est une norme sur K ; en particlier elle est sous-
additive.

b) Pour i=1,2, soit E; un sous espace de dimension N;. Considérons un
sous espace F de dimension N = Nj 4+ Ny contenant Ey + Eo. Soit (&,),,>¢
un base orthonormée de H telle que &, appartienne & E; pour n < Nj et &
E pour n < N. Comme T} est positif, on a :

Trace(T1E1) = Y (&alTin) < Y (€nlTi&n) = Trace(T1 E).

n<Np n<N

De la mme manieére on montre que Trace(T2FEs) < Trace(ToF). Do :

Trace(Th E1 ) + Trace(T2 E2) Trace(Th E) + Trace(To E),

<
< on(Ty +T3).
Mais T et T5 sont positifs, donc par le lemme 4 :

ON 4N (Th +T2) = oy (Th) + o, (T2).

3 Le C*-idéal £1:>)

On construit I'espace £1:°°) qui est le C*-idéal sur lequel seront définies les
traces de Dixmier. Le point crucial est le lemme suivant :

Lemme 5 Soit N e N etT € K. Alors :

on(T) = inf{||z|y + N|ly| ; (z,y) € L' x K et z+y="T}.
Démonstration. Posons :

on(T) = inf{||lz|]y + Nyl ; (z,y) € L' x K et z+y=T}.

Sixze Ll etye K sont tels que x + y = T, alors la sous-additivité de oy
implique :

on(T) < on(@) +on(y) < [lzfli + Nyl

D’o il résulte que on(T) < on(T).
Réciproquement, soit (é‘n)nZO une base orthonormée de H de telle sorte
que |T'&, = un(T)E, Vn € N. Posons :

an = (|T| = pn(T))En et

ynv = pn(T)En + |T|(1 — EN),

10



o En est le projecteur spectral relatif aux N premieres valeurs propres de
T

EN = Z (Un(T) - Mn(T))‘€n> (fn’

n<N

Soit T' = U|T| la décomposition polaire de T'. Alors, T = Uxyn + Uyn et
(UJZN,UyN) eLlxK.Do:

on(T) Uzl + N([Uyn|l;

lenlln + Nllywll,
D (1alT) = pn(T)) + Ny (T),

n<N
< on(T).

IN A

IN

O

Remarque. Dans cette démonstration on a montré qu’il existait z € £!
et y € K de telle sorte que :

[zlly = on(T) = Nua(T) et |y = Nun(T).
Ce lemme permet de définir des traces partielles d’ordre réel :

Définition 7 Pour A >0 et T € K, on appelle trace partielle de T d’ordre
A le réel :

ox(T) = mf{||z[l + Ally|l ; (z,9) € L' x K etw+y=T}.
Lemme 6 Soit T € K. Alors, la fonction X\ — o(T) est concave sur R.

Démonstration. Soit A et u des réels positifs, et o € [0,1]. Si x € L! et
y € K sont tels que x +y =T, alors :

[zl + (@A + (1 —a)wllyll = ezl + Allyl)) + (1 = )zl + Allyl),
> ao\(T)+ (1 —a)ou(T).

D0 oort(1—a)u(T) = aox(T) + (1 — a)ou(T). O
Proposition 6 Soit A >0 et T € K. Alors :

oAT) = on(T)+au(T),
= (1-a)on(T)+ aon(T),



Démonstration. Les trois dernieres égalités résultent de la définition de
on(T). Ceci dit, on sait par le lemme 6 que la fonction A — o)(T) est
concave, donc :

ox(T) (1 —-a)on(T) + aon(T),

>
> on(T) + au,(T).

Réciproquement, on sait aussi par la remarque apres le lemme 5, qu’il
existe z € L! et y € K tels que :
[zl = on(T) = Nua(T) et |y = Nun(T).

Par conséquent ox(T) < |z||1 + Al|ly|| < on(T) + apun(T). O

Remarques. 1. La proposition dit que la fonction A — o) (T) est affine
entre deux entiers consécutifs : c’est l'interpolation affine des traces par-
tielles d’ordre entier.

2. Pour tout entier N > 0, la fonction o est une norme sur IC équivalente
a ||.||, donc pour tout A > 0, la fonction oy : T +— ox(T') est aussi une
norme sur K équivalente a ||.||. En particulier, o) est sous-additive.

