Introduction to Noncommutative Geometry Part 2: Spectral Triples

Raphaël Ponge

Seoul National University & UC Berkeley www.math.snu.ac.kr/~ponge

UC Berkeley, April 1 & 8, 2015

Overview of Noncommutative Geometry

Classical	NCG
Riemannian Manifold (M,g)	Spectral Triple (A, \mathcal{H}, D)
Vector Bundle E over M	Projective Module ${\mathcal E}$ over ${\mathcal A}$ ${\mathcal E}=e{\mathcal A}^q,\ e\in M_q({\mathcal A}),\ e^2=e$
$ind {\not \! D}_{\nabla^E}$	ind $D_{ abla}arepsilon$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula $ ot\!\!/ \operatorname{Ind} ot\!\!/ \mathcal{D}_{ abla^E} = \int \hat{A}(R^M) \wedge \operatorname{Ch}(F^E)$	Connes-Chern Character $Ch(D)$ ind $D_{ abla^{\mathcal{E}}} = \langle Ch(D), Ch(\mathcal{E}) angle$
Local Index Theorem	CM cocycle

Spectral Triples

Definition (Connes-Moscovici)

A spectral triple (A, \mathcal{H}, D) consists of

- **1** A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** A *-algebra \mathcal{A} represented in \mathcal{H} .
- $oldsymbol{0}$ A selfadjoint unbounded operator D on $\mathcal H$ such that
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ② $(D \pm i)^{-1}$ is compact.
 - **3** [D, a] is bounded for all $a \in A$.

Remark

When $\mathcal{H}^- \neq \{0\}$, we say that $(\mathcal{A},\mathcal{H},D)$ is an even spectral triple. Otherwise we say that $(\mathcal{A},\mathcal{H},D)$ is an odd spectral triple

Dirac Spectral Triple

Example

- (M^n, g) compact Riemannian spin manifold (n even) with spinor bundle $S = S^+ \oplus S^-$.
- ullet $ot\!\!/ \, \mathcal{D}_g: C^\infty(M, \mathcal{S}) \to C^\infty(M, \mathcal{S})$ is the Dirac operator of (M, g).
- $C^{\infty}(M)$ acts by multiplication on $L_g^2(M, \$)$.

Then $\left(C^{\infty}(M), L^{2}(M, \$), \not \!\!\! D_{g}\right)$ is a spectral triple.

Remark

We also get spectral triples by taking

- \bullet $\mathcal{H} = L^2(M, \Lambda^{\bullet} T^*M)$ and $D = d + d^*$.
- $\mathcal{H} = L^2(M, \Lambda^{0,\bullet} T_{\mathbb{C}}^* M)$ and $D = \overline{\partial} + \overline{\partial}^*$ (when M is a complex manifold).

Metrics from Spectral Triples

Proposition (Connes)

Let d(x, y) be the Riemannian distance of (M, g). Then

$$d(x,y) = \inf \left\{ |f(x) - f(y)|; \|[D_g, f]\| \le 1 \right\} \quad \forall x, y \in M.$$

Remark

Given a general spectral triple, we get a metric on the space of states of A,

$$d(\varphi, \psi) := \inf \{ |\varphi(a) - \psi(a)|; \|[D, a]\| \le 1 \}.$$

The above formulas were a main impetus for Rieffel's quantum metric spaces.

Noncommutative Torus

Setup

ullet Given $heta \in [0,1)$, we let $\mathbb Z$ acts on $\mathbb T = \mathbb S^1$ by

$$k \cdot z = e^{2i\pi\theta k}z, \quad z \in \mathbb{T}, \ k \in \mathbb{Z}.$$

This is the action generated by the rotation of angle $2\pi\theta$.

Fact

When $\theta \notin \mathbb{Q}$, the orbits of the action are dense. (In this case $\theta \mathbb{Z} + 2\pi \mathbb{Z}$ is a dense subgroup of \mathbb{R} .)

Example

Plots of orbit points $z_k=\mathrm{e}^{2i\pi\theta k}\cdot 1$ with $\theta=1/2\pi$ and $k=0,\ldots,p$ for increasing values of $p=5,10,20,50,100,150,\ldots$

Crossed-Product Algebra $C^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$

Definition

 $C^\infty(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ is $C^\infty(\mathbb{T}) \otimes \mathbb{Z}$ with product and involution,

$$(f_1 \otimes k_1)(f_2 \otimes k_2) = f_1(k_1 \cdot f_2) \otimes (k_1 + k_2),$$

$$(f \otimes k)^* = -\overline{f} \otimes k,$$

where $(k \cdot f)(z) = f(e^{-2i\pi\theta}z)$.

