Introduction to Noncommutative Geometry Part 4: Index Theory and Connes-Chern Character

Raphaël Ponge

Seoul National University & UC Berkeley www.math.snu.ac.kr/~ponge

UC Berkeley, April 22, 2015

Overview of Noncommutative Geometry

Classical	NCG
Riemannian Manifold (M, g)	Spectral Triple (A, \mathcal{H}, D)
Vector Bundle E over M	Projective Module ${\mathcal E}$ over ${\mathcal A}$ ${\mathcal E}=e{\mathcal A}^q,\;\;e\in M_q({\mathcal A}),\;e^2=e$
$ind {\not \! D}_{ abla^E}$	ind $D_{ abla}arepsilon$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula $ ot\!\!/ \operatorname{Ind} ot\!\!/ ot\!\!/ ot\!\!/ ot\!\!/ ot\!\!/ atiyah-Singer Index Formula ot\!\!/ ot\!\!$	Connes-Chern Character $Ch(D)$ ind $D_{ abla^{\mathcal{E}}} = \langle Ch(D), Ch(\mathcal{E}) \rangle$
Local Index Theorem	CM cocycle

Cyclic Homology and Chern Character

Cyclic Homology

Hochschild Homology $HH_{\bullet}(A)$

 $(C_{\bullet}(A),b)$

Cyclic Homology
$$H^{\lambda}_{ullet}(\mathcal{A}) \simeq \mathsf{HC}_{ullet}(\mathcal{A})$$

$$(C_{ullet}^{\lambda}(\mathcal{A}),b)$$
 and $(C_{ullet}(\mathcal{A}),b,B)$

Periodic Cyclic Homology $HP_{\bullet}(A)$

$$(C_{[\bullet]}(A), b+B)$$

Chern Character

$$\mathsf{Ch}(\mathcal{E}) \in \mathsf{HP}_0(\mathcal{A})$$

$$C_{m}(\mathcal{A}) = \mathcal{A}^{\otimes (m+1)},$$

$$C_{\bullet-1}(\mathcal{A}) \stackrel{b}{\longleftarrow} C_{\bullet}(\mathcal{A}) \stackrel{\mathcal{B}}{\longrightarrow} C_{\bullet+1}(\mathcal{A}), \quad b^{2} = B^{2} = bB + Bb = 0,$$

$$C_{[i]}(\mathcal{A}) = \prod_{q \geq 0} C_{2q+i}(\mathcal{A}), \quad i = 0, 1.$$

Cyclic Cohomology

Cyclic Cohomology

Hochschild Cohomology $HH^{\bullet}(A)$

inia conomology in (x)

Cyclic Cohomology $H^{\bullet}_{\lambda}(\mathcal{A}) \simeq \mathsf{HC}^{\bullet}(\mathcal{A})$

Periodic Cyclic Cohomology $HP^{\bullet}(A)$

Connes-Chern Character

 $(C^{\bullet}(A),b)$

 $(C_{\lambda}^{\bullet}(A), b)$ and $(C^{\bullet}(A), b, B)$

 $(C^{[\bullet]}(A), b+B)$

 $\mathsf{Ch}(D) \in \mathsf{HP}^0(\mathcal{A})$

$$C^m(\mathcal{A}) = \{(m+1)\text{-linear forms } \varphi : \mathcal{A}^{m+1} \to \mathbb{C}\} = \left(\mathcal{A}^{\otimes (m+1)}\right)^*,$$

$$C_{\lambda}^m(\mathcal{A}) = \{\varphi \in C^m(\mathcal{A}); \ \varphi \text{ cyclic}\},$$

$$C^{\bullet-1}(\mathcal{A}) \xleftarrow{B} C^{\bullet}(\mathcal{A}) \xrightarrow{b} C^{\bullet+1}(\mathcal{A}), \quad b^2 = B^2 = bB + Bb = 0.$$

Cyclic Cochains and Connes' B-Operator

Definition

1 The cyclic operator $T: C^m(A) \to C^m(A)$ is given by

$$(T\varphi)(a^0,\ldots,a^m)=(-1)^m\varphi(a^m,a^0,\ldots,a^m),\ \varphi\in C^m(\mathcal{A}).$$

- **2** A cochain $\varphi \in C^m(A)$ is cyclic when $T\varphi = \varphi$.
- **3** The operator $B: C^{\bullet}(A) \to C^{\bullet-1}(A)$ is the composition,

$$B = AB(1-T), \quad A = 1+T+\cdots+T^{m-1},$$

$$(B_0\varphi)(a^0,\ldots,a^m) = \varphi(1,a^0,\ldots,a^m), \quad \varphi \in C^m(A).$$

Lemma (Connes)

- B is annihilated by the cyclic cochains.
- $B^2 = 0$ and Bb + bB = 0.