De plus, on vérifie que la boule unité de IC pour la norme o), est ’envelloppe
convexe de By, la boule unité de K pour la norme ||.||, et de A™'By ( By
désigne la boule unité del!) :

By, ={T € K ; oA(T) <1} = Conv(Boo UX 'By)

3. La derniere égalité dit que :
1) = [ (T
u<

Ainsi, lorsque T est positif, o) (T") est un cut-off (intégral) de :

Trace(T) = /OOO ) (T)du,
par le parametre scalaire .
Lemme 7 Soit A\ et Ay dans Ry, et soit Th et Ty dans KNL(H), . Alors :
O 20 (11 +T2) > 0, (T1) + 0, (T2).

Démonstration. La proposition 5 dit que 'inégalité est vraie lorsque A; et
Ao sont tous deux des entiers.

Pour i=1,2, on pose N; = [\;] et a; = A\; — N;. On pose aussi A = A\j + A,
N =[\eta=A—N. On asoit N =Nj+ Na, soit N=N;+ Ny+ 1.
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Supposons que N = Ny + Ns. Alors a = a1 + ag, et on a :

ox(Ti +Tz) = (a1+a2)on+n,+1T1 + T
+ (1 — o1 — OZQ)O'N1+N2(T1 + T2)

D’o on déduit que :

oxTi+T2) > a1(ong+1(T1) + ony(T2)) + aa(on, (T1) + ony+1(T2))
+ (1= a1 —az)(on, (Th) + on, (T2)),
> (I—ap)on, (T1) + aron,41(T1)
+ (1= a2)on,(Ta) + ason,+1(T),
> oy (Th) + o) (T2).

SIN=N;+No+ 1l alorsa=a;+as—1,eton a:

o +T2) = (1—a1+1—)on+n+1(Th +T3)
+ (1 + a2 — V)on, y148,11(Th + T3),

> (1=a1)(on (Th) + on,(T2))

+ (1= a2)(on+1(Th) + on, (T2))

+ (1 +ag = 1)(on,+1(T1) + on, (T2)),
> (I—-oa1)on, (T1) + oqon, (Th)

+ (1 — Ozg)O'NQ(Tl) + aQUNQ(T2)7
> oy (Th) + o, (T).

Définition 8 On appelle interpolé réel de L' et de K, le sous-espace :

o e = exp(l) est le nombre de Neper.

Proposition 7 £! un C*-idéal pour la norme :

ou(T -~
1Tl (1,00) = sup loi);u) VT € L1,

Démonstration. Tout d’abord, ||.||(1 o) est le sup d’une famille de normes,
donc cést une norm. D’autre part, par la proposition 6 on a :

T N=L (T T
supU“( )gsup sup > om0 UN(T) + aun(T)

vT e K.
u>e 108U T N>20<a<1 log(N + a)
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Il résulte alors de la proposition 4 que £1:>°) est un idéal bilatere de £(H)
et qu'on a :

IATB] 1) < AT o) 1BI YT € £029), (4, B) € (£0))2,

En outre, par la proposition 3, 'idéal £

sition 4 on a :

est C*-invariant et par la propo-

T 100) = 1T N100) = ITl10c) VT € L8,

Maintenant, soit (7},),~, une suite dans L£1:2) qui est de Cauchy pour
[-l(1,00)- Alors, cette suite est de Cauchy pour chacune des normes o).
Comme ces normes sont toutes équivalentes a ||.||, on voit qu’il existe T € K
tel que :

lim o)(T,, —T) =0 VA > e.

n—oo

Soit € > 0. Pour n et p assez grands on a :
ox(Tn, —Tp) <€ VA > e.
Faisant tendre p vers I'infini, on obtient :
o\Tn—T)<e VA>e.
1l en résulte que 7' € L) et que ||T}, — T (1,00) — ©0- O

Proposition 8 Soit H' un autre espace de Hilbert et soit S € L(H', H) in-
versible. Alors,yg, lopérateur de conjugaison par S de L(H) dans L(H'),induit
un isomorphisme continu de L) (H) vers L) (H').

Démonstration. Comme vg est une bijection de L(H) vers L(H'), d’inverse
yg-1 : T" +— ST'S~1, il suffit de prouver que g envoit continument £°°) ()
dans £1) (H').

La proposition 4 dit que :

pn(STITS) < |STHISIlua(T) VT € L)(H), Vn €N,
donc y5(L12)(H))) € LI®)/(H'), et on a :
sl ooy < NSTHISIIT @00y VT € L5 (H).