Lemma (Fourier Series Decomposition in $C^{\infty}(\mathbb{T})$)

Let $f(z) = \sum_{m \in \mathbb{Z}} a_m z^m \in L^2(\mathbb{T})$. Then TFAE:

- $(a_m) \in \mathcal{S}(\mathbb{Z}),$

where
$$\mathcal{S}(\mathbb{Z}) := \{(a_m)_{m \in \mathbb{Z}} \subset \mathbb{C}; \ |a_m| = O\left(|m|^{-N}\right) \ \forall N \geq 1\}.$$

Crossed-Product Algebra $C^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$

Proposition

Define operators U and V of $L^2(\mathbb{T})$ by

$$(U\xi)(z)=z\xi(z)$$
 and $(V\xi)(z)=\xi(e^{-2i\pi\theta}z)$ $\forall \xi\in L^2(\mathbb{T}).$

① U and V are unitary operators such that

$$VU = e^{-2i\pi\theta}UV$$
.

2 The map $f \otimes k \to f(U)V^k$ yields an algebra isomorphism,

$$C^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z} \simeq \bigg\{ \sum_{m \in \mathbb{Z}} \sum_{|k| < N} a_{m,k} U^m V^k; (a_{m,k}) \in \mathcal{S}(\mathbb{Z}) \ \forall k \bigg\}.$$

The Noncommutative Torus

Definition

The noncommutative torus is the algebra,

$$\mathcal{A}_{ heta} = \left\{ \sum_{m,n \in \mathbb{Z}} \mathsf{a}_{m,n} U^m V^n; (\mathsf{a}_{m,n}) \in \mathcal{S}(\mathbb{Z}^2)
ight\} \subset \mathcal{L}\left(L^2(\mathbb{T})
ight).$$

Remarks

- **1** \mathcal{A}_{θ} contains the crossed-product algebras $C^{\infty}(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$.
- **2** The closure of \mathcal{A}_{θ} in $\mathcal{L}\left(L^{2}(\mathbb{T})\right)$ is also called noncommutative torus. (This is a C^{*} -algebra.)

Example

For $\theta = 0$, we have the algebra isomorphism,

$$\mathcal{A}_{\theta} \ni \sum a_{m,n} U^m V^n \longrightarrow \sum a_{m,n} z^m w^n \in C^{\infty}(\mathbb{T}^2).$$

Canonical Trace

Proposition

Define $\tau_0: \mathcal{A}_\theta \to \mathbb{C}$ by

$$\tau_0\bigg(\sum a_{m,m}U^mV^n\bigg)=a_{00}.$$

Then τ_0 is the unique trace on A_θ such that $\tau_0(1) = 1$.

Remark

If $e \in \mathcal{A}_{\theta}$ is a Powers-Rieffel idempotent, then $\tau_0(e) = \theta$. Thus,

$$A_{\theta} \not\simeq A_{\theta'}$$
 when $\theta \neq \theta'$.

The Basic Derivations

Proposition

For j=1,2 define $\delta_j:\mathcal{A}_{\theta}\to\mathcal{A}_{\theta}$ by

$$\delta_1(U^mV^n) = mU^mV^n$$
 and $\delta_2(U^mV^n) = nU^mV^n$.

Then δ_1 and δ_2 are derivations of the algebra \mathcal{A}_{θ} , i.e.,

$$\delta_j(ab) = \delta_j(a)b + a\delta_j(b) \qquad \forall a, b \in \mathcal{A}_\theta.$$

Remarks

- **1** δ_1 and δ_2 are called the basic derivations of \mathcal{A}_{θ} .
- **2** For $\theta = 0$, under

$$\mathcal{A}_0 \simeq \mathit{C}^{\infty}(\mathbb{T}^2) \simeq \left\{ \sum \mathit{a}_{m,n} e^{2im\pi x} e^{2im\pi y} \right\},$$

the derivations δ_1 and δ_2 correspond to

$$(2i\pi)^{-1}\frac{\partial}{\partial x}$$
 and $(2i\pi)^{-1}\frac{\partial}{\partial y}$.

Holomorphic Structures on \mathcal{A}_{θ}

Fact

Up to the action of the modular group $PSL(2,\mathbb{Z})$, the holomorphic structures on \mathbb{T}^2 are parametrized by complex numbers τ , $\Im \tau > 0$, and the associate holomorphic differentials,

$$\partial_Z = \partial_x + \overline{\tau}^{-1} \partial_y, \qquad Z = (2\pi)^{-1} (x + \tau y).$$

Definition

A holomorphic structure on \mathcal{A}_{θ} is given by $\tau \in \mathbb{C}$, $\Im \tau > 0$, and the associate holomorphic derivation,

$$\partial = \delta_1 + \overline{\tau}\delta_2.$$

Remark

In what follows we shall take $\tau = i = \sqrt{-1}$.