Periodic Cyclic Cohomology

Definition

The periodic cyclic cohomology is the cohomology of the complex,

$$C^{[0]}(\mathcal{A}) \overset{b+B}{\rightleftharpoons} C^{[1]}(\mathcal{A}), \quad \text{where } C^{[i]}(\mathcal{A}) = \bigoplus_{q \geq 0} C^{2q+i}(\mathcal{A}).$$

Remarks

1 An even periodic cocycle is a finite sequence $\varphi=(\varphi_{2q})_{q\geq 0}$, $\varphi_{2q}\in C^{2q}(\mathcal{A})$, such that

$$\varphi_{2q} = 0$$
 for $q \gg 1$ and $b\varphi_{2q} + B\varphi_{2q+2} = 0 \ \forall q \geq 0$.

2 An even cyclic cocycle $\tau \in C_{\lambda}^{2q}(\mathcal{A})$, $b\tau = 0$, is naturally identified with the even periodic cocycle,

$$(0,\ldots,0,\tau,0,\ldots) \in C^{[0]}(A), \quad b\tau = 0, \ B\tau = 0.$$

There are similar remarks for odd cochains.

Example: $\mathcal{A} = \mathcal{A}_{\theta}$

Noncommutative Torus

Noncommutative torus:

$$\mathcal{A}_{ heta} = \mathcal{A}_{ heta} = igg\{ \sum_{m,n \in \mathbb{Z}} \mathsf{a}_{m,n} U^m V^n; (\mathsf{a}_{m,n}) \in \mathcal{S}(\mathbb{Z}^2) igg\},$$
 $U^* = U^{-1}, \quad V^* = V^{-1}, \quad VU = \mathrm{e}^{-2i\pi heta} UV.$

Unique normalized trace:

$$\tau_0\bigg(\sum a_{m,m}U^mV^n\bigg)=a_{00}.$$

Basic derivations:

$$\delta_1(U^mV^n) = mU^mV^n$$
 and $\delta_2(U^mV^n) = nU^mV^n$.

Example: $A = A_{\theta}$

Theorem (Connes)

- We have dim $HP^0(A_\theta) = \dim HP^1(A_\theta) = 2$.
- ② A basis of $HP^1(A_\theta)$ is given by the cyclic 1-cocycles,

$$\varphi_j(a^0, a^1) = \tau_0(a^0\delta_j(a^1)), \quad j = 1, 2.$$

3 A basis of $HP^0(A_\theta)$ is given by the canonical trace τ_0 and the cyclic 2-cocycle,

$$\tau_2(a^0,a^1,a^2) = \tau_0 \left[a^0 \left(\delta_1(a^1) \delta_2(a^2) - \delta_2(a^1) \delta_1(a^2) \right) \right].$$

Twisted Dirac Operators

Setup

- M^n is a compact spin (oriented) Riemannian manifold (n even).
- E is a Hermitian vector bundle with Hermitian connection ∇^E .
- $ot\!\!/ : C^\infty(M, \$) \to C^\infty(M, \$)$ is the Dirac operator on M.

Definition

The operator $ot\!\!/_{
abla^E}:C^\infty(M,\$\otimes E)\to C^\infty(M,\$\otimes E)$ is defined by

$$\mathcal{D}_{\nabla^{\mathcal{E}}} = \mathcal{D} \otimes 1_{\mathcal{E}} + (c \otimes 1_{\mathcal{E}})(1_{\mathcal{F}} \otimes \nabla^{\mathcal{E}}),$$

where $(c \otimes 1_E)(1_{\mbox{\it S}} \otimes \nabla^E)$ is given by the composition

$$C^{\infty}(M, \$ \otimes E) \stackrel{1_{\$} \otimes \nabla^{E}}{\longrightarrow} C^{\infty}(M, \$ \otimes T^{*}M \otimes E) \stackrel{c \otimes 1_{F}}{\longrightarrow} C^{\infty}(M, \$ \otimes E),$$

and $c(\sigma \otimes \omega) = c(\omega)\sigma$ (Clifford action).

