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Résumé. On présente ici des applications géométriques du résidu non commutatif pour
les variétés de Heisenberg. Ainsi on obtient des invariants conformes, on définit
l'aire d’une variété pseudo-hermitienne et on démontre des formules locales pour
Pindice d’opérateurs sous-elliptiques. (© 2001 Académie des sciences/Editions
scientifiques et médicales Elsevier SAS

Spectral geometry and local index formulae for CR and contact
manifolds

Abstract. we present here geometric applications of the non-commutative residue for
Heisenberg manifolds. Thereby we obtain conformal invariants, we define the area
of a pseudo-Hermitian manifolds and we derive local formulae for the index of
some sub-elliptic operators. (© 2001 Académie des sciences/ Editions scientifiques
et médicales Elsevier SAS

Dans la Note [11] on a construit un résidu non commutatif pour les variétés de Heisenberg. Etant
donnés une variété de Heisenberg compacte (M9T! H) et un fibré £ au-dessus de M, il existe un
unique prolongement analytique TR de la trace sur l’espace \IJSZ(M ,&) des ¥y DO d’ordre complexe
non entier. Le résidu non commutatif apparait alors comme une une trace résiduelle, notée Res, sur
l'algebre W% (M, ) des ¥y DO d’ordre entier.

Cette Note fait suite & [11] et présente des applications géométriques de la construction de ce
résidu non commutatif. Dans la premiere section on s’intéresse a la géométrie spectrale des variétés
de Heisenberg, produisant des invariants conformes pour les variétés pseudo-hermitiennes. Dans la
deuxieme, on étudie la géométrie non commutative des variétés de Heisenberg et on définit 1’aire
d’une variété pseudo-hermitienne. Dans la section 3 on donne des formules locales d’indices pour des
opérateurs sous-elliptiques, comme 'opérateur géométrique qu’on construit section 4 pour les variétés
pseudo-hermitiennes.

Dans toute cette Note on désignera par (M9t H) une variété pseudo-hermitienne compacte et
par £ un fibré au-dessus de M et on renvoit & [11], dont on utilisera librement les notations, pour les



définitions précises du résidu non commutatif et de la trace régularisée, ainsi que pour leurs principales
propriétés.

Les résultats de cette Note, tout comme ceux de [11], sont issus de la thése de doctorat de auteur
soutenue a Orsay le 4 décembre 2000.

1 Géométrie spectrale des variétés de Heisenberg

Soit A un sous-laplacien sous-elliptique auto-adjoint sur M agissant sur les sections de €. Par [11,
théoréme 2] on peut définir les puissances complexes A s € C, de A comme un groupe a 1-parametre
holomorphe de Wy DO tels que ordA® = 2s. 1l en résulte qu'on peut définir la fonction zéta de A
directement comme la fonction méromorphe (a(s) = TRA™® s € C.

D’autre part, il résulte de [11, théoréme 1] que 'opérateur A est borné inférieurement. On peut
alors définir 'opérateur e *» pour ¢ > 0 et d’aprés [1] son noyau a pour t petit un développement
asymptotique sur la diagonale de la forme ki(x, x) ~ = 22i>0 tia;(A)(x), ou les a;j(A)(z) sont des
densités sur M & valeurs dans END £. a

PROPOSITION 1. — 1) Si dim M = d + 1 est impaire, soit d +1 = 2n + 1, alors on a ress—k (a(s) =
%Res A~k = ﬁfM tre, ant1-k(A)(x) pour k = 1,...,n + 1, tandis qu’auz entiers négatifs la
fonction Ca est réguliere avec (a(—k) = (—1)F 1 (k = 1) [}, tre, any141(A)(x) pour k entier > 0 et
Ca(0) = [y, tre, ans1(A)(z) — dimker A.

) Si dim M est paire, la fonction (a est réguliere en Uorigine et on a (A(0) = —dimker A.

Soit maintenant (M?2"*! ) une variété pseudo-hermitienne compacte. Afin d’étudier le probleme
de Yamabe CR, Jerison et Lee [8] on introduit le sous-laplacien pseudo-hermitien conforme [y =
Ap + 5 @ +2) R,, ou A, désigne le sous-laplacien pseudo-hermitien de Tanaka-Greenleaf-Lee et R,

la courbure scalaire de Tanaka-Webster. En effet, en faisant un changement conforme 6 — €276,
f € C®(M), de forme de contact on a [l,25y = €™/ g e~ ("+2F . Soit f € C°(M). Alors :

THEOREME 1. — 1) On a a,(De2rg)(2) = 2@ a, (p)(x), ie. an(Cp)(x) est un invariant conforme
local de poids —2.