The Hilbert Space \mathcal{H}_0

Lemma

The canonical trace τ_0 defines an inner-product on \mathcal{A}_{θ} by

$$\langle a,b \rangle_0 := \tau_0 (b^*a) \qquad \forall a,b \in \mathcal{A}_{\theta}.$$

Remark

The family $\{U^mV^n\}$ is orthonormal with respect to $\langle \cdot, \cdot \rangle_0$.

Definition

The Hilbert space \mathcal{H}_0 is the completion of \mathcal{A}_{θ} with respect to $\langle \cdot, \cdot \rangle_0$.

Remarks

- **1** The algebra A_{θ} acts on \mathcal{H}_0 by left-multiplication (left-regular representation).
- **②** There is also a right-action (right-regular representation), and so \mathcal{H} is an \mathcal{A}_{θ} -bimodule.

The Hilbert space $\mathcal{H}^{1,0}$

Definition

1 The space of holomorphic 1-forms is

$$\mathcal{A}_{ heta}^{1,0} = \operatorname{\mathsf{Span}}\left\{a\partial(b);\ a,b\in\mathcal{A}_{ heta}
ight\}.$$

② $\mathcal{H}^{1,0}$ is the completion of \mathcal{A}_{θ} w.r.t. $\langle \cdot, \cdot \rangle_0$.

Remarks

- $\mathcal{A}_{\theta}^{1,0}$ is an \mathcal{A}_{θ} -bimodule, and so is $\mathcal{H}^{1,0}$.
- **2** The derivation ∂ maps \mathcal{A}_{θ} to $\mathcal{A}_{\theta}^{1,0}$. We shall also denote by ∂ its closure as an unbounded operator from \mathcal{H}_0 to $\mathcal{H}^{1,0}$.

Spectral Triples over NC Tori

Theorem (Connes)

The triple $(A_{\theta}, \mathcal{H}, D)$ is a spectral triple, where

- \mathcal{H} is the Hilbert space $\mathcal{H}_0 \oplus \mathcal{H}^{1,0}$.
- A_{θ} is represented in \mathcal{H} by left-multiplication operators.
- D is the unbounded operator of $\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}^{1,0}$ to itself given by

$$D = \begin{pmatrix} 0 & \partial^* \\ \partial & 0 \end{pmatrix},$$

where ∂^* is the adjoint of ∂ .

Remark

The operator D is isospectral to the operator $\partial + \partial^*$ on the ordinary torus \mathbb{T}^2 .

Spectral Triples over NC Tori

Definition

The opposite algebra $\mathcal{A}_{\theta}^{\text{o}}$ has same underlying vector space structure as \mathcal{A}_{θ} and opposite product,

$$a \cdot {}^{\circ} b := ba \qquad \forall a, b \in \mathcal{A}_{\theta}^{\circ}.$$

Remark

The right-actions of \mathcal{A}_{θ} on \mathcal{H}_{0} and $\mathcal{H}^{1,0}$ give rise to left-actions of \mathcal{A}_{θ}^{o} . Therefore, we may represent \mathcal{A}_{θ}^{o} by right-multiplication operators on $\mathcal{H} = \mathcal{H}_{0} \oplus \mathcal{H}^{1,0}$.

Theorem (Connes)

The triple $(\mathcal{A}_{\theta}^{\circ}, \mathcal{H}, D)$ is a spectral triple as well.

Remark

The spectral triples $(\mathcal{A}_{\theta}, \mathcal{H}, D)$ and $(\mathcal{A}_{\theta}^{\mathsf{op}}, \mathcal{H}, D)$ satisfy some form of Poincaré duality in NCG (*cf.* Connes' book).

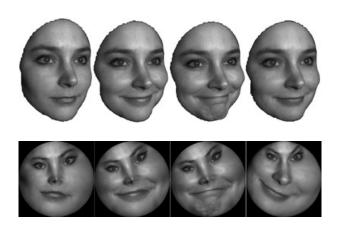
Conformal Geometry

Definition

- Conformal geometry is the geometry up to angle-preserving transformations.
- 2 Two metrics g_1 and g_2 are conformally equivalent when

$$g_2 = k^{-2}g_1$$
 for some $k \in C^{\infty}(M)$, $k > 0$.