Fredholm Indices of Dirac Operators

Proposition

1 The operator $otin
abla_{
abla^E}$ is selfadjoint and takes the form,

$$\mathcal{D}_{\nabla^E} = \begin{pmatrix} 0 & \mathcal{D}_{\nabla^E}^- \\ \mathcal{D}_{\nabla^E}^+ & 0 \end{pmatrix},$$

where
$$otin _{
abla^{E}}^{\pm}: C^{\infty}(M, \S^{\pm} \otimes E) \rightarrow C^{\infty}(M, \S^{\mp} \otimes E).$$

② The operator $\not D_{\nabla^E}$ is an elliptic differential operator, and hence is a Fredholm operator.

Definition

The Fredholm index of $\not \! D_{\nabla^E}$ is defined by

$$\begin{split} \operatorname{ind} \not \!\! D_{\nabla^E} &:= \operatorname{ind} \not \!\! D_{\nabla^E}^+ \\ &= \dim \ker \not \!\!\! D_{\nabla^E}^+ - \dim \ker \not \!\!\! D_{\nabla^E}^-. \end{split}$$

The Atiyah-Singer Index Theorem

Theorem (Atiyah-Singer '60s)

We have

$$\operatorname{ind} \mathcal{D}_{\nabla^E} = \int_M \hat{A}(R^M) \wedge \operatorname{Ch}(F^E),$$

where

$$\hat{A}(R^M) = \det^{\frac{1}{2}} \left[\frac{R^M/2}{\sinh(R^M/2)} \right]$$
 and $\operatorname{Ch}(F^E) = \operatorname{Tr} \left[\exp(-F^E) \right]$.

Local Index Theorem

Mckean-Singer Formula

We have

where
$$\operatorname{Str} = \operatorname{Tr}_{\mid \mathbf{S}^+ \otimes \mathbf{E}} - \operatorname{Tr}_{\mid \mathbf{S}^- \otimes \mathbf{E}}$$
 .

Local Index Theorem (Patodi, Gilkey, Atiyah-Bott-Patodi)

We have

$$\lim_{t\to 0^+} \mathsf{Str}\left[e^{-tD\hspace{-0.1cm}/^2_{\nabla^E}}\right] = \int_M \hat{A}(R^M) \wedge \mathsf{Ch}(F^E).$$

Combining this with the McKean-Singer formula proves the Atiyah-Singer index theorem.

Remark

We obtain a purely analytical proof of the LIT by using Getzler's rescaling.

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple (A, \mathcal{H}, D) consists of

- **1** A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- ② A *-algebra \mathcal{A} represented in \mathcal{H} .
- $oldsymbol{3}$ A selfadjoint unbounded operator D on $\mathcal H$ such that
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ② $(D \pm i)^{-1}$ is compact.
 - **3** [D, a] is bounded for all $a \in A$.

Connections over a Spectral Triple

Setup

- (A, H, D) is a spectral triple.
- ullet is finitely generated projective (right) module over \mathcal{A} .

Definition

The space of noncommutative 1-forms is

$$\Omega^1_D(\mathcal{A}) = \mathsf{Span}\{adb; \ a,b \in \mathcal{A}\} \subset \mathcal{L}(\mathcal{H}),$$

where db = [D, b].

Definition

A connection on $\mathcal E$ is a linear map $\nabla^{\mathcal E}:\mathcal E\to\mathcal E\otimes_{\mathcal A}\Omega^1_D(\mathcal A)$ such that

$$abla^{\mathcal{E}}(\xi a) = \xi \otimes da + (\nabla^{\mathcal{E}} \xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Example: Dirac Spectral Triple

Setup

- $(C^{\infty}(M), L^{2}(M, \$), \not D)$ is a Dirac spectral triple.
- E is a vector bundle over M and $\mathcal{E} = C^{\infty}(M, E)$.

Proposition

We have

$$\Omega^1_{\mathcal{D}}(C^{\infty}(M)) = c\left(C^{\infty}(M, T^*M)\right) = C^{\infty}(M, \operatorname{End} \$).$$

② If ∇^E is a connection on E, then the composition

$$abla^{\mathcal{E}} = (c \otimes 1_{\mathcal{E}}) \circ
abla^{\mathcal{E}} : C^{\infty}(M, \mathcal{E}) \to C^{\infty}(M, (\operatorname{End} \$) \otimes \mathcal{E})$$

defines a connection on the f.g.. projective module $\mathcal{E} = C^{\infty}(M, E)$.