O

Remarque. 1. £(1®)est Pespace vectoriel normé dont la boule unité est :

B,y = ﬂ logu. Conv(Bs Un™'By).

u>e
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Ainsi on a les inclusions :
£l o c K,
et les inégalités (lorsqu’elles ont un sens) :
1T < TN 1,00) < 1711

2. En tant qu’idéal £1°°) est égal & I'idéal de Macaev :

T)
LT = {T; £1) gy N ( < 00},
{ szg log N }
Ce dernier est un C*-idéal pour la norme :
on(T)
T = su .
Il = sup G0

Cependant cette norme ne concide pas avec la norme |[.[|(1,), bien qu’elle
lui soit équivalente.

4 Trace de Dixmier

On va maintenant se concentrer sur la divergence logarithmique de o) (7T')
et évaluer son expansion logarithmique. Ceci nous amenera a la trace de
Dixmier.

Définition 9 Pour A > e et T € K on pose :

1 A ou(T) du
™) = log)\/e log u m

Remarques. a) Pour 7' € K fixé, la fonction A +— 7)(T") est continue et
s’interpréte comme la moyenne de Cesaro de o)(T')/log A par rapport a la
mesure de Haar % du groupe localement compact RY .

b) Si T € L5 on a 0,(T) < 1T (1,00) log u¥u > €. Do :
™AT) < Tl 1,00) VA > e.
Par conséquent la fonction A — 7,(7") appartient a Cy([e, 00)).
Lemme 8 Soit A > e et soit T1 et Ty dans L(H) N £1) - Alors :

(loglog A + 2)log 2

I (Th + 12) — ™A(T1) — ™a(T2)] < |Th + T2l (1,00) oz X
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Démonstration. Comme les o, sont sous-additives on a :
TA(Th + To) < A(Th) + TA(T3).

Il nous faut alors majorer la différence 7)(71) + 7A(T2) — 7a (11 + T3). Par la
proposition 5 on a :

oou(Th +T2) > 0y (T1) + ou(T2) Vu > e.

(Th) + ma(T2) <

)

1 /)‘ o2u(Th +T») du
log A J, log u U
1 /2A ou(Ty + To) du

log A u

9 logu/2 u’
On en déduit que :
(log \)|7a(T1 + T) — Ta(T1) — Ta(T2)| < 0+ 6,

avec

5/>\ O'U(Tl —I—Tg)dﬂ _/2>‘ Uu(Tl —i—Tg) du
e 2

log u u . log u u’
2)
1 1 [du
§ = T+ To)(—— — @
/26 oulTi + 2)(logu/Q logu) u

Grce a la relation de Chasles et a I’ inégalité triangulaire on obtient :

5 < /2@ ou(Ty + Tp) du /2A ou(Ty + Tp) du
B log u U A log u U
Comme 0, (T1 + T2) < [|T1 + T2/(1,00) logu  Yu > e, on voit que :

u

2e du 2X d
d < ||Th +T2||(1,oo)(/ o +/)\ Z) < 2log 2|71 + T2l (1,00)-

D’autre part on a :

2\
1 1 . du
§ < |+ T 1 — —
< T+ Dol [ ol = o)
2\
log2 du
< |11 +1¢ —
< [T+ 2H(1,oo)/2e Tog /2w’
< 71+ T2l 1,00) (log 2) (log log A).
Rassemblant les inégalités on obtient le lemme. O
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Ce lemme s’interprete en termes de C*-algébre. Considérons la C*
algébre:

A = Q([e,;0)) = Cp(le, 00))/Co([e; ).
Le lemme 8 dit qu’ on a une application additive de EE&’OO) dans A :
7 : T — classe de (TA(T))r>e-

En fait :

Lemme 9 Soit w un état sur A (i.e. que w est une forme linéaire positive

sur A telle que w(1) = 1). Alors, wot est un poids tracial sur ES}’OO).

Démonstration. Soit T' € ﬁ(j"’o). La fonction A — 7\(T'), donc 7(T") € A4
et on a w(7(7T)) > 0.
D’autre part, soit U € L(H) unitaire. Par la proposition 4 on a :

pn(UTU) = pn(T) Vn € N.

Do m\(U*TU) = 1\(T) A > e, et a fortiori, w(r(U*TU)) = w(r(T)). O

Comme £1:°) est un C*-idéal, la proposition 2 s’applique : si w un état

. . 1, .
sur A, le poids tracial wor sur ES_ *) go prolonge canoniquement en une

trace sur £(1:°) On obtient ainsi la trace de Dixmier.

Définition 10 Soit w un état sur A. On appelle trace de Dixmier associée
4 w, et on note Try, la trace sur L) obtenue par prolongement linéaire

)

du poids tracial wot sur ,CE:’OO .