Conformal Geometry



Conformal Changes of Metrics

Setup

- $(C^{\infty}(M), L_g^2(M, \$), \not D_g)$ is a Dirac spectral triple.
- Conformal change of metric: $\hat{g} = k^{-2}g$, $k \in C^{\infty}(M)$, k > 0.

Observation

Define $U: L^2_g(M, \$) \to L^2_{\hat{g}}(M, \$)$ be defined by

$$Uf = k^{\frac{n}{2}} \xi \quad \forall f \in L_g^2(M, \S).$$

Then U is a unitary operator and intertwines the spectral triples

$$\left(\mathit{C}^{\infty}(\mathit{M}),\mathit{L}^{2}_{\hat{g}}\left(\mathit{M},\$\right), \not \!\!\!\!D_{\hat{g}}\right) \quad \text{and} \quad \left(\mathit{C}^{\infty}(\mathit{M}),\mathit{L}^{2}_{g}(\mathit{M},\$), \sqrt{k} \not \!\!\!\!D_{g} \sqrt{k}\right).$$

In particular,

$$U \not\!\!D_{\hat{\sigma}} U^* = \sqrt{k} \not\!\!D_{\sigma} \sqrt{k}.$$

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A, \mathcal{H}, D) $(A, \mathcal{H}, D)_{\sigma}$ consists of

- **1** A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- ② An involutive algebra $\mathcal A$ represented in $\mathcal H$ together with an automorphism $\sigma: \mathcal A \to \mathcal A$ such that $\sigma(a)^* = \sigma^{-1}(a^*)$ for all $a \in \mathcal A$.
- $oldsymbol{\circ}$ A selfadjoint unbounded operator D on $\mathcal H$ such that
 - D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ② $(D \pm i)^{-1}$ is compact.
 - **3** $[D, a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in A$.

Conformal Deformations of Spectral Triples

Theorem (Connes-Moscovici)

Consider the following:

- An ordinary spectral triple (A, \mathcal{H}, D) .
- A positive element $k \in \mathcal{A}$ with associated inner automorphism $\sigma(a) = k^2 a k^{-2}$, $a \in \mathcal{A}$.

Then $(A, \mathcal{H}, kDk)_{\sigma}$ is a twisted spectral triple.

Pseudo-Inner Twistings (RP+H. Wang)

Theorem (RP+H. Wang '15)

Consider the following:

- An ordinary spectral triple $(A, \mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-, D)$.
- Positive elements $k^{\pm} \in \mathcal{A}$ with $k^+k^- = k^-k^+$ and associated inner automorphisms $\sigma^{\pm}(a) = k^{\pm}a(k^{\pm})^{-1}$.
- A positive even operator $\omega = \begin{pmatrix} \omega^+ & 0 \\ 0 & \omega^- \end{pmatrix} \in \mathcal{L}(\mathcal{H})$ such that

$$\omega^{\pm} a = \sigma^{\pm}(a)\omega^{\pm} \qquad \forall a \in \mathcal{A}.$$

Set $k = k^+k^-$ and $\sigma(a) = kak^{-1}$. Then $(A, \mathcal{H}, \omega D\omega)_{\sigma}$ is a twisted spectral triple.

Conformal Dirac Spectral Triple

Setup

- M^n compact spin (oriented) manifold (n even).
- ${\mathcal C}$ is a conformal structure on M, i.e., a conformal class of metrics.
- **3** G is a group of diffeomorphisms preserving C and the spin structure. Thus, given any metric $g \in C$ and $\phi \in G$,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\ k_\phi>0.$

③ $C^{\infty}(M)$ × G crossed-product algebra, i.e., $C^{\infty}(M)$ ⊗ $\mathbb{C}G$ with product and involution,

$$(f_1 \otimes \phi_1)(f_2 \otimes \phi_2) = f_1(f_2 \circ \phi_1^{-1}) \otimes \phi_1 \phi_2,$$

$$(f \otimes \phi)^* = \overline{f} \otimes \phi^{-1}.$$

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici '08)

For $\phi \in G$ define $U_{\phi}: L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi=k_{\phi}^{-\frac{n}{2}}\phi_{*}\xi\quad \forall \xi\in L_{g}^{2}(M,\S).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \not \! D_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \not \! D_{g} \sqrt{k_{\phi}}.$$

Theorem (Connes-Moscovici '08)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \not D_g\right)_{\sigma_{\sigma}}$ given by

- **1** The Dirac operator p_g associated with g.
- ② The representation $f \otimes \phi \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^2_{g}(M, \S)$.
- **3** The automorphism $\sigma_g(fU_\phi) := k_\phi^{-1} fU_\phi$.