Example: Grassmannian Connection

Setup

- (A, \mathcal{H}, D) is an arbitrary spectral triple.
- $\mathcal{E} = e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$.

Definition

The Grassmannian connection $\nabla_0^{\mathcal{E}}: \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega_D^1(\mathcal{A})$ is given by the composition,

$$\mathcal{E}\hookrightarrow\mathcal{A}^q\stackrel{d=[D,\cdot]}{\longrightarrow}\Omega^1_D(\mathcal{A})^q\simeq\mathcal{A}^q\otimes_{\mathcal{A}}\Omega^1_D(\mathcal{A})\stackrel{e\otimes 1}{\longrightarrow}\mathcal{E}\otimes_{\mathcal{A}}\Omega^1_D(\mathcal{A}).$$

Proposition

- The Grassmannian connection is a connection on \mathcal{E} .
- ② The set of connections on \mathcal{E} is a nonempty affine space modelled on $\operatorname{Hom}_{\mathcal{A}}(\mathcal{E},\mathcal{E}\otimes_{\mathcal{A}}\Omega^1_D(\mathcal{A}))$.

Coupling with Connections

Setup

- ullet is a finitely generated projective module over ${\cal A}.$
- $\nabla^{\mathcal{E}}$ is a connection on \mathcal{E} .

Definition

The operator $D_{\nabla^{\mathcal{E}}}: \mathcal{E} \otimes_{\mathcal{A}} \operatorname{dom} D \to \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H}$ is given by

$$D_{\nabla^{\mathcal{E}}}(\xi \otimes \zeta) = \xi \otimes D\zeta + c(\nabla^{\mathcal{E}})(\xi \otimes \zeta),$$

where $c(\nabla^{\mathcal{E}})$ is the composition,

$$\mathcal{E} \otimes \mathcal{H} \xrightarrow{\nabla^{\mathcal{E}} \otimes id_{\mathcal{H}}} \mathcal{E} \otimes \Omega^1_D(\mathcal{A}) \otimes \mathcal{H} \xrightarrow{id_{\mathcal{E}} \otimes c} \mathcal{E} \otimes \mathcal{H},$$

where $c(\omega \otimes \zeta) = \omega(\zeta)$ (recall that $\Omega^1_D(\mathcal{A}) \subset \mathcal{L}(\mathcal{H})$).

Fredholm Index

Remark

The operator $D_{\nabla \mathcal{E}}$ takes the form,

$$D_{\nabla^{\mathcal{E}}} = \begin{pmatrix} 0 & D_{\nabla^{\mathcal{E}}}^- \\ D_{\nabla^{\mathcal{E}}}^+ & 0 \end{pmatrix}, \quad D_{\nabla^{\mathcal{E}}}^{\pm} : \mathcal{E} \otimes \text{dom } D^{\pm} \to \mathcal{E} \otimes \mathcal{H}^{\mp}.$$

Proposition

- **1** The operator $D_{\nabla \mathcal{E}}$ is Fredholm.
- ② The Fredholm indices ind $D_{\nabla^{\mathcal{E}}}^{\pm}$ do not depend on the choice of the connection $\nabla^{\mathcal{E}}$ and agree up to sign factor.

Definition

The Fredholm index of D_{∇^E} is defined by

$$\begin{split} \operatorname{ind} D_{\nabla^{\mathcal{E}}} &:= \operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ \\ &= \operatorname{dim} \ker D_{\nabla^{\mathcal{E}}}^+ - \operatorname{dim} \ker \left(D_{\nabla^{\mathcal{E}}}^+ \right)^*. \end{split}$$

Connes-Chern Character

Assumption

• (A, \mathcal{H}, D) is p^+ -summable, i.e., $\mu_n(D^{-1}) = O(n^{-\frac{1}{p}}), p \ge 1$.

Lemma

Assume $\mathcal{E}=e\mathcal{A}^q$, $e^2=e\in M_q(\mathcal{A})$, and $\nabla^{\mathcal{E}}=\nabla_0^{\mathcal{E}}$ is the Grassmanian connection. Then

$$\operatorname{ind} D_{\nabla_0^{\mathcal{E}}} = \frac{1}{2}\operatorname{Str}\left\{(D^{-1}[D,e])^{2k+1}\right\} \quad \forall k \geq \frac{1}{2}p,$$

where $Str = Tr_{|\mathcal{H}^+} - Tr_{|\mathcal{H}^-}$.

