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Géométrie différentielle/ Differential Geometry
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Résumé. On présente ici des applications géométriques du résidu non commutatif pour

les variétés de Heisenberg. Ainsi on obtient des invariants conformes, on définit

l’aire d’une variété pseudo-hermitienne et on démontre des formules locales pour

l’indice d’opérateurs sous-elliptiques. c© 2001 Académie des sciences/Éditions

scientifiques et médicales Elsevier SAS

Spectral geometry and local index formulae for CR and contact
manifolds

Abstract. We present here geometric applications of the non-commutative residue for

Heisenberg manifolds. Thereby we obtain conformal invariants, we define the area

of a pseudo-Hermitian manifolds and we derive local formulae for the index of

some sub-elliptic operators. c© 2001 Académie des sciences/Éditions scientifiques

et médicales Elsevier SAS

Dans la Note [11] on a construit un résidu non commutatif pour les variétés de Heisenberg. Étant
donnés une variété de Heisenberg compacte (Md+1,H) et un fibré E au-dessus de M , il existe un
unique prolongement analytique TR de la trace sur l’espace ΨC\Z

H (M, E) des ΨHDO d’ordre complexe
non entier. Le résidu non commutatif apparâıt alors comme une une trace résiduelle, notée Res, sur
l’algèbre ΨZ

H(M, E) des ΨHDO d’ordre entier.
Cette Note fait suite à [11] et présente des applications géométriques de la construction de ce

résidu non commutatif. Dans la première section on s’intéresse à la géométrie spectrale des variétés
de Heisenberg, produisant des invariants conformes pour les variétés pseudo-hermitiennes. Dans la
deuxième, on étudie la géométrie non commutative des variétés de Heisenberg et on définit l’aire
d’une variété pseudo-hermitienne. Dans la section 3 on donne des formules locales d’indices pour des
opérateurs sous-elliptiques, comme l’opérateur géométrique qu’on construit section 4 pour les variétés
pseudo-hermitiennes.

Dans toute cette Note on désignera par (Md+1,H) une variété pseudo-hermitienne compacte et
par E un fibré au-dessus de M et on renvoit à [11], dont on utilisera librement les notations, pour les
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définitions précises du résidu non commutatif et de la trace régularisée, ainsi que pour leurs principales
propriétés.

Les résultats de cette Note, tout comme ceux de [11], sont issus de la thèse de doctorat de l’auteur
soutenue à Orsay le 4 décembre 2000.

1 Géométrie spectrale des variétés de Heisenberg

Soit ∆ un sous-laplacien sous-elliptique auto-adjoint sur M agissant sur les sections de E . Par [11,
théorème 2] on peut définir les puissances complexes ∆s, s ∈ C, de ∆ comme un groupe à 1-paramètre
holomorphe de ΨHDO tels que ord∆s = 2s. Il en résulte qu’on peut définir la fonction zêta de ∆
directement comme la fonction méromorphe ζ∆(s) = TR ∆−s, s ∈ C.

D’autre part, il résulte de [11, théorème 1] que l’opérateur ∆ est borné inférieurement. On peut
alors définir l’opérateur e−t∆ pour t > 0 et d’après [1] son noyau a pour t petit un développement
asymptotique sur la diagonale de la forme kt(x, x) ∼ t−

d+2
2

∑
j≥0 tjaj(∆)(x), où les aj(∆)(x) sont des

densités sur M à valeurs dans END E .

Proposition 1. – 1) Si dim M = d + 1 est impaire, soit d + 1 = 2n + 1, alors on a ress=k ζ∆(s) =
1
2 Res ∆−k = 1

(k−1)!

∫
M

trEx
an+1−k(∆)(x) pour k = 1, . . . , n + 1, tandis qu’aux entiers négatifs la

fonction ζ∆ est régulière avec ζ∆(−k) = (−1)k−1(k − 1)!
∫

M
trEx an+1+k(∆)(x) pour k entier > 0 et

ζ∆(0) =
∫

M
trEx

an+1(∆)(x)− dim ker∆.
2) Si dim M est paire, la fonction ζ∆ est régulière en l’origine et on a ζ∆(0) = −dim ker∆.

Soit maintenant (M2n+1, θ) une variété pseudo-hermitienne compacte. Afin d’étudier le problème
de Yamabe CR, Jerison et Lee [8] on introduit le sous-laplacien pseudo-hermitien conforme �θ =
∆b + n

2(n+2)Rn, où ∆b désigne le sous-laplacien pseudo-hermitien de Tanaka-Greenleaf-Lee et Rn

la courbure scalaire de Tanaka-Webster. En effet, en faisant un changement conforme θ → e2fθ,
f ∈ C∞(M), de forme de contact on a �e2f θ = enf �θ e−(n+2)f . Soit f ∈ C∞(M). Alors :

Théorème 1. – 1) On a an(�e2f θ)(x) = e2f(x)an(�θ)(x), i.e. an(�θ)(x) est un invariant conforme
local de poids −2.