Conformal Weights on NC Tori

Definition

A conformal weight on A_{θ} is of the form,

$$\varphi(a) = \tau_0(ak^{-2}), \qquad k \in \mathcal{A}_\theta, \ k > 0.$$

We call k the Weyl factor of φ .

Fact

A conformal weight defines an inner product on A_{θ} by

$$\langle a,b
angle_{arphi}:=arphi(b^*a)= au_0(b^*ak^{-2}),\quad a,b\in\mathcal{A}_{ heta}.$$

Twisted Spectral Triples on NC Tori

Theorem (Connes-Tretkoff)

Consider the following:

- The Hilbert space $\mathcal{H}_{\varphi} := \mathcal{H}_{\varphi}^{0} \oplus \mathcal{H}^{1,0}$, where $\mathcal{H}_{\varphi}^{0}$ is the completion of \mathcal{A}_{θ} with respect to $\langle \cdot, \cdot \rangle_{\varphi}$.
- The operator $D_{\varphi}:=egin{pmatrix} 0 & \partial_{\varphi}^* \ \partial & 0 \end{pmatrix}$, where ∂_{φ}^* is the adjoint of ∂ with respect to $\langle\cdot,\cdot\rangle_{\varphi}$.
- The representation $a \to \begin{pmatrix} (k^{-1}ak)^{\circ} & 0 \\ 0 & a^{\circ} \end{pmatrix}$ of $\mathcal A$ in $\mathcal H_{\varphi}$, where $^{\circ}$ denotes the right-action.
- The inner automorphism $\sigma(a) = k^{-1}ak$ of A_{θ} .

Then $(\mathcal{A}_{\theta}^{o}, \mathcal{H}_{\varphi}, \mathcal{D}_{\varphi})_{\sigma}$ is a twisted spectral triple.

Remark

 $(\mathcal{A}_{\theta}, \mathcal{H}_{\varphi}, \mathcal{D}_{\varphi})$ is an ordinary spectral triple.

Twisted Spectral Triples on NC Tori

Lemma (Connes-Tretkoff)

The right-multiplication by k on \mathcal{A}_{θ} uniquely extends to a unitary operator $W_0: \mathcal{H}^0 \to \mathcal{H}^0_{\varphi}$.

Proposition

Define

$$W=egin{pmatrix} W_0 & 0 \ 0 & 1 \end{pmatrix} \in \mathcal{L}(\mathcal{H},\mathcal{H}_{arphi}) \quad ext{and} \quad \omega=egin{pmatrix} k^{
m o} & 0 \ 0 & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H}),$$

Then W is a unitary operator and intertwines the triples

$$(\mathcal{A}_{\theta}^{\circ}, \mathcal{H}, \omega D\omega)_{\sigma}$$
 and $(\mathcal{A}_{\theta}^{\circ}, \mathcal{H}_{\omega}, D_{\omega})_{\sigma}$.

Corollary

 $(A_{\theta}^{\circ}, \mathcal{H}_{\varphi}, D_{\varphi})_{\sigma}$ is a twisted spectral triple.

Gauss-Bonnet Theorem for NC Tori

Theorem (Gauss-Bonnet Theorem)

Let (Σ, g) be a compact Riemann surface. Define

$$\zeta \Delta_g; 0) = \lim_{s \to 0} \operatorname{Tr} \Delta_g^{-s}.$$

Then

$$\zeta(\Delta_g; 0) + 1 = \frac{1}{12\pi} \int_M \kappa(x) \sqrt{g(x)} dx = \frac{1}{16} \chi(\Sigma),$$

where $\chi(\Sigma)$ is the Euler characteristic and $\kappa(x)$ the scalar curvature. In particular $\zeta(\Delta_g;0)$ is a topological invariant and a conformal invariant.

Theorem (Connes-Tretkoff)

Set $\Delta_{\varphi} = \partial_{\varphi}^* \partial$. Then the value of $\zeta(\Delta_{\varphi}; 0)$ is independent of the choice of the conformal weight φ , and hence is a conformal invariant.

Gauss-Bonnet Theorem for NC Tori

Conjecture (Gihyun Lee + Hyun-su Ha + RP)

Let (g_{ij}) be a Riemannian metric on \mathcal{A}_{θ} (i.e., a positive element of $M_2(\mathcal{A}_{\theta})$) and Δ_g the associated Laplacian. Then the value of $\zeta(\Delta_g;0)$ is independent of the choice of g, and hence is a topological invariant.