Connes-Chern Character

Observation

For
$$k \geq \frac{1}{2}p$$
, let $\tau_{2k}^D \in C^{2k}(\mathcal{A})$ be the cochain defined by
$$\tau_{2k}^D(a^0,\dots,a^{2k}) = c_k \operatorname{Str} \left\{ D^{-1}[D,a^0] \cdots D^{-1}[D,a^{2k}] \right\}, \quad a^j \in \mathcal{A},$$
 where $c_k = \frac{1}{2}(-1)^k \frac{k!}{(2k)!}$. Let $e \in \mathcal{A}$, $e^2 = e$. Then
$$\langle \tau_{2k}^D, \operatorname{Ch}(e) \rangle = \langle \tau_{2k}^D, \operatorname{Ch}_{2k}(e) \rangle,$$

$$= (-1)^k \frac{(2k)!}{k!} \langle \tau_{2k}^D, (e - \frac{1}{2}) \otimes e^{\otimes (2k)} \rangle,$$

$$= \frac{1}{2} c_k^{-1} \left\{ \tau_{2k}^D(e, e, \dots, e) - \frac{1}{2} \tau_{2k}^D(1, e, \dots, e) \right\},$$

$$= \frac{1}{2} \operatorname{Str} \left\{ (D^{-1}[D, e])^{2k+1} \right\} - 0,$$

$$= \operatorname{ind} D_{\nabla_0^{\mathcal{E}}}.$$

Connes-Chern Character

Theorem (Connes)

- **1** The cochain τ_{2k}^D is a cyclic cocycle.
- ② The class of τ_{2k}^D in $HP^0(A)$ is independent of the value of k.

Definition

The class of τ_{2k}^D in $HP^0(A)$ is denoted by Ch(D) and called the Connes-Chern character of (A, \mathcal{H}, D) .

Theorem (Connes)

We have

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \langle \operatorname{Ch}(D), \operatorname{Ch}(\mathcal{E}) \rangle \quad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$$

Example: Spectral Triples over NC Tori

Theorem (Connes)

Let $(A_{\theta}, \mathcal{H}, D)$ be Connes' spectral triple over the noncommutative torus A_{θ} (cf. Part 2). Then

- **1** $(A_{\theta}, \mathcal{H}, D)$ is 2^+ -summable.
- ② Up to a constant multiple, the Connes-Chern character of $(\mathcal{A}_{\theta}, \mathcal{H}, D)$ is represented by the cyclic 2-cocycle,

$$\tau_2(a^0, a^1, a^2) = \tau_0 \left[a^0 \left(\delta_1(a^1) \delta_2(a^2) - \delta_2(a^1) \delta_1(a^2) \right) \right],$$

where τ_0 is the canonical trace and the δ_j the basic derivations of \mathcal{A}_{θ} .

Remark

This Connes-Chern character plays an important role in Bellissard's work on the (integral) quantum Hall effect.

The JLO Cochain

Notation

For t > 0 and X^0, \dots, X^m in $\mathcal{L}(\mathcal{H})$, set

$$H_t(X^0, \dots, X^m) = \int_{\Lambda_m} X^0 e^{-s_0 t D^2} \cdots X^m e^{-s_m t D^2},$$

where $\Delta_m = \{s_j \geq 0; s_0 + s_1 + \cdots + s_m = 1\}.$

Definition (Jaffe-Lesniewski-Osterwalder)

For t > 0, the JLO cochain $\varphi^{\text{JLO}} = (\varphi_{t,2k}^{\text{JLO}})_{k \geq 0}$ is given by

$$\varphi_{t,2k}^{\mathsf{JLO}}(a^0,\ldots,a^{2k}) = t^q \operatorname{Str}\left\{H_t\left(a^0,[D,a^1],\ldots,[D,a^{2k}]\right)\right\}, \ a^j \in \mathcal{A}.$$

The JLO Cochain

Proposition (Jaffe-Lesniewski-Osterwalder, Connes, Getzler-Szenes)

- $(b+B)\varphi_t^{\mathsf{JLO}} = 0 \text{ for all } t > 0.$
- ② Suppose that $\mathcal{E} \simeq e\mathcal{A}^q$, $e^2 = e \in M_q(\mathcal{A})$. Then

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \langle \varphi_t^{\mathsf{JLO}}, \mathsf{Ch}(e) \rangle \quad \forall t > 0.$$

Remarks

- As it may have infinitely many components $\varphi_{t,2k}^{\text{JLO}} \neq 0$, in general the JLO cochain is not an even periodic cyclic cocycle.
- 2 It is however a cocycle in "entire cyclic cohomology".
- **3** The JLO cochain can be interpreted as the Chern character of some superconnection on the space of chains (Quillen).