Proposition 9 Soit w un état sur A. Alors :
a) Tr,, est une forme linéaire continue sur £1:°°).

b) Tr, ne dépend que de la topologie localement convexe de H, et pas de
son produit scalaire.

¢) Soit H' un autre espace de Hilbert, et S € L(H', H) inversible. Notons
Tr/, la trace de Dizmier associé ¢ w sur H'. Alors :

T (S7I'TS) = Tr,(T) VT € LI®)(R).

Démonstration. a) Soit T' € .CS:’OO). D’apres la remarque a) apres la

définition 9, on a :

) <|Tllaeey  YVAZe
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Par conséquent, dans A, on a :
0<7(T) < I7(Dl < 1T (1,00)-
On en déduit que :
0 <w(r(T) < 171,000 (1) < NTl(1,00)-

De la proposition 2.c), il résulte alors que Try, le pronlegement linéaire du
poids tracial wor, est une forme linéaire continue sur £,

b) Soit (.|.)" un autre produit scalaire sur H définissant la mme topologie
que (.|.). Il existe alors S € L(H) inversible tel que :

(Elm)' = (S€|Sn) V(& n) e H2.

Notons H' I’espace de Hilbert pour ce produit scalaire, et Tr/, la trace de
Dixmier associée & w sur H’. Soit T' € K. Alors S™!T'S est un opérateur
compact de H, qui est est positif relativement a (.|.)’, et qui a les mmes
valeurs propres que 7. Il en résulte que ses valeurs caractéristiques relative-
ment & (.|.)" sont :

po(T), pi(T)y .oy (1), ... .
On en déduit que L8 (H') = LX) (H), et qu'on a :
T (T) = Tr,(S7ITS) = Tr,(T) VT € LE®)(H),.

D’o Tr/, = Tr,, par linéarité.

¢) La proposition 8 dit que S™1L1®) (H)S = L0 (H'). De plus, le b)
ci-dessus, permet de remplacer le produit scalaire de H’ par :

(§,m) — (S¢[Sn).

On est ainsi ramené au cas o S est unitaire. Maintenant si 7' € £1:°°)(H),
alors S~1T'S appartient & £1:>) (H')+ et a les mmes valeurs propres que T,
et par conséquent, Tt/ (S~1TS) = Tr,(T). 1l en résulte que :

T (S7'TS) = Tr,(T) VT e L) (H).
O

Définition 11 Soit T € £, On dit que T est mesurable si la valeur de
Tr, T est indépendante de ’état w. On note M [’ensemble des opérateurs
mesurables. On définit alors §- comme la forme linéaire sur M telle que :

][T = Tr,(T) pour T' € M et w état sur A.
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Proposition 10 On a les propriétés suivantes :

(1,00)

a) M est un sous espace vectoriel fermé de L qui ne dépend pas du

produit scalaire de H.

b) Soit H' un autre espace de Hilbert, et S € L(H',H) est inversible.
Alors, STIM(H)S = M(H') et on a :

STITS = f T VT e LI®®)(H).
H! H

Démonstration. On a :

M(H) = (1 AT € 5™ (H) 5 Tro(T) = Tr (T)}.

w,w' états sur A

Par conséquent, la proposition résulte de la proposition 9. O
Lemme 10 Les états sur A séparent les points.

Démonstration. Soit x € A. 1l s’agit de montrer 'existence d’un état w
sur A tel que w(x) # 0. Si w est un état sur A, alors w(%) est réel et est
égal a la partie réelle de w(x). On peut ainsi supposer que x est auto-adjoint.
De plus, quitte a changer z en —z, on peut se ramener au cas o ¢ & A.
Maintenant, soit B l’espace de Banach réel formé des élements auto-
adjoints de A et munit de la norme induite. Appliquons le théoréme de
Hanh-Banach dans B au convexe A4 et a C' le convexe compact engendré
par —1 et x : il existe une forme linéaire ¢ sur B et des réels a < [ tels

que :
p(Ay) <a et B(C)>p.

En particulier, ¢(A4) est un sous-cne strict de R. Or ¢(1) # ¢(—1), donc
¢(A+) n’est pas réduit a {0} et nécessairement ¢(A;) = Ry. Il en résulte,
d’une part que ¢(1) et ¢(x) sont non nuls, et d’autre part que ¢|4, est un
poids sur A;. Appliquant la proposition 2 on peut alors prolonger ¢ en une
forme linéaire positive ¢ de sorte que :

_ 0
we 2

¢(1)’
est un état sur A tel que w(z) # 0. O

Proposition 11 On a les propriétés suivantes :

a) Soit T € L’Srl’oo). Alors :

(T mesurable et 7[T =L)< (lim 7\(T) = L).