2) On a ∂εζ�
e2εf θ

(s)ε=0 = −2sTR f�−s
θ . Ainsi ζ�θ

(0) est un invariant conforme global.

3) Pour tout entier k on a ∂ε(
∫

M
ak(De2εf θ)(x))ε=0 = 2(n+1−k)

∫
M

f(x)ak(Dθ)(x). En particulier
An+1 =

∫
M

an+1(�e2f θ)(x) est un invariant conforme global.

Remarque.– Le 1) et le 3) sont les analogues pseudo-hermitiens des résultas principaux de [2] et [10]
et si les invariances de an(�θ)(x) et An+1 sont démontrées dans [12] par des méthodes différentes, le
3) dans sa forme générale ici résout une conjecture posée dans [3].

2 Géométrie non commutative des variétés de Heisenberg

Théorème 2. – 1) Si P ∈ Ψm
H(M, E), <m < 0, alors µk(P ) = O(k

−|<m|
d+2 ), où µk(P ) est la k-ème

valeur caractéristique de P .

2) Tout P ∈ Ψ−(d+2)
H (M, E) est mesurable pour la trace de Dixmier et vérifie −

∫
P = 1

d+2 Res P .

On renvoit à [4] pour la définition et les principales propriétés de la trace de Dixmier. On rappelle
néanmoins que c’est l’équivalent de l’intégrale en géométrie non commutative et qu’elle est définie
sur les opérateurs infinitésimaux d’ordre 1 sur L2(M), c.a.d. les opérateurs compacts T tels que
µk(T ) = O(1/k). Ainsi le théorème 2 implique qu’on peut intégrer tout ΨHDO d’ordre entier P , et
ce même s’il est d’ordre > −(d + 2), en posant −

∫
P = (d + 2)−1 Res P .
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Proposition 2. – Soit (M2n+1, θ) une variété pseudo-hermitienne. Alors il existe des constantes
universelles αn et βn telles que −

∫
∆−(n+1)

b = αn

∫
M

(dθ)n ∧ θ et −
∫

∆−n
b = βn

∫
M

Rn(dθ)n ∧ θ.

En fait on a −
∫

f∆−(n+1)
b = αn

∫
M

f(dθ)n ∧ θ pour toute f ∈ C∞(M). Par conséquent, si on pose

ds = α
−1

2n+2
n ∆

1
2
b , alors ds est un ΨHDO d’ordre 1 et ds2n+2 redonne la forme volume (dθ)n ∧ θ. Ceci

permet en utilisant l’analogie avec le cas riemannien d’interpréter ds comme l’élément de volume de
(M, θ) et de définir l’aire de (M, θ) comme aireθ M = −

∫
ds−2. En dimension 3 on obtient :

Théorème 3. – Pour toute 3-variété pseudo-hermitienne (M3, θ) on a aireθ M = 1
8
√

2

∫
M

R1dθ ∧ θ.

Exemple.– Soit la sphère S3 ⊂ C2 munie de la forme de contact θ = i
2 (z1dz̄1 + z2dz̄2). Comme R1 = 4

on vérifie qu’on a aireθ S3 = π2/(2
√

2).

3 Cohomologie cyclique et formules d’indices locales

Soit S un fibré sur M muni d’une Z2-graduation γ et soit D ∈ Ψ1
H(M,S) auto-adjoint et impair, i.e.

Dγ = −γD. On suppose ici que D2 cöıncide avec un sous-laplacien sous-elliptique modulo Ψ1
H(M,S).

On peut alors donner des formules locales pour l’indice de D.

Proposition 3. – Si dim M est paire, alors indD = 0, et si dim M est impaire, soit d + 1 = 2n + 1,
on a ind D =

∫
M

StrSx
an+1(D2)(x).

Ensuite, les puissances complexes |D|−s, s ∈ C, donnent une famille holomorphe de ΨHDO avec
ord|D|−s = −s. Il résulte alors des propriétés de la trace régularisée et du résidu non commutatif
(cf. [11, théorème 4]) qu’on peut appliquer la formule d’indice locale de Connes-Moscovici [5] et ex-
pliciter un représentant cohomologie cyclique paire pour le caractère de Chern du triplet spectral
(A,H, D), où A est l’algèbre C∞(M) se représentant par multiplication dans l’espace de Hilbert H =
L2(M,S). On obtient alors l’indice de D à coefficient dans K0(A) ' K0(M), i.e. indD : K0(M) → Z,
par accouplement avec ce caractère de Chern.