The CM Cocycle

Assumptions

- **1** (A, \mathcal{H}, D) is p^+ -summable for some $p \ge 1$.
- There are asymptotics in $t^{\alpha}(\log t)^{\beta}$ for $\operatorname{Str}\left\{H_{t}(X^{0},\ldots,X^{m})\right\}$ as $t\to 0^{+}$, for $X^{j}=a$, or [D,a], or D.

Theorem (Connes-Moscovici)

Define
$$\varphi^{\mathsf{CM}} = (\varphi_{2k}^{\mathsf{CM}})_{k \geq 0}$$
 by

$$\varphi_{2k}^{\mathsf{CM}}(\mathsf{a}^0,\ldots,\mathsf{a}^m) = \mathsf{Pf}_{t\to 0+}\,\varphi_{t,2k}^{\mathsf{JLO}}(\mathsf{a}^0,\ldots,\mathsf{a}^{2k}), \quad \mathsf{a}^j \in \mathcal{A},$$

where Pf is the "partie finie" (finite part). Then

- **1** $\varphi_{2q}^{\text{CM}}=0$ for $q>\frac{1}{2}p$ and $(b+B)\varphi^{\text{CM}}=0$, and hence φ^{CM} is an even periodic cocycle.
- 2 The class of φ^{CM} in $HP^0(A)$ agrees with Ch(D).
- We have

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \langle \varphi^{\mathsf{CM}}, \mathsf{Ch}(\mathcal{E}) \rangle \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$$

Example: Dirac Spectral Triple

Proposition (Block-Fox, Connes-Moscovici, RP '03, RP+Wang '15)

For a Dirac spectral triple $(C^{\infty}(M), L^{2}(M, \$), \not D)$, we have

$$\varphi_{2k}^{\mathsf{CM}}(f^0,\ldots,f^{2k}) = \frac{(2i\pi)^{-n}}{(2k)!} \int_M f^0 df^1 \wedge \cdots \wedge df^{2k} \wedge \hat{A}(R^M),$$

That is, we have

$$\varphi^{\mathsf{CM}} = \varphi_{\mathsf{C}},$$

where $C = (2i\pi)^{-n} \hat{A}(R^M)^{\wedge}$ is the Poincaré dual current of $(2i\pi)^{-n} \hat{A}(R^M)$.

Example: Dirac Spectral Triple

Setup

- **1** E is a Hermitian vector bundle and $\mathcal{E} = C^{\infty}(M, E)$.
- ② ∇^E is a connection on E with curvature ∇^E .

Consequence

We have

$$\operatorname{ind} \mathcal{D}_{\nabla^{\mathcal{E}}} = \operatorname{ind} D_{\nabla^{\mathcal{E}}} = \langle \operatorname{Ch}(\mathcal{D}), \operatorname{Ch}(\mathcal{E}) \rangle = \langle \varphi^{\operatorname{CM}}, \alpha \left(\operatorname{Ch}(F^{\mathcal{E}}) \right),$$

where α is the HKR map. Using the formula for $\varphi^{\rm CM}$ we get

$$\langle \varphi^{\mathsf{CM}}, \alpha \left(\mathsf{Ch}(F^{\mathsf{E}}) \right) = \langle \varphi_{\mathsf{C}}, \alpha \left(\mathsf{Ch}(F^{\mathsf{E}}) \right) = \langle \mathsf{C}, \mathsf{Ch}(F^{\mathsf{E}}) \rangle.$$

Thus,

$$\operatorname{ind} \mathcal{D}_{\nabla^E} = \langle C, \operatorname{Ch}(F^E) \rangle = (2i\pi)^{-n} \int_M \hat{A}(R^M) \wedge \operatorname{Ch}(F^E).$$

This is the Atiyah-Singer index formula!