2) On a 0@ ,.;,(8)e=0 = =28 TR fL1,°. Ainsi (g,(0) est un invariant conforme global.

3) Pour tout entier k on a Oe( [y, ag(Dezerg)(x))e=0 = 2(n+1—k) [,, f(x)ar(Dg)(x). En particulier
Any1 = [y ans1(Ce2sg) () est un invariant conforme global.

Remarque.— Le 1) et le 3) sont les analogues pseudo-hermitiens des résultas principaux de [2] et [10]
et si les invariances de a,(lg)(x) et A1 sont démontrées dans [12] par des méthodes différentes, le
3) dans sa forme générale ici résout une conjecture posée dans [3].

2 Géométrie non commutative des variétés de Heisenberg

—[Rm|

THEOREME 2. — 1) Si P € W(M,E), ®m < 0, alors pi(P) = O(k™4%2 ), ot px(P) est la k-éme
valeur caractéristique de P.

2) Tout P € \III_{(‘HQ)(M,S) est mesurable pour la trace de Dizmier et vérifie {P = Res P.

d+2

On renvoit & [4] pour la définition et les principales propriétés de la trace de Dixmier. On rappelle
néanmoins que c’est I’équivalent de l'intégrale en géométrie non commutative et qu’elle est définie
sur les opérateurs infinitésimaux d’ordre 1 sur L?(M), c.a.d. les opérateurs compacts T tels que
ur(T) = O(1/k). Ainsi le théoréme 2 implique qu’on peut intégrer tout ¥y DO d’ordre entier P, et
ce méme s’il est d’ordre > —(d + 2), en posant fP = (d +2)~! Res P.



PROPOSITION 2. — Soit (M?"*1 0) une variété pseudo-hermitienne. Alors il e:m'ste des constantes
universelles o, et 3, telles que JCA_("H) =an [,,(dO)" NG et f£A" =B, [, Ru(dO)™ N 6.

En falt ona ffA, ) — o, Joy F(d0)™ A 0 pour toute f € C°°(M). Par conséquent, si on pose

ds = cun"+2 Abz, alors ds est un Wy DO d’ordre 1 et ds?"*2 redonne la forme volume (df)™ A 6. Ceci
permet en utilisant ’analogie avec le cas riemannien d’interpréter ds comme 1’élément de volume de
(M, 0) et de définir I'aire de (M, 0) comme aireg M = f-ds~2. En dimension 3 on obtient :

THEOREME 3. — Pour toute 3-variété pseudo-hermitienne (M3,0) on a aireg M = % Joy R1dO N 6.

Exemple.— Soit la sphere S2 ¢ C? munie de la forme de contact = %(zldzl + 29dz3). Comme Ry =4
on vérifie qu’on a aireg S° = 72/(2v/2).

3 Cohomologie cyclique et formules d’indices locales

Soit S un fibré sur M muni d’une Zs-graduation v et soit D € W}, (M, S) auto-adjoint et impair, i.e.
D~ = —vD. On suppose ici que D? coincide avec un sous-laplacien sous-elliptique modulo ¥}, (M, S).
On peut alors donner des formules locales pour l'indice de D.

PROPOSITION 3. — Sidim M est paire, alors ind D = 0, et si dim M est impaire, soit d+1 =2n + 1,
on aindD = [, Strs, ans1(D?)(z).

Ensuite, les puissances complexes |D|™%, s € C, donnent une famille holomorphe de ¥y DO avec

ord|D|™% = —s. 1l résulte alors des propriétés de la trace régularisée et du résidu non commutatif
(¢f. [11, théoreme 4]) qu’on peut appliquer la formule d’indice locale de Connes-Moscovici [5] et ex-
pliciter un représentant cohomologie cyclique paire pour le caractére de Chern du triplet spectral
(A, H, D), ou A est 'algebre C*°(M) se représentant par multiplication dans I’espace de Hilbert H =
L?*(M,S). On obtient alors I'indice de D & coefficient dans Ko(A) ~ K°(M), i.e. indp : K°(M) — Z,
par accouplement avec ce caractere de Chern.