En fait, indD a ici une réalisation géométrique simple (cf. [9]). Etant donné un fibré hermitien E ,
on se donne une connexion hermitienne ∇ sur ce fibré, on forme l’opérateur twisté D∇,E et alors on
a indD[E ] = ind D∇,E . Comme la cohomologie cyclique de C∞(M) cöıncide avec l’homologie de M et
que l’accouplement de la cohomologie cyclique avec la K-théorie est donné par l’accouplement avec le
caractère de Chern en cohomologie, on obtient le théorème suivant :

Théorème 4. – 1) Il existe Ch∗D ∈ Hpaire(M) telle que pour tout fibré hermitien E au-dessus de M
et toute connexion hermitienne ∇ on ait indD[E ] = ind D∇,E = 〈Ch∗D,Ch∗ E〉.

2) On définit un courant de Rham pair C = (C2n) représentant Ch∗D comme suit. Pour n = 0 on
pose C0 = 0 si dim M est paire et 〈C0, f〉 =

∫
M

f(x) StrSx
a d+2

2
(D2)(x), f ∈ C∞(M), sinon. Puis si

n 6= 0 on définit C2n par l’égalité

〈C2n, f0df1 ∧ . . . ∧ df2n〉 = (n!)−1
∑

σ∈S2n

ϕ2n(f0, fσ(1), . . . , fσ(2n)), f j ∈ C∞(M),

avec ϕ2n la 2n-cochâıne sur C∞(M) donnée par

ϕ2n(f0, f1, . . . , f2n) = (2n)!
∑

cα −
∫

γf0[D, f1](α1) . . . [D, f2n](α2n)|D|−2(|α|+n),

où la somme est prise sur les multi-indices α et a un nombre fini de termes non nuls, (d + 2)c−1
α =

(−1)|α|2α!(α1 + 1) . . . (α1 + . . . + α2n + 2n) et le symbole T (k) désigne le k-ème commutateur itéré de
l’opérateur T avec D2.
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4 Un exemple en géométrie pseudo-hermitienne

Soit (M, θ) une variété pseudo-hermitienne compacte. Alors la forme de contact θ définit une
structure complexe J sur H = ker θ de telle sorte que T1,0 = ker(J + i) ⊂ TCH soit un sous-fibré
intégrable. Il définit donc une structure CR sur M et la décomposition H ⊗ C = T1,0 ⊕ T0,1, où
T0,1 = T1,0, donne par dualité une bigraduation sur Λ∗CH∗ = Λ∗,∗.

On supposera ici que dim M = 3 et que H est muni d’une involution X → X anti-linéaire (c.a.d.
qui anti-commute avec J). Par exemple pour la sphère S3 ⊂ C2 munie de la forme de contact
θ = i

2 (z1dz̄1 + z2dz̄2), la conjugaison complexe sur C2 induit une telle involution sur H.
On étend l’involution de H sur H ⊗ C en posant X + iY = X − iY pour X, Y dans H. Cette

involution préserve T1,0 et T0,1 et induit par dualité une involution anti-linéaire sur Λ∗,∗ conservant le
bidegré. Cela permet alors de définir un opérateur de Hodge sur Λ∗,∗ par l’égalité ∗α ∧ β = (α, β)θdθ
pour α, β ∈ Λp,q, où ( . , . )θ désigne la métrique hermitienne sur Λp,q provenant de la métrique de Lévi
sur H ⊗C. On vérifie que ∗2 = (−1)p+q+1 sur Λp,q de sorte qu’on obtient une Z2-graduation sur Λ∗,∗

en posant γ = i(p+q)2+1∗ sur Λp,q.
Maintenant, soit l’opérateur différentiel Qb = ∂̄∗b ∂̄b − ∂̄b∂̄

∗
b , où ∂̄b désigne l’opérateur de Cauchy-

Riemann tangentiel sur M (cf. [1]). Il n’est pas sous-elliptique, mais par contre en chaque bidegré
Qb − γQbγ est au signe près un sous-laplacien sous-elliptique modulo Ψ1

H(M,Λ∗,∗). Il en résulte que
l’équation Db|Db| = Qb − γQbγ définit un ΨHDO d’ordre 1 auto-adjoint et impair pour lequel la
proposition 3 et le théorème 4 s’appliquent.

D’autre part, comme dans [6] on peut dans l’expression du caractère de Chern de Db remplacer Db

par Db|Db| = Qb−γQbγ qui est différentiel. On conjecture alors qu’en utilisant un calcul asymptotique
à la Getzler [7] et la cohomologie cyclique d’algèbres de Hopf de [6] on puisse exprimer ce caractère de
Chern à l’aide de classes caractéristiques.
Remerciements. L’auteur remercie Alain Connes, Charles L. Epstein, Henri Moscovici et Michel Rumin
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