A—00
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b) Soit T € K. Supposons que T est positif et que

N-1
li T)=1L
N log N 7;) n(T)

Alors T est mesurable et Tr, T = L.

¢) Le noyau de - contient L.

Démonstration. a) Si limy_,o 7A(T) = L, alors 7(T') = L, et pour tout
état w sur A on a :

Tr,(T) = w(r(T)) =w(L) = L.

Autrement dit, ' € M et {£T = L.
Réciproquement, supposons que T est mesurable et que L = {{T'). Alors
pour tout état w sur A on a :

w(r(T)—-L)="Tr,(T)—L=0.

Comme par le lemme 10 les états sur A séparent les points, on en déduit
que 7(T) = L. D’o limy oo 72 (T) = L.

b) Soit N un entier > 2. Alors, pour tout A € [N, N + 1], on a :

( log N )O'N(T) < ox(T) < (log(N+1))aN(T)
log(N +1)" logN — log\ — log N log N
Par conséquent limy_, UIQT(Y;\) =L.Do:
li T) = lim =
)\1—>Holo7->\( ) P logA/ logu u

Il résulte alors du a) ci-dessus que T est mesurable et que 7 = L.

c)SiT € L1, alors :

lim

N—oo logN Z tn(T

Le b) ci-dessus dit alors que T' € M et que {7 = 0. Comme L' est un idéal
bilatere de £(H), la proposition 1 et le lemme 2 disent que tout élément de
L' est combinaison linéaire d’élements Ei. I1 en résulte que £ est contenu
dans le noyau de - O

20



Proposition 12 Soit A un opérateur “non borné” tel que A > ¢ > 0, et
tel que :

ftA)

Trace(e ~at™? lorsque t — 07.

Alors A™P est un opérateur mesurable et on a :

Démonstration. Par hypothese e~ est un opérateur & trace. Il est donc
compact. Comme il est positif, il existe une base orthonormée (&,),,~, de H
telle que :

e 86 = pn(e” )&V e N.

Ecrivons g, (e™) = e* o (A\n),>, est une suite croissante de réels stricte-
ment positifs tendant vers +oo. Par calcul fonctionnel, pour tout n € N et
t>0,ona:

A‘fn = Angm
A_pfn = )\;pgm
e_tAgn = e_w\ngn-
Comme lim,_, [|A7PE,|| = limy,— 00 A\, = 0, Vopérateur AP est compact

et on a:
n(ATP) =X P vV eN.
D’autre part, on a :

> e =Trace(e ') ~at™?  lorsque t — 0V,
n>0

Il résulte alors du théoréme tauberien d’Hardy-Littlewood (cf. [An] et [Hal)
qu’alors on a :

om’l

W(ATP) = AP~

lorsque n — oo.
D’o on déduit :

F(p+1)

1 Nl
li n(ATP) =
N log N nZ:;J fin )

Il en résulte que A™P est un opérateur mesurable et qu’on a :

fO- o
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Exemple. Soit A le laplacien (positif) sur le tore T" = R"/27Z". On
regarde A comme un opérateur “non borné” positif sur ’espace de Hilbert
H = L?(T"). L’analyse de Fourier dit qu'une base orthonormée de cet
Hilbert est fournie par les fonctions :

1
er(x) = W

Dans cette base on a Aeg = |k|?ex V¥V k € Z™. On en déduit que pour t > 0
on a:

ekr g eT keZ.

et Trace(e tU+4)) = Z R = (Z et yn

kez™ kEZ

On sait que :

e kez
/+OO e Wy = il
- t
Do
Trace(e HUFA)) ~ (g)% lorsque ¢ — 0.

I en résulte que (I + A)™2 est mesurable et qu'on a :

w3

™

fU+Ay;:H3+H

Plus généralement soit M une variété compact riemannienne de dimen-
sion n, et P un opérateur pseudo-différentiel sur M d’ordre —n. Alors P
s’étend en un opérateur compact de I’espace de Hilbert L?(M). On montre
[Co2] que cet opérateur est mesurable et qu’on a :

fP:iR%@)

Ici Res(P) est le résidu de Wodzicki de P (ou résidu non commutatif) ; il
est donné par la formule :

Res(P) = (2#)"/ o_n(P)(x,&)dxdE,

S*M

0 S*M est le fibré en sphere du fibré cotangent 7M.
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