En fait, indp a ici une réalisation géométrique simple (c¢f. [9]). Etant donné un fibré hermitien &,
on se donne une connexion hermitienne V sur ce fibré, on forme I'opérateur twisté Dy ¢ et alors on
a indp[€] = ind Dy ¢. Comme la cohomologie cyclique de C*°(M) coincide avec 'homologie de M et
que ’accouplement de la cohomologie cyclique avec la K-théorie est donné par ’accouplement avec le
caractere de Chern en cohomologie, on obtient le théoréeme suivant :

THEOREME 4. — 1) Il existe Chy, D € Hpaive(M) telle que pour tout fibré hermitien € au-dessus de M
et toute connexion hermitienne V on ait indp[€] = ind Dy ¢ = (Ch, D,Ch* ).

2) On définit un courant de Rham pair C= (Ogn) représentant Ch, D comme suit. Pour n =0 on
pose Co = 0 si dim M est paire et (Cy, f) = [, f(x) Strs, Qg2 (D*)(x), f € C°(M), sinon. Puis si

n # 0 on définit Ca,, par l’égalité
(Comy £Odf' A N dFP™) = ()78 Y oan (0, 70, f7BM), e 0 (M),

0ES2y

avec Qo la 2n-cochaine sur C°(M) donnée par
¢2n(f0’ fl, B -,f2n) = (2n)! an ][’ny[D, fl}(oa) o [D’f2n}(azn)|D|72(\a|+n)’
ou la somme est prise sur les multi-indices o et a un nombre fini de termes non nuls, (d + 2)c;t =

(—D)le2a! (g + 1) ... (g 4 ... + azn + 2n) et le symbole TF) désigne le k-éme commutateur itéré de
Vopérateur T avec D?.



4 Un exemple en géométrie pseudo-hermitienne

Soit (M,0) une variété pseudo-hermitienne compacte. Alors la forme de contact 6 définit une
structure complexe J sur H = kerf de telle sorte que 11 = ker(J + i) C TcH soit un sous-fibré
intégrable. Il définit donc une structure CR sur M et la décomposition H ® C = T1 9 @ Tp,1, ol
To.1 = T1 0, donne par dualité une bigraduation sur AZH* = A**.

On supposera ici que dim M = 3 et que H est muni d’une involution X — X anti-linéaire (c.a.d.
qui anti-commute avec J). Par exemple pour la sphére S® C C? munie de la forme de contact
0= %(zldél + 29d%3), la conjugaison complexe sur C? induit une telle involution sur H.

On étend l'involution de H sur H ® C en posant X +iY = X —iY pour X, Y dans H. Cette
involution préserve T4 o et Tp,; et induit par dualité une involution anti-linéaire sur A** conservant le
bidegré. Cela permet alors de définir un opérateur de Hodge sur A** par I'égalité xa A 8 = (a, 3)gdf
pour o, 3 € AP9 ou (., .)p désigne la métrique hermitienne sur AP¢ provenant de la métrique de Lévi
sur H ® C. On vérifie que **> = (—1)P*4F! sur AP de sorte qu’on obtient une Zy-graduation sur A**
en posant v = i(P+0°+ 1y sur AP

Maintenant, soit l'opérateur différentiel @), = 5;‘ Oy — 5;,5;, ot 9, désigne I'opérateur de Cauchy-
Riemann tangentiel sur M (c¢f. [1]). Il n’est pas sous-elliptique, mais par contre en chaque bidegré
Qb — YQpY est au signe pres un sous-laplacien sous-elliptique modulo Wi, (M, A**). 1l en résulte que
Péquation Dp|Dp| = Qp — vQpy définit un ¥y DO d’ordre 1 auto-adjoint et impair pour lequel la
proposition 3 et le théoreme 4 s’appliquent.

D’autre part, comme dans [6] on peut dans ’expression du caractére de Chern de Dy, remplacer Dy,
par Dy|Dy| = Qp —vQpy qui est différentiel. On conjecture alors qu’en utilisant un calcul asymptotique
a la Getzler [7] et la cohomologie cyclique d’algebres de Hopf de [6] on puisse exprimer ce caractére de
Chern a l'aide de classes caractéristiques.
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